PHY392S Physics of Climate

Lecture 10

Supplementary slides

Global Warming Potentials

<u>Global Warming Potentials (GWPs)</u> are a measure of the relative radiative effect of a given substance compared to CO_2 , integrated over a chosen time horizon.

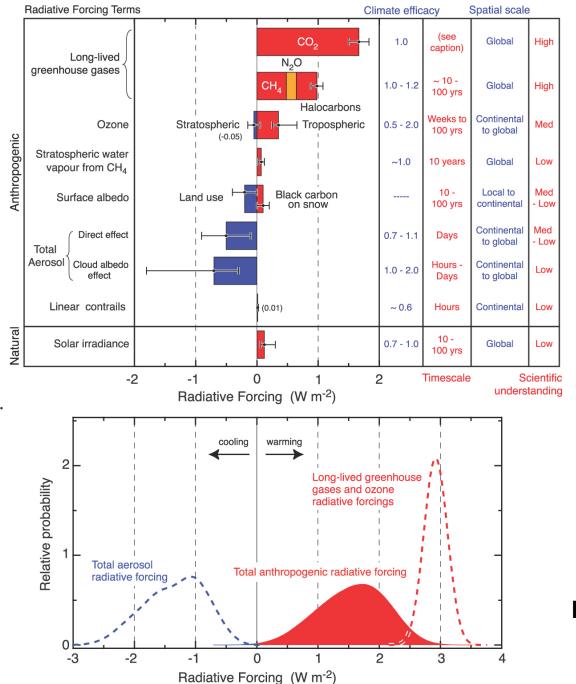
Definition (IPCC 1998):

GWP = time-integrated warming effect due to an instantaneous release of unit mass (1 kg) of a given green-house gas in today's atmosphere, relative to the effect of CO_2

- GWP is an index defined to take into account the lifetime of the gases in the atmosphere, and hence the time period over which the climatic effect of a perturbation in their concentration is expected to be significant.
- This concept was created in order to enable decision makers to evaluate options to evaluate future emissions of various greenhouse gases without having to perform complex model calculations.

Global Warming Potentials

 GWP = time-integrated change in the radiative forcing due to the instantaneous release of 1 kg of a trace gas expressed relative to that from the release of 1 kg of CO₂:

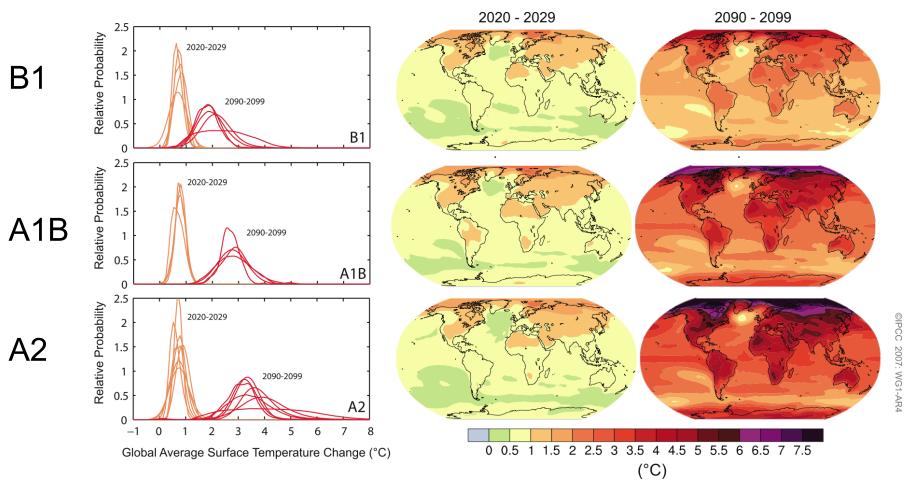

$$GWP = \frac{\int_{0}^{T} \Delta F_{R,i}(t) dt}{\int_{0}^{T} \Delta F_{R,CO_{2}}(t) dt}$$

- where
 - ΔF_R = change in the radiative forcing at the tropopause
 - T = time over which the integration is performed (time horizon)
- Estimation of the GWP for a trace gas requires an estimate of:
 - the radiative forcing for the trace gas i and for the reference gas CO₂ per unit of mass change,
 - the lifetime of trace gas i and of CO_2 , and
 - the definition of the time horizon T over which the integration is performed.

Greenhouse Gases: Abundances, Trends, Budgets, Lifetimes, and GWPs

Chemical species	Formula	Abun	dance ppt	Trend ppt/yr	Annual emission	Life-time	<u>100-yr GWP</u>
		1998	1750	<u>1990s</u>	late 90s	<u>(yr)</u>	
Carbon Dioxide	CO ₂ (ppm)	365	280	1.5 ppm/yr		5-200	1
Methane	CH4 (ppb)	1745	700	7.0 ppb/yr	600 Tg	8.4/12	23
Nitrous oxide	N ₂ O (ppb)	314	270	0.8 ppb/yr	16.4 TgN	120/114	296
Perfluoromethane	CF_4	80	40	1.0	~15 Gg	>50000	5700
Perfluoroethane	C_2F_6	3.0	0	0.08	~2 Gg	10000	11900
Sulphur hexafluorio	de SF ₆	4.2	0	0.24	~6 Gg	3200	22200
HFC-23	CHF ₃	14	0	0.55	~7 Gg	260	12000
HFC-134a	CF_3CH_2F	7.5	0	2.0	~25 Gg	13.8	1300
Important greenhouse halocarbons under Montreal Protocol and its Amendments							
CFC-11	CFCI ₃	268	0	-1.4		45	4600
CFC-12	CF_2CI_2	533	0	4.4		100	10600
CFC-13	CF ₃ CI	4	0	0.1		640	14000
Carbon tetrachlorid	e CCI ₄	102	0	-1.0		35	1800
Methyl chloroform	CH ₃ CCI ₃	69	0	-14		4.8	140
HCFC-22	CHF ₂ CI	132	0	5		11.9	1700
HCFC-142b	CH ₃ CF ₂ CI	11	0	1		19	2400
Halon-1211	CF ₂ ClBr	3.8	0	0.2		11	1300
Halon-1301	CF ₃ Br	2.5	0	0.1		65	6900
Other chemically active gases directly or indirectly affecting radiative forcing							
Tropospheric ozon	<mark>e</mark> O ₃ (DU)	34	25	?	-	0.01-0.05	-
Tropospheric NO _x	$NO + NO_2$	5-999	?	?	~52 TgN	<0.01-0.03	-
Carbon monoxide	CO (ppb) ^d	80	?	6	~2800 Tg	0.08 - 0.25	-
Stratospheric water	r H ₂ O (ppm)	3-6	3-5	?	-	1-6 -	-

Radiative forcing of climate between 1750 and 2005


Global Radiative Forcing of Climate, 1750-present

Α.

IPCC [2007]

IPCC 2007 Figure SPM.6 Projected Temperature Changes

Projected surface temperature changes for the early and late 21st century relative to 1980-1999.

- Central and right panels show multi-model average projections for the B1 (top), A1B (middle) and A2 (bottom) scenarios averaged over 2020-2029 (center) and 2090-2099 (right).
- Left panel shows corresponding uncertainties as the relative probabilities of estimated global average warming from several different model studies for the same periods.