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eview of Lecture 2 =
L
What does v say about u?

For a sample of size N, v is probably close to u (within €).

Pllv—pu|l > €] < 2e~2€°N Hoeffding's inequality
P[lﬁin(g) —E, (9| > Eﬂ < 2Me 26N (Generalized)
|
bad event

Stochastic gradient decent (SGD) method,
w=w+ Aw

Aw = — n A](W) local
i T i i i global
Awj = —1n — =1 (y — ¢(z )) x';  Based on random sampl:
J

a) Error is noisier , b) Convergence faster, c) Local minima can be escaped faster

Scaling is important for optimal performance,



Bias-Variance Trade-off e
L as-Variance Ti

=

Trade-off Between Approximation and Generalization:

A common issue in machine learning is overfitting, which occurs when the
model is complex or the model not only captures the signal but also the noise
In a dataset. In order to generalize the model to out-of-sample we have to
avoid overfitting.

This is the difference between approximation (fitting) and
learning (generalization).

Regularization:

Regularization is a powerful method for reducing overfitting. A good bias-variance
trade-off can be obtained by tuning the complexity of the model via regularization.

This can be achieved by introducing a penalty (bias) term for model complexity.



f Bias-Variance Trade-off —
/ -

/

Trade-off Between Approximation and Generalization:

Our goal: Small E_ ;= good approx. of f out of sample

However:

More complex H = better chance of approximating f in sample
Less complex H = better chance of generalizing f out of sample

The best hypothesis is within the hypothesis set H. But the only way to
navigate through this set to find the good candidate (g) is via the samples (to
find the performance of one hypothesis versus another).



Error P

— o
Eour(9”) = Ex[(g° () — f(x))?]
Ep|Eout(g™)] =
It can be shown that:
EplEou(g")] = Ex [Eb [[(g° @) - y(xnz]u e (@@ - f(x))Z]J
v Y

var bias

where g(x) = Ep|gP (x)] = %Zk gP«(x)  D:data

: Expected value over D (different data)



The Trade-off P

Py — T e Ry s

bias = Ex[[@) - f?]]
variance = Ey [ED [[(gb(x) = g(x))z]”

f
var 2 -
H : H . e
bias o0
e? 0%
.. o0
small H large H (and complex)

So as we go from small H to large H:

H]  biasy, var



Expected E,, and E;, i

Consider data set D of size N:
E, [E,(gD)]  Expected out-of-sample error
Ep [E;,(gD)]  Expected in-sample error

How do they vary with N?

E

out

A
F
K E, E

in out

Exp.Er.
Exp.Er.

> / Ein

N N
Simple model (H small) Complex model (H large)



Bias-Variance Trade-off /
e Example

F(X) = Sin(2mX)

Suppose we have two samples! N =2

We try two models (hypotheses): 100 ]

Hy: h(x)=Db simple 0201
H,: h(x) =ax + b complex ]

0.00 4
—0.25 A

Which one is better, H,or H,? 050 |

—0.75 1

-1.00 A

Better in what?




: ApW
/

F(x) = Sin(2mXx) Error
Approximate F(x) with H, and H,

HO H1
= il \ i ﬁ/)(
—0:25 4 \ / —0:25 1
o]\ ) / /%
e (| |V
E. . =05 E_.=0.20
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/

F(x) = Sin(2mXx)
H, H,

100 - 100 -
0.75 1 /\\ 0.75 -
0.50 0.50 -
0.25 - / \ 075

0.00 0.00
—0.25 - ~0.25 -
~0.50 - ~0.50 -
~0.75 - ~0.75 -
~1.00 - ~1.00 -
-3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

Final hypothesis using two samples
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Bias and Variance - H =
L as and Varian S

F(X) = Sin(2mX)
g(X) = %Zk ng(x) D: Sum over different data

100 1 100 1
ol T
0.75 / A\ 0.75 -
I'-'l' \‘l
0.50 : = 0.50 |
kY
0.25 3 - 3 : 0.25 - )
7 ‘| variance bias
0.00 7 0.00 —_
i i
025 = v 25 g(X)
kY Fi
—0.50 4 LY i —0.50 4
Y i
N i
—0.75 3 e Z —0.75 1
_‘_’/
-1.00 1 — ~1.00 -
3 ) ) 0 1 2 3 3 3 ) 0 1 2 3

