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Dispersionless, highly superluminal propagation in a medium with a gain doublet
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In the region between two lines of a doublet of an inverted medium, there exists a point of zero
group-velocity dispersion, where highly superluminal effects may be observable without significant gain,
loss, distortion, or broadening. The results of this group-velocity analysis hold for sufficiently narrow-
band, analytic pulses, and do not constitute a violation of causality, although the group, “signal,” and
energy velocities as defined by Sommerfeld and Brillouin may all exceed ¢ or even become negative. No
sharp disturbance in the pulse (a real signal) could propagate faster than light, but the scheme offers an
unusual noiseless amplification scheme for the leading edge of a pulse, both at the classical and at the

single-photon level.

PACS number(s): 42.50.Md, 42.25.Bs

It is well known that in a Lorentz-model dielectric (and
in real quantum-mechanical media) there exist spectral
regions where the index of refraction is less than one, i.e.,
where the phase velocity exceeds c. It is slightly less well
known that there are also regions where the group veloci-
ty exceeds c. In fact, it has recently been shown [1] that
any causal system must possess such an anomalous group
velocity at at least one frequency. In their classic papers
on wave propagation, Sommerfeld and Brillouin showed
[2] that despite these effects, no real signal can be
transmitted faster than the vacuum velocity of light, and
Einstein causality is not violated. This is frequently tak-
en to mean that group velocity ““is just not a useful con-
cept” close to resonances, where these effects typically
occur [3]. It has since been shown that superluminal (or
negative) group velocities can indeed have physical mean-
ing, accurately describing the propagation of the peak of
an analytic pulse [4-6]. Such pulses better represent the
signals used in typical optical systems than do the step-
function envelopes of Sommerfeld and Brillouin’s
analysis. All the information about the shape of an ana-
lytic pulse is contained in any finite interval along, for ex-
ample, its leading edge; for this reason, such propagation
effects do not violate the relativistic conception of causal-
ity. Furthermore, in all the examples studied to date, the
anomalous group delays occurred in media with very low
transmission, either due to an optical absorption band [5]
or to a tunnel barrier [6]. The transmitted pulse in all
cases was sufficiently small that it fit “beneath” the lead-
ing edge of the incident pulse, extrapolated forward at
the vacuum velocity of light. The process is typically de-
scribed as one of “reshaping,” in which the later portions
of the incident pulse are preferentially absorbed (or
reflected), shifting the peak of the transmitted pulse for-
ward in time, the local velocity of energy propagation
never exceeding c [7].

Recently, one of us has pointed out [8] that when the
Lorentz model is modified to describe an inverted atomic
system, i.e., one in which there is a gain band rather than
an absorption band, the anomalously small delays occur
not within the band, but rather without it, in an essential-
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ly transparent spectral region; for this reason, the
transmitted pulse experiences negligible gain or loss, and
the velocity of energy propagation may exceed ¢ or even
become negative, both of which cases we shall term “‘su-
perluminal.” (We follow the definition of electromagnet-
ic energy velocity used by Sommerfeld and Brillouin, i.e.,
the ratio of the Poynting vector to the energy density,
which neglects the energy flow within the atomic system.)
It was shown in that paper in the dc limit (frequency
much less than the resonance frequency), the group ve-
locity is superluminal, and in a suitably chosen system,
any pulse with sufficiently narrow bandwidth would un-
dergo negligible gain or distortion. The effect is a type of
coherent transient, described by a Feynman diagram in
which a virtual decay of the excited atom produces a
photon before the absorption of the incident photon; as
the effect occurs off-resonance, however, the absorption is
a necessary step in this diagram, ensuring energy conser-
vation. Put another way, since the effect occurs far from
resonance, little noise is contributed by spontaneous
emission, and this process amounts to a virtually noise-
less amplification scheme for the leading edge of a pulse,
at the expense of its trailing edge; such an amplifier is
faithful even at the single-photon level, and could be used
to compensate for propagation delays in other optical ele-
ments of a system. In practice, however, such superlumi-
nal effects will be very small far below resonance. On the
other hand, closer to resonance where the superluminali-
ty is more striking, the group-velocity dispersion (GVD)
also becomes very large. In a real experiment, this would
lead to a broadening and a distortion of the transmitted
pulse, obscuring the effect. In this paper, we discuss the
case of an inverted medium possessing a doublet line,
such as the familiar doublets observed in alkali-metal
atoms, split by the several-GHz ground-state hyperfine
splitting. (Doublets also occur due to the isotope shift,
with splittings of the same order of magnitude.) We show
that there exists a point between the two gain lines where
the lowest-order group-velocity dispersion vanishes, and
demonstrate that if such an inversion could be main-
tained in an alkali vapor, it would be possible in principle
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to observe extremely superluminal propagation of a laser
pulse tuned between the two gain lines, with negligible
distortion or broadening. Such an experiment would in a
sense be the complement of the anomalously low group
velocities observed by Grishkowsky [9] and more recently
by Harris, Field, and Kasapi [10]. In practice, the
Doppler width of the gain lines will reintroduce some
slight distortion; in principle, even this could be eliminat-
ed if a trap for laser-cooled atoms could maintain a high
atomic density and population inversion over the entire
interaction region, or if a Doppler-free gain scheme were
utilized.

