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Temperature Inversions
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Figure 4.16: (a) Low-level inversions are commonly produced during
calm winter nights from radiative cooling of the surface. (b) A trade
inversion created by descent and adiabatic warming typical of

subtropical regions.
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Phase Diagram for H,O

Saturation vapor pressure for water
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[From Pierrehumbert, 2010]



Phase Diagram for H,O

Relative humidity and dew point Relative humidity and frost point
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Figure 4.8a Relative humidity and the dew point. Figure 4.8b Relative humidity and frost point.

water vapour content of air

Relative humidity =

[From McElroy, 2002] water vapour capacity of air



Moist Convection
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Figure 4.18: The temperature of a moist air parcel lifted in
convection from the surface at temperature T_ will follow a
dry adiabat until condensation occurs at the condensation
level z_. Above z,, excess vapor will condense, releasing
latent heat and warming the parcel, off setting its cooling at
the dry adiabatic rate due to expansion. Thus a moist parcel
cools less rapidly (following a moist adiabat) than a dry one,
until neutral buoyancy is reached at z,, the cloud top. This
should be compared to the case of dry convection shown in
Fig.4.11.
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(b) TWO-BOX MODEL
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FiG. 3. Two conceptual representations of the relationship be-
tween cloudiness and large-scale atmospheric circulation in the
Tropics: (a) structure of the tropical atmosphere, showing the
various regimes, approximately as a function of SST (decreasing
from left to right) or mean large-scale vertical velocity in the
midtroposphere (from mean ascending motions on the left to
large-scale sinking motions on the right). [From Emanuel (1994).]
(b) Two-box model of the Tropics used by Larson et al. (1999).
The warm pool has high convective clouds and the cold pool has
boundary layer clouds. Air is rising in the warm pool and sinking
across the inversion in the cold pool.

Convection and Clouds

[Bony et al. 2006]



Subsidence Inversion
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Fig. 4-17 Formation of a subsidence inversion. Temperature profiles
on the right panel are shown for the upwelling region A4 (thin line) and
the subsiding region B (bold line). It is assumed for purposes of this
illustration that regions A and B have the same surface temperature
T,. The air column extending up to the subsidence inversion is
commonly called the planetary boundary layer (PBL).

[courtesy, D. Jacob]



Impact of Convection on the Temperature Profile
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Figure 7.14 Comparison of results from a purely radiative
equilibrium model of the atmosphere (solid line) with results
from models in which the lapse rate of temperature was con-
strained not to exceed the dry adiabatic limit (dotted line) or a
lapse rate of 6.5°C km™! (dashed line). Source: Manabe and
Strickler 1964.

[From McEiroy, 2002]



Impact of H,0, CO,, and O, on the Temperature Profile
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Calculations assumed a lapse rate of 6.5 K/km

[From Hartmann, 1994]



Vertical Profile of Temperature
Mean values for 30°N, March
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Potential Temperature
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[From Pierrehumbert, 2010]



Potential Temperature

ECMWF : ERA-40 Atlas : Pressure level climatologies (latitude-pressure projections) : Zonal mean potential temperature - tropospheric perspective,
Latitude-Height, Annual mean
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[From http://lwww.ecmwf.int/research/era/ERA-40_Atlas/docs/index.html]