Note that g(x) is not the output of learning. The output of learning is one of
these lines based on given samples.
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F(x) = Sin(2mXx)

g~ 3y g°(x)

100 -
075
0.50 -
0.25 -
0.00 -

—0.25

050

~0.75 |

-1.00 4

Bias and Variance - H,

| [ [IPAY -
""'\./
—
-3 -2 -1 1 2 3

variance

=

1040

075 4

050 4

025

000 4

H0.25 A

H0.50

HO.75 A

F1.00

D: Sum over different data

bias
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M

Hy H,

F(x) = Sin(2mXx)

100 - 100 -
075 - 075 -
050 - 050 -
0.25 - 0.25 -
0.00 [,'(Y) 0.00 - g
025 - —0.25 |
~0.50 - ~0.50 -
~0.75 - ~0.75 1
~1.00 - ~1.00 -
-3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

bias = 0.5 var = 0.25 bias = 0.21 var = 1.7
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T — s
e An Example :

Suppose we want to train a model using a number of the training samples.

Xy
A
e e
®
®
® °
®
®

> X > Xy

X,=aXx;+b (a=w;b=w,))
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ldge Regression e
An Example

—

Now suppose we have only two samples for training.
Chose two of them as training samples and the rest as test samples.

® Train
@® Test

X3 X, X2

A A A

O
o slope = a
. b
> X4 > X4 ; : > X4
Variance: high

High variance: The learned model overfits to the training data.
16



Overfitting & Regularization

P Ridge Regression

—l fvi — i & rain
y Jw) = ;3(y' - (2" ¢ m
J'w) = 35y - d(z)) +2 3w,

l_'_i

Bias term

> X,

The idea behind the ridge regression is that to find a new line which doesn’t
fit to the training data very tightly.

Adding a small bias can highly decrease the variance.

Slightly worse fit, better generalization.

1874



FRNT— —
. An Example

Suppose ®(z) =z Adeline X,
Z= X.W =g W, X;
then: ®(z) = x.w = ,gW;Xx; activation func.

(I)(Z) = Wi1Xq + Wy

> X,
Jw) = 33y - 9@@))°
J'w) = 350 - o)) +2 5w,

J(w) = —Z (v - ¢(Zl)) =J(w) = —[ — Wy X1 — Wol* + [z — wq X3 — wyl?

(L1 — wq X1 — wol? + [Lyz — wq X2 — wel?

N | =

’(W) = 25y - —(z))" = Jw) =
T 2 [W 0 + w 1]

L,; : label
aj aJ
a_wo’ owq 18




S w w'
Note that our goal is minimizing the cost X3
function J 1

With ridge regression penalty:

Jw) = 33 - 9@’
J'w) = 25y - o))" +2

JWin < J'(W),, forblue line

> X

So we chose ridge regression line over least squares line.
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Ridge Regression ==
. A -parameter

0<SA< X, A=small

How to chose lambda?
® A=large
We try different values for 4 and use cross-
Validation, typically 10-fold cross-validation
to determine which one results in the lowest o
variance.

20



U

ss-Validation

Training data Training data Training data Training data Validation
Training data Training data Training data Validation Training data
Training data Training data Validation Training data Training data
Training data Validation Training data Training data Training data
Validation Training data Training data Training data Training data
\

|

5-fold cross-validation

Testing data
Testing data
Testing data
Testing data

Testing data
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& Regularization
Lasso Regression

Lasso regression is similar to the ridge regression Xz
except for an important difference!

L2-rgression (Ridge)
J'w) = 15 - o)) + 23w,

L1-rgression (Lasso)

J'w) = 35 - 0@))" +2 31w

In lasso regression the weight factors of less important (relevant)
features shrink faster which is good.

> X

22



/

When we train a model, we are matching the model complexity to the data
resources, not the target complexity (which should be avoided).

When the number of sample data is not large, we have to avoid training
complex models.

Allowing E;, 2 E;, + € (e.g., € ~ 1% E;, ) can highly improve the out-of-
sample performance (E,  and variance).

e data
target
it

fit restrained fit -



X
N

Feature 2

Can we apply linear leaning algorithms for nonlinear problems?
Note that feature is a higher level representation of raw input.

‘0
® o
®
P @
‘0‘. 0
‘Q‘ ®
@
o
® o ®
o
Feature 1 X1

X
N

Feature 2

Feature 1 X1

Nonlinearly separable

24



Nonlinearity —

Py — e s

Can we apply linear leaning algorithms to nonlinear problems?

h(x) = Xi% W;x; is linear in both w and x.

