PHY392S Physics of Climate

Lectures 15 and 16

Interaction of the radiation field with gases in the atmosphere

Types of transitions in the internal energy of the molecules

- Rotational
- Vibrational
- Electronic
- photodissociation

Order of increasing energy

Interaction of the Radiation Field with Gases in the Atmosphere

- Solar interactions
 - Photoionization: extreme UV strips electrons from atoms
 - Photodissociation:
 UV breaks apart
 molecules
 - Electronic
- Thermal IR interactions
 - Electronic
 - Vibration
 - Rotation

Born-Oppenheimer Approx: Energy of a gas molecule $E = E_{elec} + E_{vib} + E_{rot} + E_{trans}$

Absorption in Earth's Atmosphere

- Earth's atmosphere mainly N_2 and O_2 .
- These two molecules are spectrally "dull"!
 - Have only photoionization, photodissociation, and atomic-like lines.
 - All of these are at high energies that involve interaction with short-wave UV radiation to produce atomic oxygen, ozone, and atomic nitrogen which in turn interact with UV.
- The two O or N nuclei can only move towards and away from each other during vibration.
 - They have one vibrational mode due to the symmetrical charge distribution, and so lack a permanent dipole moment.
 - As a result, they have little radiative activity in the visible and IR.

Potential Energy Curves for O₂

FIGURE 4.1 Potential energy curves for ground and first four excited states of O_2 . S-R = Schumann-Runge system, H = Herzberg continuum, A-A = atmospheric bands (adapted from Gaydon, 1968).

B. J. Finlayson-Pitts, 2000.

O₂ and O₃ Absorption Cross Section

10⁻¹⁷ cm² is very strong absorption 10⁻¹⁶ SECTION (10¹⁷ cm²) 10⁻¹⁷ SCHUMANN-RUNGE CONTINUUM OZONE 10 (cm²) 10⁻¹⁸ (cm²) 10⁻¹⁹ (cm²) 10⁻²⁰ (cm²) 10⁻¹⁸' IONIZATION CONTINUUM Hartley 0,8 bands 10-201 CROSS SCHUMANN-RUNGE BANDS 0,6 CROSS LYMAN a 10-21 ABSORPTION NOILduosan 10-22 0.4 10-231 02 0,2 HERZBERG CONTINUUM 0 260 10-25 220 240 280 300 200 50 100 150 200 250 WAVELENGTH(nm) WAVELENGTH (nm) 10⁻²⁰ ABSORPTION CROSS SECTION (cm²) OZONE OZONE CHAPPUIS BANDS HUGGINS BANDS SECTION (cm²) ABSORPTION CROSS **VIGROUX (1953)** UPPER CURVE 291 K LOWER CURVE 198 K -- INTERPOLATION 10-2 310 320 330 WAVELENGTH (nm) 10-2 500 600 700 800 900 WAVELENGTH (nm)

[From Brasseur and Solomon, 1986]

Absorption by O₂ and O₃

Spectrum of Solar Radiation vs. Altitude

Fig. 10-2 Solar actinic flux at different altitudes, for typical atmospheric conditions and a 30° solar zenith angle. From DeMore, W. B., et al. *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*. JPL Publication 97-4. Pasadena, Calif.: Jet Propulsion Lab, 1997.

Absorption of Solar Radiation

FIGURE 14.1 Solar flux outside the atmosphere and at sea level, respectively. The emission of a blackbody at 6000 K is also shown for comparison. The species responsible for light absorption in the various regions (O_3 , H_2O , etc.) are also shown (adapted from Howard *et al.*, 1960).

٠

Solar Absorption – A Summary

Interactions between solar radiation and the atmosphere:

- Photoionization and photodissociation in the upper atmosphere
- Atmospheric scattering
- Absorption in the lower atmosphere
 - In the ultraviolet, where ozone strongly absorbs
 - At the red end of the solar spectrum, primarily due to absorption by water which is concentrated in the troposphere
 - Absorption in the infrared by greenhouse gases

Infrared Absorption in Earth's Atmosphere

- Earth's atmosphere also contains CO₂, N₂O, which are triatomic molecules having a linear symmetrical configuration.
- These molecules do have IR spectra.

See animation at http://chemmac1.usc.edu/bruno/java/Vibrate.html

Greenhouse Gases (GHGs)

Greenhouse gases = gases with vib-rot absorption features at 5-50 μ m VIBRATIONAL MODES OF CO₂

- Major greenhouse gases: H₂O, CO₂, CH₄, O₃, N₂O, CFCs,...
- <u>Not</u> greenhouse gases: N₂, O₂, Ar, ...

