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Outline 
 

 Bias-Variance Trade-off 

 Overfitting & Regularization  

 Ridge & Lasso Regression 

 Nonlinear Transformation 

 Cross-Validation 

 Support Vector Machine 
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Review of Lecture 2 

What does 𝝂 say about 𝝁? 
 

For a sample of size N, 𝝂 is probably close to 𝝁 (within  𝝐).  

P 𝝂 − 𝝁 > 𝝐 ≤ 𝟐𝒆−𝟐𝝐
𝟐𝑵            Hoeffding's inequality 

P Ein(g) − Eout(g) > 𝝐 ≤ 𝟐𝑴𝒆−𝟐𝝐
𝟐𝑵    (Generalized) 

                         

              

                     bad event 

 

Stochastic gradient decent (SGD) method, 
 w= 𝐰+  𝚫𝒘 

𝚫𝒘 = − 𝜼 𝚫𝑱(𝒘) 

𝚫𝒘𝒋 = − 𝜼 
𝝏𝑱

𝝏𝒘𝒋
 = 𝜼 𝒚𝒊 − 𝝓(𝒛𝒊)  𝒙𝒊j          Based on random samples  

a) Error is noisier , b) Convergence faster, c) Local minima can be escaped faster  

 

Scaling is important for optimal performance, 
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Bias-Variance Trade-off  

 

Trade-off Between Approximation and Generalization: 
 

A common issue in machine learning is overfitting, which occurs when the 

model is complex or the model not only captures the signal but also the noise 

in a dataset. In order to generalize the model to out-of-sample we have to 

avoid overfitting. 

 
This is the difference between approximation (fitting) and  

learning (generalization).  

 

Regularization: 

 
Regularization is a powerful method for reducing overfitting. A good bias-variance 

trade-off can be obtained by tuning the complexity of the model via regularization. 

This can be achieved by introducing a penalty (bias) term for model complexity.  
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Bias-Variance Trade-off  

 

Trade-off Between Approximation and Generalization: 
 

Our goal: Small Eout  good approx. of f out of sample  

 

However: 
More complex H  better chance of approximating f in sample 

Less complex H  better chance of generalizing f out of sample 

 

 

The best hypothesis is within the hypothesis set H. But the only way to 

navigate through this set to find the good candidate (g) is via the samples (to 

find the performance of one hypothesis versus another). 
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𝐄𝐫𝐫𝐨𝐫 
 
 

𝑬𝒐𝒖𝒕(𝒈
𝑫) = 𝑬𝑿 (𝒈𝑫 𝒙  − 𝒇(𝒙))𝟐  

 

𝑬𝑫 𝑬𝒐𝒖𝒕(𝒈
𝑫)  = ?  

 

It can be shown that: 

 

𝑬𝑫 𝑬𝒐𝒖𝒕(𝒈
𝑫)  = 𝑬𝑿 𝑬𝑫 (𝒈𝑫 𝒙  − 𝒈 (𝒙))𝟐  + 𝑬𝑿 (𝒈 𝒙 − 𝒇(𝒙))𝟐  

 
 
           var                                                bias 

 
 
 

 where 𝒈 (x) = 𝑬𝑫 𝒈𝑫 𝒙  ≈  
𝟏

𝒌
  𝒈𝑫𝒌
𝒌 (x)        D: data 

 
: Expected value over D (different data) 
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The Trade-off  
 

𝒃𝒊𝒂𝒔 =   𝑬𝑿 (𝒈 𝒙 − 𝒇(𝒙))𝟐  

𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =  𝑬𝑿 𝑬𝑫 (𝒈𝑫 𝒙  −  𝒈 (𝒙))𝟐  

                                                                                                                 var 

 

                                            f 

                        var 

        H                                                   H     

                               bias                                                                           f 

           

 

 

         small H                                                          large H (and complex) 

 

So as we go from small H to large H:                                               

 

  H        bias          var  
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Expected Eout and Ein 

 
 

𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫 𝐝𝐚𝐭𝐚 𝐬𝐞𝐭 𝐃 𝐨𝐟 𝐬𝐢𝐳𝐞 𝐍: 
 
ED Eout(𝒈𝑫)        Expected out-of-sample error 

 

ED E𝒊𝒏(𝒈𝑫)        Expected in-sample error 

 

How do they vary with N?  

