
 Lecture 9 – Decision Trees and Random Forest

University of Toronto, Department of Earth Sciences,

Hosein Shahnas

1

ESS2222

2

Outline

 Decision Trees

 Gini index

 Decision Tree – Iris Classification Problem

 Random Forest Algorithm

 Bagging – Bootstrap Sampling

 Random Forest – Image recognition

 Feature Importance

3

Review of Lecture 8

Singular Value Decomposition (SVD)

A[mn] = U[mr] 𝚺[rr] V[nr]
T

Accelerating the computational process by

ignoring less important features

Visualization

4

Classification and Regression Tree (CART)

Tree-based methods are one of the commonly used supervised learning algorithms in

machine learning, both for regression and classification problems.

 Salary Commute

Free

coffee

Class

Job 1 50000 2 hr Yes 1

Job 2 45000 3 hr No 0

.

.

Job n 53000 1 hr No 1

Salary > 50000

?

Commute > 1hr

?

Accept offer

Free coffee

?

Decline offer

Decline offer

Decline offer

yes

no

no

yes

yes
no

Decision Tree:

Should I accept the job?

Root node: The top most decision node

Decision nodes: Nodes that have two or

more braches

Leaf nodes: Nodes of the tree that have no

additional nodes coming off them

5

Decision Trees

Decision trees:

A decision tree is a simple but powerful supervised learning method that uses

tree-like model of decisions and their possible consequences. They are used

in both classification and regression problems.

Unlike the highly dimensional SVM, where it is impossible for a human brain

to even imagine how the hyperplane built looks like, the decision trees

provide very good visualization on the steps of decisions and the relative

importance of the features.

class sklearn.tree.DecisionTreeRegressor for classification

class sklearn.tree.DecisionTreeClassifier for regression

6

Gini index: The gini index is a number describing the quality of the split of a node on a variable

(feature).

If a data set D contains samples from C classes, gini index is defined as:

gini(D) = 1 - 𝑷𝟐𝑪
𝒄=𝟏 c

where Pc is the relative frequency of class c in D

If a data set D splits on S into two subsets D1 and D2, the gini index is defined as:

giniS (D) =
𝑫𝟏

𝑫
 gini(𝑫𝟏) +

𝑫𝟐

𝑫
 gini(𝑫𝟐)

where gini(𝑫𝟏) < gini(D), gini(𝑫𝟐) < gini(D)

Reduction in impurity:

∆ 𝒈𝒊𝒏𝒊 𝑺 = 𝒈𝒊𝒏𝒊 𝑫 − 𝒈𝒊𝒏𝒊𝑺 (𝑫)

Information Gain Entropy:

Information gain is a measure of decrease in entropy after

the data is split.

Information gain entropy is another criterion for choosing

the features in splitting. Entropy is a measure of the degree

of disorder or randomness in the system.

H(D) = 1- 𝑷𝒄
𝑪
𝒄=𝟏 𝒍𝒐𝒈(𝑷𝒄)

Gini Index

True S False

D

D1 D2

Entropy decreases

7

Gini Index

Features Class labels
Example: Playing Tennis

8

Wind: Strong?

Play Tennis: 3P, 3N Play Tennis: 6P, 2N

True S False

P

D1 D2

gini (Play Tennis | Wind =True) = 𝟏 −
𝟑

𝟔

𝟐
 −

𝟑

𝟔

𝟐
 = 0.5

gini (Play Tennis | Wind = False) = 𝟏 −
𝟔

𝟖

𝟐
 −

𝟐

𝟖

𝟐
 = 0.375

giniS (D) =
𝑫𝟏

𝑫
 gini(𝑫𝟏) +

𝑫𝟐

𝑫
 gini(𝑫𝟐)

=
𝟔

𝟏𝟒
× 𝟎. 𝟓 +

𝟖

𝟏𝟒
× 𝟎. 𝟑𝟕𝟓 = 0.4286

Gini Index (Gini Impurity)

Example: Playing Tennis

9

Humidity

Play Tennis: 3P, 4N Play Tennis: 6P, 1N

High S Normal

P

D1 D2

gini (Play Tennis | Humidity = High) = 𝟏 −
𝟑

𝟕

𝟐
 −

𝟒

𝟕

𝟐
 = 0.4898

gini (Play Tennis | Humidity = Normal) = 𝟏 −
𝟔

𝟕

𝟐
 −

𝟏

𝟕

𝟐
 = 0.2449

giniS (D) =
𝑫𝟏

𝑫
 gini(𝑫𝟏) +

𝑫𝟐

𝑫
 gini(𝑫𝟐)

=
𝟔

𝟏𝟒
× 𝟎. 𝟒𝟖𝟗𝟖 +

𝟖

𝟏𝟒
× 𝟎.2449 = 0.3674

Gini Index (Gini Impurity)