Greenhouse Gases

• Water vapour (H₂O)

- most common greenhouse gas
- increases as surface temperature rises
- Carbon dioxide (CO₂)
 - released by plant and animal life, decay, and burning of fuels
 - removed by plant photosynthesis and absorption by the oceans
- Methane (CH₄)
 - not as common in volume as H_2O or CO_2
 - very effective at trapping heat powerful greenhouse gas
 - wetlands, rice paddies, animal digestion, fossil fuel extraction, decaying garbage
- Nitrous oxide (N₂O)
 - soils and the oceans, some from burning fossil fuels and fertilizer use
- Ozone (O₃)
 - most ground level ozone is from chemical reactions involving pollutants
- Halocarbons
 - anthropogenic chemicals containing bromine, chlorine, or fluorine, and carbon
 - extremely powerful greenhouse gases

Molecular Vibrational Frequencies

Species	Parameter	Vibrational modes		
		v ₁	v ₂	ν_3
CO	Hz	6.43 x 10 ¹³	-	-
	μm	4.67	-	-
	cm ⁻¹	2143	-	-
CO ₂	Hz	-	2.00 x 1013	7.05 x 10 ¹³
	μm	-	15.0	4.26
	cm ⁻¹	-	667	2349
N ₂ O	Hz	3.86 x 10 ¹³	1.77 x 10 ¹³	6.67 x 10 ¹³
	μm	7.78	17.0	4.49
	cm ⁻¹	1285	589	2224
H ₂ O	Hz	1.10 x 10 ¹⁴	4.79 x 1013	1.13 x 1014
	μm,	2.73	6.27	2.65
	cm	3657	1595	3776
O ₃	Hz	3.33 x 10 ¹³	2.12 x 10 ¹³	3.13 x 10 ¹³
	μm,	9.01	14.2	9.59
	cm ⁻¹	1110	705	1043
NO	Hz	5.71 x 10 ¹³	-	-
	μm	5.25	-	-
	cm ⁻¹	1904	-	-
NO ₂	Hz	3.92 x 1013	2.26 x 1013	4.86 x 1013
	μm	7.66	13.25	6.17
	cm	1306	755	1621
CH_4	Hz	8.75 x 10 ¹³	4.60 x 10 ¹³	9.06 x 10 ¹³
	μm	3.43	6.52	3.31
	cm ⁻¹	2917	1534	3019
		v_4		
CII	11-	5.71 1012	-	
CH_4	HZ	$5./1 \times 10^{15}$		

5.25

1904

μղ

cm

TABLE 2. VIBRATIONAL FREQUENCIES, WAVELENGTHS AND WAVENUMBERS OF RADIATIVELY ACTIVE ATMOSPHERIC MOLECULES (TAKEN FROM McCartney, 1983).

[From Saunders, ECMWF, 2002]

Atmospheric Absorption

through the atmosphere and reaches the surface

Band Spectra of Molecules

Molecule:

vibrational and rotational transitions - band emission spectra

Infrared Absorption Bands

- The energy diagram shows that:
 - a spectral line on the low wavenumber (energy) side is caused by a decrease in rotational energy (∆J = -1, where J is the rotational quantum number)
 - a spectral line on the high wavenumber (energy) side is caused by an increase in rotational energy $(\Delta J = +1)$
- Each band is due to the allowed values of the vibrational quantum number v.

Infrared Absorption Bands

- Typical infrared absorption bands are characterized by:
- a central peak due to the molecule changing its vibrational state (this may or may not exist)
- "humps" due to the molecule changing both its vibrational and rotational states (composed of many lines).

Infrared Absorption Bands

• The energy absorption can be written as:

- All the bands of a given gas have similar bands, as they share the same rotational wavenumbers $\,\overline{v}_{_{rot}}\,$
- The large central peak is caused by the $v_{\rm vib.}$ being slightly affected by the rotational state and therefore even if the rotational state does not change there are slight differences in the absorption energy for different vibrational states.

Infrared Line Shapes

- In order to perform any calculations with an infrared line, we need to define its <u>line shape function</u> (f) and <u>line strength</u> (S).
- These are independent properties of a line.
 - Line shape is determined by atmospheric broadening mechanisms.
 - Line strength is determined by quantum mechanical considerations of the strength of the interactions between the molecule and the photon field.
- The absorption coefficient is thus: $k(\overline{v}) \propto S f(\overline{v})$

Line-Broadening Processes

Every infrared line has a line width, which results from 3 processes:

- (1) <u>Natural line broadening</u> due to uncertainties in the energy levels associated with the lifetime of the excited state.
 - Only important in the upper stratosphere and mesosphere.
- (2) <u>Pressure (or Lorentz) broadening</u> due to collisions between molecules which distort them and cause absorption at slightly different frequencies.
 - Most relevant to the lower atmosphere below 40 km.
- (3) <u>Doppler broadening</u> due to the random motion of molecules.
 - If a molecule moves with thermal velocity V and emits at \bar{v}_o :

 $\overline{V} = \overline{V}_o (1 \pm V / c)$ with $V \ll c$

 Most relevant to the atmosphere above about 40 km, becoming comparable to Lorentz broadening at 40 km.