 

 

            Eout 

 

         

                         Ein                                                                            Eout 

               

                           Ein 

                                                                                                
N 

Simple model (H small) 

N 

Complex model (H large) 
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Bias-Variance Trade-off  

Example 

 

  

  

 

 
  

 

 

 

F(x) = Sin(2𝝅x) 

 
Suppose we have two samples!  N = 2 

We try two models (hypotheses): 

 

H0:  h(x) = b           simple 

H1:  h(x) = ax + b  complex 

 

Which one is better, H0 or H1? 

 

Better in what? 
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Approximation - H0 vs H1 

 

  

  

 

 
  

 

 

 

F(x) = Sin(2𝝅x)                                                                        Error 

Approximate F(x) with H0 and H1  

 

                               H0                                                                                                   H1  
 

 
  

 

 

 

 

 

                        Eout = 0.5                                       Eout = 0.20 
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Learning - H0 vs H1 

 

  

  

 

 
  

 

 

 

F(x) = Sin(2𝝅x) 

 

                               H0                                                                                                   H1  
 

 
  

 

 

 

 

 

 

                            Final hypothesis using two samples 
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Bias and Variance  - H0 

 

  

  

 

 
  

 

 

 

F(x) = Sin(2𝝅x) 

 𝒈 (x) ≈  
𝟏

𝒌
  𝒈𝑫𝒌
𝒌 (x)        D: Sum over different data 

                                                                                                                                 

 

 
  
          variance                                                              bias 

                                    𝒈 (x) 

 

 

 

 
Note that 𝒈 (x) is not the output of learning. The output of learning is one of 

these lines based on given samples. 
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Bias and Variance  - H1 

 

  

  

 

 
  

 

 

 

F(x) = Sin(2𝝅x) 

 𝒈 (x) ≈  
𝟏

𝒌
  𝒈𝑫𝒌
𝒌 (x)        D: Sum over different data 

                                                                                                                                 

 

 
  
          variance                                                              bias 

                                    𝒈 (x) 
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H0 vs H1 

 

  

  

 

 
  

 

 

 

F(x) = Sin(2𝝅x) 

   H0                                                                                                   H1                                                                                                                                  

 

 
  

 

               𝒈 (x)                                 𝒈 (x) 

 

 

 

 

           

   bias = 0.5       var = 0.25                       bias = 0.21       var = 1.7     
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Ridge Regression 

An Example 

x1  

x2  

 

Suppose we want to train a model using a number of the training samples. 

 

 

 

 

 

 

                                                                                    slope = a 

                                                         b 

 

 

 

x2 = a x1 + b    (a≡ 𝒘𝟏, 𝐛 ≡ 𝒘𝟎)  
 

x1  

x2  
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Ridge Regression 

An Example 

x1  

x2  

x1  

x2  

x1  

x2  

 

Now suppose we have only two samples for training. 

Chose two of them as training samples and the rest as test samples. 

 

 

 

 

 

    slope = a 

                                                         

 

                                        b 

 
                 Variance: high  

 

 

 

High variance: The learned model overfits to the training data. 

Train 

Test  
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Overfitting & Regularization 

Ridge Regression 

x1  

x2  
Train 

Test  

 

  

                       w           w’ 

            𝑱 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊    

 

                                                          𝑱′ 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊  + 

𝜆

2
  𝑤2

𝑖𝑖  

 

              Bias term 

 

 

The idea behind the ridge regression is that to find a new line which doesn’t 

fit to the training data very tightly.  

 

Adding a small bias can highly decrease the variance. 

 

Slightly worse fit, better generalization. 
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Ridge Regression 

An Example 

x1  

x2  Suppose F(z) = z     Adeline 

 

z =  x.w =  wi
𝒏
𝟎 𝒙𝒊  

 

then: F(z) =  x.w =  wi
𝒏
𝟎 𝒙𝒊    activation func. 

