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PHY392 
Physics of Climate 

Problem Set #2, 2014 
 

 
 Assigned:  Friday, January 31, 2014 
 Due: Friday, February 14, 2014 (by 5 pm). 
 Late penalty = 5% per day, up to 7 days, after which material will not be accepted. 
 
 

QUESTIONS: 
1. Marshall and Plumb, Chapter 2, Problem 5.    

Consider an atmosphere that is completely transparent to shortwave (solar) radiation, but very 
opaque to infrared radiation (IR). Specifically, assume that it can be represented by N slabs of 
atmosphere, each of which is completely absorbing of IR, as depicted in the figure below (not all 
layers are shown in the figure). 

 
(a) By considering the radiative equilibrium of the surface, show that the surface must be warmer 

than the lowest atmospheric layer. 

(b) By considering the radiative equilibrium of the nth layer, show that, in equilibrium, 

 2Tn
4 = Tn+1

4 +Tn!1
4  (1) 

Where Tn is the temperature of the nth layer, for n > 1. Hence argue that the equilibrium surface 
temperature is  

 Ts = (n +1)
1
4Te  (2) 

Where Te is the planetary emission temperature. [Hint: Use your answer to part (a); determine T1 
and use Equation (1) to get a relationship for temperature differences between adjacent layers.] 

 

2. Determine the emission temperature of the planet Venus. You may assume the following: the mean 
radius of Venus’ orbit is 0.72 times that of Earth’s orbit; the solar flux So decreases as the square 
of the distance from the sun and has a value of 1367 W m-2 at the mean Earth orbit; Venus’ 
planetary albedo = 0.77. 
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The observed mean surface temperature of the planer Venus is about 750 K. How many layers of 
the N-layer model considered in Problem 1 would be required to achieve this degree of warming? 
Comment. 

 

3. Pierrehumbert, Chapter 3, Problem 14. 
Compute the total power radiated by a person with a normal body temperature of 37C. Why is this 
so much greater than the typical daily energy consumed by a person in form of food (equivalent to 
about 100 W)? Next, using the expression for the spectral flux density B(T), compute the power 
radiated by the person in the visible wavelength band (0.5 to 1 µm). Approximately how many 
visible photons per second are radiated? How long would you have to wait for the person to emit a 
single ultraviolet photon at 0.1 µm? For the purposes of estimating the surface area needed in this 
problem, you may assume that the person is shaped approximately like a rectangular prism, with 
height 1.5 m, width 0.5 m, and depth 0.25 m. 

 

4. Pierrehumbert, Chapter 3, Problem 19. 
A cylindrical space station with length h and radius r is in orbit about the Sun at a distance where 
the solar constant is L. The space station has zero albedo in the shortwave and radiates as a perfect 
blackbody in the longwave (infrared) range. The flow of air inside keeps the entire station at the 
same temperature, and the skin is a good conductor of heat, so that its temperature is the same as 
that of the interior. The orientation of the station is such that the axis of the cylinder is always 
perpendicular to the line joining the center of the station to the center of the sun. Find an 
expression for the temperature of the station. Put in numbers corresponding to the mean solar 
constant at Earth’s orbit, assuming r = h. 

Now suppose that the equipment in the interior of the space station consumes 1 megawatt of solar-
generated electrical power, which is dissipated as heat. How much warmer would this make the 
station once the equipment was turned on? To get rid of this excess heat, you are to design a 
radiator, which is a large, thin flat plate heated by pumped water from the space station so that its 
temperature is the same as the interior of the space station. The radiator is perfectively reflective in 
the shortwave, but acts as a perfect blackbody in the infrared region. How large should the radiator 
plate be in order to get rid of the excess heat? For this part of the problem you may assume r = h = 
50 m. 

 
5. Pierrehumbert, Chapter 2, Problem 20. 

In this computer problem you will compute the dry adiabat T(p) for an ideal gas whose specific 
heat depends on temperature, in accord with the Shomate equation (Problem 2.13 in 
Pierrehumbert’s book). In addition to basic skills such as defining functions and loops, you’ll need 
to know how to write programs that find approximate solutions to an ordinary differential equation 
of the form dY dx = f (x,Y ) . 

The Shomate equation is an empirical formula for the dependence of specific heat on 
temperature. It works well for a broad range of gases. The formula reads: 

cp = A + B(T /1000)+C(T /1000)2 + D(T /1000)3 + E(T /1000)!2  

where T is the temperature in Kelvin and A,…, E are gas-dependent constants. Some coefficients 
are given in the Table below. 
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First, use the First Law of Thermodynamics to derive a differential equation for 

d lnT / d ln p assuming dQ = 0. This defines the dry adiabat. Note that since cp is a function of T, 
you can no longer treat it as a constant in doing the integral. 

Write a program that tabulates approximate solutions to the differential equation. Note that 
your dependent variable is Y ! lnT whereas the right hand side of the differential equation 
involves T. This is not a problem, since you can write T = exp(lnT ) . In writing your program, 
assume that cp(T) is defined by the Shomate equation. 

Apply your program to obtain an approximation to the dry adiabat in a pure CO2 Venusian 
atmosphere. Start your computation at the ground (ps = 92 bars) with the observed mean surface 
temperature of Venus (737 K). Integrate up to the 100 mb level, and compare the temperatures you 
get with those in the Magellan observations shown in Figure 2.2 of the text (slide 4 of the 
supplementary slides for lectures 3 and 4). Make a plot comparing your calculations with the dry 
adiabat obtained by keeping cp constant at 820 J/kg.  

 

 
 