Being linear in w is important because the algorithm works because of
linearity in the weights.

We still can use linear algorithm for nonlinear problems.

How?

25



X
N

Feature 2

x = @(x)
(Xp X)) 2 (21, 25) = (X5 Xp7)

x, €EX e
= Zn e (p(xn) S Z
o o
@ @ ®
®
o i ° o 0 ¢
° ®
N
" ® ® @) o o
o Q. =
o ® o1 e
o) = ®
o
%9 ©
PY (@Y, e ®
o
Feature 1 X1 Feature 1 Zq

Linearly separable
26



Separate in Z-space
g(z) = sign(w’z) =
sign(w’ ¢ (x)))

Classify in X-space
g(x) =g (@) =signwTex®) x « @ 1(x)

P o
® o
X5 o Z7
AN N
0 0
L L
o
e ¢ PS
[ ]

Feature1  x; Featurel  z;

27



Mapping onto a Higher Dimensional
Feature Space

1 T T T 1 T T T
4+ Class1
I - Class -1
075 +
i +:_'It|-++i|.$|.,. &
"-'I-.!"' +":o-++
i L ol +i
Qosk wh i *'5_+
"#;-' VaweeT -|_'-_-|'-" +
| """* = s # ++
0.25 : +-|-:-$_:## $ ++++
- (9)
o0 B 0 I25 (;115 0,l75 I 1 00 0 I25 (;'15 0.175 ‘
; RZ 208 R3 o BBoR
@: x - @(x) Z =XW - z = ¢(x).w

o(x1,x3) = (21,25,23) = (x1:x2:x12 v xzz) -




Nonlinearity - Kernel Methods _

—
z = ex).w
w= 2" a; o(x; Assumption
(=1 % P (%) K(x; x) = (x;,x) Linear
m
z2= Zai(p(x,-).(p(x) K(xi,x) = (y(x;x) +r)* Polynomial
i=1

K(x;,x) = Exp(-vllx; —x|*) RBF
K(xi,x) = @(xp) . @(x)
K(x; x) = tanh(y(x;, x) + r) Sgmiod

m

z= zaiK(xi,x)
by e X=X

i=1




2 Support Vector Machine (SVM)
/

WTX=-1 Margin

; Support Vectors
Negative hyperplane

WTX=+1
Positive hyperplane
X4 Xy

WTX=0

/ Decision boundary

X, X,
SVM
Maximize the margin

Where is the hyperplane

30
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Misclassified

Misclassified




Coarse Grid Search — Related to Assignment l/

Cross validator
My cv = StratifiedShuffleSplit(n_splits=10, test_size=0.2, train_size = None, random_state=19)

StratifiedShuffleSplit: Stratified ShuffleSplit cross-validator
Stratification is the process of rearranging the data as to ensure each fold is a good representative of the whole (each fold
comprises around the same fraction of classes).

My cv: user defined cross-validator

n_splits: number of splits (default = 10)

test size: default = 0.1 if train_size is unspecified, otherwise it will complement the specified train_size. It should be specified if
train_size = None.

random_state: seed for random shuffling

Grid search

grid = GridSearchCV(SVC(kernel='linear"), param_grid=grid_parameters, cv=My_cyv, return_train_score=False)
GridSearchCV implements a “fit” and a “score” method. It also implements “predict”.

SVC(kernel='linear’): estimator

param_grid: grid parameters

cv: cross validator

return_train_score: if False, the cv_results_ attribute will not include training scores

grid.fit(feature_data, class_labels)

33



Fine Grid Search — Related to Assignment1

/
Cross validator
My _cv = KFold(n_splits=splits_num, shuffle=True, random_state=i)

My svm = svm.SVC(kernel='linear') # linear kernel

Grid search
grid = GridSearchCV(estimator=My_svm, param_grid=p_grid, cv=My_cyv, return_train_score = False)

My svm = svm.SVC(kernel="linear")

grid.fit(feature_data, class_labels)

grid.best_score
grid.best_index

34



Learning Model — Related to Assignment

/

Cross validator

X = feature_train
y = class_labels_train

my C =6000.0 # SVM regularization parameter
svm_SVC lin = svm.SVC(kernel='linear', C=my_C)
svm_SVC _lin.fit(X, y)

grid.best_score _
grid.best_index__

s

/

30