Example: Playing Tennis

10

Outlook

Play Tennis: 2P, 3N Play Tennis: 3P, 2N

Sunny Overcast Rain

P

D1 D2 D3

gini (Play Tennis | Outlook = Sunny) = 𝟏 −
𝟐

𝟓

𝟐
 −

𝟑

𝟓

𝟐
 = 0.48

gini (Play Tennis | Outlook = Overcast) = 𝟏 −
𝟒

𝟒

𝟐
 −

𝟎

𝟒

𝟐
 = 0

gini (Play Tennis | Outlook = Rain) = 𝟏 −
𝟑

𝟓

𝟐
 −

𝟑

𝟓

𝟐
 = 0.48

giniS (D) =
𝑫𝟏

𝑫
 gini(𝑫𝟏) +

𝑫𝟐

𝑫
 gini(𝑫𝟐) +

𝑫𝟑

𝑫
 gini(𝑫𝟑)

=
𝟓

𝟏𝟒
× 𝟎. 𝟒𝟖 +

𝟒

𝟏𝟒
× 𝟎 +

𝟓

𝟏𝟒
× 𝟎. 𝟒𝟖 = 0.3429

Gini Index (Gini Impurity)

Example: Playing Tennis

Play Tennis: 4P, 0N

11

Temperature

Play Tennis: 2P, 2N Play Tennis: 3P, 1N

Hot Mild Cool

P

D1 D2 D3

gini (Play Tennis | Temperature = Hot) = 𝟏 −
𝟐

𝟒

𝟐
 −

𝟑

𝟒

𝟐
 = 0.5

gini (Play Tennis | Temperature = Mild) = 𝟏 −
𝟒

𝟔

𝟐
 −

𝟐

𝟔

𝟐
 = 0.4444

gini (Play Tennis | Temperature = Cool) = 𝟏 −
𝟑

𝟒

𝟐
 −

𝟏

𝟒

𝟐
 = 0.375

giniS (D) =
𝑫𝟏

𝑫
 gini(𝑫𝟏) +

𝑫𝟐

𝑫
 gini(𝑫𝟐) +

𝑫𝟑

𝑫
 gini(𝑫𝟑)

=
𝟒

𝟏𝟒
× 𝟎. 𝟓 +

𝟔

𝟏𝟒
× 𝟎. 𝟒𝟒𝟒𝟒 +

𝟒

𝟏𝟒
× 𝟎. 𝟑𝟕𝟓 = 0.4405

Gini Index (Gini Impurity)

Example: Playing Tennis

Play Tennis: 4P, 2N

12

Gini Index (Gini Impurity)

Example: Playing Tennis

giniS(Windy) = 0.4286

giniS (Humidity) = 0.3674

giniS (Outlook) = 0.3429

giniS (Temperature) = 0.4405

The splitting gain for Temperature feature is high, therefore we chose temperature as

the feature for splitting.

gini(D) = 1 - 𝑷𝟐𝑪
𝒄=𝟏 c

gini(D) = 𝟏 −
𝟓

𝟏𝟒

𝟐
 −

𝟗

𝟏𝟒

𝟐
 = 0.541

13

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the

information gain.

splitter : string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to choose the best split and “random”

to choose the best random split.

max_depth : int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less

than min_samples_split samples.

min_samples_split : int, float, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples required to be at a leaf node.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split.

max_leaf_nodes : int or None, optional (default=None)

Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then

unlimited number of leaf nodes.

DecisionTreeRegressor
criterion : strstring, optional (default=”mse”)

The function to measure the quality of a split. Supported criteria are “mse” for the mean squared error, which is equal to

variance reduction as feature selection criterion and minimizes the L2 loss

Parameters for

DecisionTreeClassifier

14

Decision Tree - Iris Classification Problem

Iris problem:

Three class problem with four features.

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import GridSearchCV for grid search

15

Decision Tree - Iris Problem

16

Decision Tree - Iris Problem

17

Decision Tree - Iris Problem

18

Decision Tree - Iris Problem

19

Decision Tree - Iris Problem

20

Decision Tree - Iris Problem

21

Decision Tree - Iris Problem

22

Example 1: Iris problem

criterion='gini',

splitter='best',

min_samples_split=5,

min_samples_leaf = ?,

max_depth=20,

max_features=None,

Decision Tree

min_samples_leaf = 50

min_samples_leaf = 25

min_samples_leaf = 17

min_samples_leaf = 10

23

Example 1: Iris problem

criterion='gini',

splitter='best',

min_samples_split=?,

min_samples_leaf=5,,

max_depth=20,

max_features=None,

Decision Tree

min_samples_split = 65

min_samples_split = 30

min_samples_split = 15

24

Example 1: Iris problem

criterion='gini',

splitter='best',

min_samples_split=5,

min_samples_leaf=5,

max_depth = ?,

max_features=None,

Decision Tree

max_depth = 1

max_depth = 2

max_depth = 3

max_depth = 20

25

Example 1: Iris problem

criterion='gini',

splitter='best',

min_samples_leaf=5,

min_samples_split=5,

max_depth=20,

max_features = ?,

Decision Tree

max_features = 4

max_features = 2

max_features = 1

26

Example 1: Iris problem

criterion='gini',

splitter='best',

min_samples_leaf=1,

min_samples_split=2,

max_depth=20,

max_features=1,

Decision Tree

27

Random Forest Algorithm

The random forest method is another way to elaborate nonlinear problems. Classification and

Regression Trees (CART) were first introduced by Leo Breiman (2001) for classification or

regression predictive modeling problems.