 

F(z) = 𝒘𝟏𝒙𝟏 + 𝒘𝟎  
 

𝑱 𝒘 = 
𝟏

𝟐
  𝒚𝒊 −𝝓(𝒛𝒊) 

𝟐
𝒊    

𝑱′ 𝒘 =  
𝟏

𝟐
  𝒚𝒊 −𝝓(𝒛𝒊) 

𝟐
𝒊  + 

𝜆

2
  𝑤2

𝑖𝑖  

 

𝑱 𝒘 = 
𝟏

𝟐
  𝒚𝒊 −𝝓(𝒛𝒊) 

𝟐
𝒊  = 𝑱 𝒘 =  

𝟏

𝟐
 𝒍𝒙𝟏 − 𝒘𝟏 𝒙𝟏 − 𝒘𝟎

2  + 𝒍𝒙𝟐 − 𝒘𝟏 𝒙𝟐 − 𝒘𝟎
2 

  

𝑱′ 𝒘 =  
𝟏

𝟐
  𝒚𝒊 −𝝓(𝒛𝒊) 

𝟐
𝒊  = 𝑱 𝒘 =  

𝟏

𝟐
 𝒍𝒙𝟏 − 𝒘𝟏 𝒙𝟏 − 𝒘𝟎

2  + 𝒍𝒙𝟐 − 𝒘𝟏 𝒙𝟐 − 𝒘𝟎
2 

 + 
𝝀

𝟐
 𝒘𝟐

𝟎+ 𝒘𝟐
𝟏  

                   𝒍𝒙𝒊 : label  

 
𝝏𝑱′

𝝏𝒘𝟎
, 

𝝏𝑱′

  𝝏𝒘𝟏
  

w           w’ 
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Ridge Regression 

An Example 

x1  

x2  Note that our goal is minimizing the cost  

function J 

 

With ridge regression penalty: 

 

𝑱 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊          

 𝑱′ 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊  + 

𝜆

2
 

𝑱′ 𝒘 min     <  𝑱′ 𝒘 min        for blue line 

 

So we chose ridge regression line over least squares line. 

 

 

 

 

w           w’ 
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Ridge Regression 

𝝀 -parameter 

0≤ 𝝀 < ∞                      𝝀=small        

  

How to chose lambda?  

                      𝝀=large 

We try different values for 𝝀 and use cross-      

Validation, typically 10-fold cross-validation  

to determine which one results in the lowest 

variance. 

  
 

 

 

x2  

x1  
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Cross-Validation 

5-fold cross-validation 
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Overfitting & Regularization 

Lasso Regression 

x1  

x2  Lasso regression is similar to the ridge regression 

except for an important difference! 

 

L2-rgression (Ridge) 

𝑱′𝒓 𝒘 = 
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊  + 

𝜆

2
  𝑤2

𝑖𝑖     

 

L1-rgression (Lasso) 

𝑱′𝒍 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊  + 

𝜆

2
  𝑤𝑖𝑖  

 

In lasso regression the weight factors of less important (relevant)  

features shrink faster which is good. 
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𝐖𝐡𝐞𝐧 𝐰𝐞 train a model, we are matching the model complexity to the data 

resources, not the target complexity (which should be avoided).   

 

When the number of sample data is not large, we have to avoid training 

complex models. 

 

Allowing Ein  Ein + ∈     (e.g., ∈ ~ 1% Ein ) can highly improve the out-of-

sample performance (Eout and variance). 

                                                                                                                  data 

                                                                                                                  target 

                                                                                                                  fit 

 

 

 

 

 

 

                              fit                                              restrained fit 

Lesson 
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Nonlinearly separable 

Nonlinearity 
 

x1  

x2  

Feature 1 x1  

x2  

Feature 1 

Can we apply linear leaning algorithms for nonlinear problems? 

Note that feature is a higher level representation of raw input. 
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Nonlinearity 

Can we apply linear leaning algorithms to nonlinear problems? 
 

 

h(x) =  𝑤𝑖𝑥𝑖
𝑚
𝑖=0    is linear in both w and x. 

 

Being linear in w is important because the algorithm works because of  

linearity in the weights.  

 

We still can use linear algorithm for nonlinear problems. 

 

How? 
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Nonlinearity 
 

x1  

x2  

Feature 1 z1  

z2  

Feature 1 

𝑥 →  𝜑 𝑥  

(x1, x2,)    (z1, z2)  = (x1
2, x2

2) 

𝑧𝑛 = 𝜑 𝑥𝑛  ∈ 𝒁 
 

Linearly separable 

𝑥𝑛 ∈ 𝑿 
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Nonlinearity 
 

z1  

z2  

Feature 1 

𝑥 ← 𝜑−1 𝑥  
Classify in X-space 

g(x) = 𝒈  (𝝋(𝒙)) = sign(𝒘𝑻𝝋(𝒙)) 

x1  

x2  

Feature 1 

Separate in Z-space 

g(z) = sign(𝒘 𝑻𝒛) = 

sign(𝒘 𝑻𝝋(𝒙))) 
 



𝜑 𝑥1, 𝑥2 = 𝑧1, 𝑧2, 𝑧3 = (𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2) .
    