Lorentz-Broadened Lines

• The line shape function for a Lorentz-broadened line is:

$$f_L(\overline{\nu} - \overline{\nu}_o) = \frac{1}{\pi} \frac{\alpha_L}{(\overline{\nu} - \overline{\nu}_o)^2 + \alpha_L^2}$$

where

- \bar{v}_o = central wavenumber
- $\alpha_{L} = \underline{\text{Lorentz half-width}} (\text{HW at HM}) \quad \alpha_{L}(T,p) = \alpha_{L}^{o}(T_{o},p_{o}) \frac{p}{p_{o}} \left(\frac{T_{o}}{T}\right)^{N}$
- $\alpha_{\rm L}^{0}$ ranges from 0.01 to 0.1 cm⁻¹ for most gases
- T_o and p_o = reference T and p (273.15 K, 1013.25 mbar)
- N = exponent of temperature dependence = 0.5 to 1 (usually use 0.5)
- The absorption coefficient of a Lorentz-broadened line is thus:

where

$$k_a(\overline{\nu}) = \frac{S}{\pi} \frac{\alpha_L}{\left(\overline{\nu} - \overline{\nu}_o\right)^2 + \alpha_L^2}$$

- S = line strength, a function of T and lower state energy E''
- Every Lorentz-broadened line can be specified by four parameters: $\bar{v}_{o}, S, \alpha_{L}^{o}, E''$

Doppler-Broadened Lines

• The line shape function for a Doppler-broadened line is:

$$f_D(\overline{\nu} - \overline{\nu}_o) = \frac{1}{\sqrt{\pi}\alpha_D} \exp\left(-\frac{(\overline{\nu} - \overline{\nu}_o)^2}{\alpha_D^2}\right)$$

where

- $\alpha_{\rm D} = \underline{\text{Doppler line-width}}$ (HWHM / $\sqrt{\ln 2}$) $\alpha_{\rm D}(T) = \sqrt{\frac{2k_{\rm B}T}{M}} \frac{\overline{v_o}}{c}$
- $k_{\rm B}$ = Boltzmann's constant
- -M = molecular mass
- The absorption coefficient of a Doppler-broadened line is thus:

$$k_a(\overline{\nu}) = \frac{S}{\sqrt{\pi}\alpha_D} \exp\left(-\frac{(\overline{\nu} - \overline{\nu}_o)^2}{\alpha_D^2}\right)$$

Lorentz and Doppler Lines

Frequency

Note: Doppler lines are more intense at the centre and weaker in the wings

than Lorentz lines. *From Saunders (ECMWF, 2002].* The shape of a Doppler-broadened line reflects the Maxwell distribution of speeds in the sample at the temperature of the experiment. Notice that the line broadens temperature increases.

From: http://www.raunvis.hi.is/~agust/dopp.htm

The Voigt Line Shape

- The influence of Lorentz and Doppler broadening can be combined in a convolution function called the <u>Voigt line shape</u>.
 - This is useful when both effects are important, e.g., near 40 km in the Earth's atmosphere.
 - Requires numerical calculations.

$$f_{Voigt}\left(\widetilde{v} - \widetilde{v}_{0}\right) = \int_{-\infty}^{\infty} f_{L}\left(\widetilde{v}' - \widetilde{v}_{0}\right) f_{D}\left(\widetilde{v} - \widetilde{v}'\right) dv' = \frac{\alpha}{\alpha_{D}\pi^{3/2}} \int_{-\infty}^{\infty} \frac{1}{\left(\widetilde{v}' - \widetilde{v}_{0}'\right)^{2} + \alpha^{2}} \exp\left[-\left(\frac{\widetilde{v} - \widetilde{v}'}{\alpha_{D}}\right)^{2}\right] dv'$$

- At high pressures: the Doppler profile is narrow compared to the Lorentz → the Voigt profile is the same as the Lorentz profile.
- At low pressures: the Voigt profile is a "hybrid" line with a Doppler center and Lorentz wings.

Atmospheric Spectroscopy: A Practical Application

- Using an appropriate line shape function, the absorption coefficient can be calculated at any point in spectral space.
- This can then be used to derive the total absorption of the line, the atmospheric transmission, etc.
- Calculation of the line shape function requires knowledge of the relevant spectral line parameters.
 - HITRAN is the most widely used spectroscopic database with information (intensity, half-width, and so on) for more than 1,000,000 spectral lines for about 36 different molecules.

Example: Solar IR Absorption Spectra