Trees: The trees are grown from different subsets of the training data by a bagging procedure

(Breiman, 1996) which ensures the diversity of the trees and minimizes the similarities between

them.

The bagging procedure is based on a bootstrap technique. In this method the mean value of a

variable is calculated from the average of the mean values of the random subsets of that variable

with replacement (i.e., the same value of the variable can be selected few times randomly in a

subset). This reduces the correlation between the trees that may cause overfitting. The prediction

for unseen data is then based on the average estimations from all regression or classification

trees.

It has been shown that the generalization error for the forest converges as the number of the trees

in the forest increases which prevents an overfitting problem. On the other hand, a reduction in the

number of features in splitting reduces the correlation among trees and increases the model

prediction accuracy (Breiman, 1996).

28

Bagging – Bootstrap Sampling

 B1 B2 B3 Bm

 Train

 Model1 Model 2 Model 3 Model m

 Test

n: Number training samples

n’: Number of samples in a bag Mean y
n’<n (e.g., n’ = 60% n)

m: Number of bags

29

Parameters

The random forest method has a number of tuning parameters (e.g., Raschka, 2015)

which can be adjusted by a grid search or manually.

n_estimators : integer, optional (default=10)

The number of trees in the forest. Increasing this parameter to a certain level reduces the

possibility of overfitting to the cost of computational time. However, a very large number of

random trees may not result in a significant gain in the prediction accuracy and the score

could even drop.

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini

impurity and “entropy” for the information gain.

max_depth : integer or None, optional (default=None)

If None, then nodes are expanded until all leaves are pure or until all leaves contain less

than min_samples_split samples. The depth of the tree is proportional to the number of splits

of the nodes into the child nodes. Deeper trees are more complex and are more likely to

overfit the training data.

.

30

Parameters

min_samples_split: int, float, optional (default=2)

The minimum number of samples required to split at each internal node of a tree (from one

to all sample). However, splitting a larger number of samples at each node will cause

underfitting and may abruptly cause a decrease in learning. This parameter may be declared

as integer (the number of samples required to split at each node) or be set as the fraction of

the samples in the range of 0<min_samples_split≤1 (floating).

min_samples_leaf : int, float, optional (default=1)

The minimum number of samples at a leaf node to avoid further splitting (integer or floating).

Increasing this parameter may cause underfitting.

The parameters “max_depth” and “min_samples_leaf” control the level of regularization; that

is, decreasing “max_depth” and increasing “min_samples_leaf” will result in a better

regularization.

max_features : int, float, string or None, optional (default=”auto”)

The number of features to consider when looking for the best split.

The smaller values prevents overfitting, but too small values may introduce underfitting.

max_leaf_nodes: The maximum number of leaves in the tree.

31

Bias2

Variance

Total Err

Optimum Model complexity

Model Complexity

Bias-Variance Trade-off

𝑬𝒓𝒓 𝒙 = 𝒈 𝒙 − 𝒇(𝒙) 𝟐+ 𝒈 𝒙 − 𝒈 (𝒙) 𝟐 + 𝝈𝟐

Bias Variance Irreducible error

32

Random Forest Model

Image Recognition – Fashion Data

Fashion problem:

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = tp / (tp + fp)

𝒓𝒆𝒄𝒂𝒍𝒍 = tp / (tp + fn)

tp: true positive
fp : false positive
fn : true positive

𝒇𝜷 = (𝟏 + 𝜷𝟐)
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝒓𝒆𝒄𝒂𝒍𝒍

𝜷𝟐 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍

𝒇𝟏 = 𝟐 ×
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍

The 𝒇𝜷 score can be interpreted as a weighted harmonic mean of the precision

and recall, where an 𝒇𝜷 score reaches its best value at 1 and worst score at 0.

The support is the number of occurrences of each class in y_true.

Wiki

https://en.wikipedia.org/wiki/File:Precisionrecall.svg

33

Random Forest Model

Image Recognition – Fashion Data

34

Random Forest Model

Image Recognition – Fashion Data

35

Random Forest Model

Image Recognition – Fashion Data

36

Random Forest Model

Image Recognition – Fashion Data

37

Feature Importance

tree.fit(X_train, y_train)

print('tree.feature_importances_ = ', tree.feature_importances_)

tree.feature_importances_ = [0.00425693 0. 0.06941788 0.92632519]

Or

clf.fit(X_train,y_train)

import pandas as pd

feature_imp = pd.Series(clf.feature_importances_,index=iris.feature_names).sort_values(ascending=False)

38

Feature Importance

39

Feature Importance

40

Feature Importance