𝑥 →  𝜑 𝑥  𝜑: 𝑅2 → 𝑅3 𝐳  =  𝐱.𝐰   →     𝐳  =  𝜑 𝑥 .𝐰 

Nonlinearity 
 

Mapping onto a Higher Dimensional 

Feature Space  



𝒛  =  𝝋 𝒙 .𝒘 

 

𝒘 =  𝜶𝒊
𝒎
𝒊=𝟏 𝝋(𝒙𝒊) Assumption  

 

𝒛 =   𝜶𝒊

𝒎

𝒊=𝟏

𝝋 𝒙𝒊  . 𝝋 𝒙  

 

𝑲(𝒙𝒊, 𝒙) =  𝝋 𝒙𝒊  . 𝝋 𝒙  

 

𝒛 =   𝜶𝒊

𝒎

𝒊=𝟏

𝑲(𝑥𝑖 , 𝑥) 

 

𝑲 𝒙𝒊, 𝒙 = 𝒙𝒊, 𝒙   Linear 

 

𝑲 𝒙𝒊, 𝒙 =   𝜸 𝒙𝒊, 𝒙 + 𝒓 𝒅   Polynomial 

 

𝑲 𝒙𝒊, 𝒙 =   𝑬𝒙𝒑(−𝜸 𝒙𝒊, −𝒙
𝟐)  RBF 

 

𝑲 𝒙𝒊, 𝒙 = 𝒕𝒂𝒏𝒉 𝜸 𝒙𝒊, 𝒙 + 𝒓   Sgmiod 

Nonlinearity - Kernel Methods 



+ 

+ 

+ + 

+ 

_ 
+ _ 

_ 
_ 

_ 

_ 

+ 

+ 

+ + 

+ 

+ 

_ 
+ _ 

_ 
_ 

_ 

_ 

Support Vectors  

Where is the hyperplane 
SVM 

Maximize the margin 

Margin  

X1 X1 

X2 X2 

WTX=0 

Decision boundary  

WTX=-1 

Negative hyperplane 

WTX=+1 

Positive hyperplane 

+ 
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Support Vector Machine (SVM) 
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Assignment 1 - SVC-Linear  
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Misclassified  

Misclassified  

Assignment 1 - SVC-Linear  
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Cross validator 
My_cv = StratifiedShuffleSplit(n_splits=10, test_size=0.2, train_size = None, random_state=19) 

 
StratifiedShuffleSplit: Stratified ShuffleSplit cross-validator 

Stratification is the process of rearranging the data as to ensure each fold is a good representative of the whole (each fold 

comprises around the same fraction of classes). 

 

My_cv: user defined cross-validator 

n_splits: number of splits (default = 10) 

test_size: default = 0.1 if train_size is unspecified, otherwise it will complement the specified train_size. It should be specified if 

train_size = None. 

random_state: seed for random shuffling 

 

Grid search 
grid = GridSearchCV(SVC(kernel='linear'), param_grid=grid_parameters, cv=My_cv, return_train_score=False)  

 

GridSearchCV implements a “fit” and a “score” method. It also implements “predict”. 

 

SVC(kernel='linear'): estimator 

param_grid: grid parameters  

cv: cross validator 

return_train_score: if False, the cv_results_ attribute will not include training scores 

 

grid.fit(feature_data, class_labels) 

Coarse Grid Search – Related to Assignment 1 
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Cross validator 
 
My_cv = KFold(n_splits=splits_num, shuffle=True, random_state=i) 

 

My_svm = svm.SVC(kernel='linear')  # linear kernel 

 

 

 

Grid search 
grid = GridSearchCV(estimator=My_svm, param_grid=p_grid, cv=My_cv, return_train_score = False) 

 

My_svm = svm.SVC(kernel='linear') 

 

grid.fit(feature_data, class_labels) 

 
grid.best_score_  

grid.best_index_  

Fine Grid Search – Related to Assignment 1 
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Cross validator 
 

X = feature_train  

y = class_labels_train 

my_C = 6000.0  # SVM regularization parameter 
svm_SVC_lin = svm.SVC(kernel='linear', C=my_C) 

svm_SVC_lin.fit(X, y) 

 
grid.best_score_  

grid.best_index_  

Learning Model – Related to Assignment 1 

 