The particular gain mechanism is not of fundamental
importance, as the Kramers-Kronig relations lead to the
same dispersive effects regardless of the origin of the
gain. Specifically, the identity for the real part of the sus-
ceptibility y(w) in terms of its imaginary part can be
written as follows:

foo a)ImX(a) do' . ()

a)—w

Re y(w

The imaginary part of y represents gain or loss, and if its
support is restricted to one or several narrow-band re-
gions so that it can be represented as a finite sum of delta
functions, Eq. (1) leads directly to a real susceptibility
with the same form as that of the undamped Lorentz
model [see Egs. (2) and (4) below]. We are currently in-
vestigating a more realistic approach for generating a
gain doublet, making use of the large gain that has been
observed in the stimulated Raman effect [11-13], in a
Doppler-free configuration. This would obviate the need
for cooling and trapping, while at the same time reducing
the gain linewidth to nearly zero. The inversion in this
case occurs not among the electronic states but among
the hyperfine sublevels of the ground state, and can be
easily achieved using optical pumping. The doublet
could be produced either by using a medium with at least
three ground-state sublevels, or by using a pair of pump
beams detuned from one another by several gigahertz.
The latter possibility, while offering less gain and thus a
smaller effect than a true population inversion, also offers
the possibility of tuning a great number of parameters
such as the separation and the relative strength of the
two gain lines. (Another possibility would be to use one
of the ‘“‘gain without inversion” schemes, which have
been a topic of much recent attention [14].) In this pa-
per, we focus on the possibility in principle of observing
dispersionless propagation at highly superluminal
effective velocities; for simplicity, we will use the Lorentz
model as it applies to an alkali vapor. The only
modification necessary for other gain schemes is the in-
troduction of an appropriate effective oscillator strength.
In the resonantly enhanced Raman scheme, for example,
this oscillator strength would be approximately the
square of the intrinsic atomic oscillator strength, multi-
plied by the ratio of the pump Rabi frequency to the
pump detuning.

As discussed in [8], the extension of the Lorentz model
to an inverted two-level system is simple: the oscillator
strength f is replaced by — f [this follows trivially from

1)]. For a relative inversion n=(n, —n,)/(n, +n,), the

AEPHRAIM M. STEINBERG AND RAYMOND Y. CHIAO 49

complex index of refraction n(w)=[1+4my(w)]'/? is
more generally given by
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n(w)= , (2)

where f is the oscillator strength defined in terms of the
dipole i as 2m |u|%w,/(#ie?), o, is the resonance frequen-
cy, v is the linewidth, and w, is the plasma frequency
defined by
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with N the number density of contributing (valence) elec-
trons, and e and m the charge and mass of the electron.
We will consider the limit of negligible linewidth y. Typ-
ical strong transitions have natural linewidths on the or-
der of several megahertz, much smaller than the detun-
ings we will be considering in this paper. Even Doppler
widths are generally an order of magnitude smaller than
the ground-state hyperfine splittings in high-Z alkali va-
pors. An alkali-metal atom maintained in its first excited
state can decay into either of its ground-state sublevels,
with the near-unity absorption oscillator strength parti-
tioned approximately equally (to within Clebsch-Gordon
coefficients) between these two decays. Writing sub-
scripts 1 and 2 for these two decay branches, we have for
the index of refraction
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This index is typically very close to one in vapors, except
when o differs negligibly from one of the resonant fre-
quencies. (Thus in spite of the extreme change in velocity
upon entering the inverted medium, the incident wave ex-
periences essentially no Fresnel reflection and is entirely
transmitted.) We therefore approximate n as
Lo f e

nw)=1—my———>5— .
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(5)

Let us now rewrite o, and o, as w,+£ /2, where o, is the
central frequency and Q is the hyperfine splitting. We
also introduce the detuning A, defined as w—w,. For
small detunings, and Q <<, we expand the index of re-
fraction to lowest order in A as follows:
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The group velocity is defined as
do _ c
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Although n is close to one, its slope may be quite large,
leading to superluminal effects. The denominator, which
we shall term 7.4, can be written

2 2
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Although this is less than unity everywhere for 7> 0, it
rapidly approaches one as the detuning increases. It
diverges towards negative infinity as o approaches reso-
nance at either o, or w,, but is finite everywhere between
the two. It follows directly that its derivative must van-
ish somewhere between the two gain lines; for the simple
case where 1,f;=1,f,, it vanishes at w,. (In fact, the
two oscillator strengths will not be equal, due to the
different Clebsch-Gordon coefficients for the two transi-
tions, but we will not consider this complication here. It
modifies the results we present only by numerical factors
close to unity.) This derivative is the dominant source of
group-velocity dispersion; the amount of broadening ex-
perienced by a pulse of bandwidth 8w propagating
through a thickness L of dielectric is approximately

dn,
T Lo . )
do ¢
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By tuning a probe to the point of vanishing group-
velocity dispersion, we can dispense with this term and
hence with the dominant contribution to pulse-
broadening, while still remaining within several gigahertz
of the extremely strong gain region (oscillator strengths
near unity, for the example, of an alkali vapor).

Let us examine this more closely. Setting f,=f,=f
and n,=m,=7 for simplicity, the first-order dispersion
vanishes at A=0. We expand n. around this point to
the lowest nonvanishing order,

2 2
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(Note that no approximation has been made that n g it-
self be close to unity.) For an easily achievable density of
10"3 atoms/cm® in ¥Rb, the plasma frequency is over
four times the 6.8-GHz ground-state hyperfine splitting.
Thus even at its local maximum between the two gain
lines, the effective index for a 100% inverted system
would be of the order of — 15, assuming f =0.5 for each
transition (see Fig. 1). This means that the propagation
delay time for a pulse in such a medium would be on the
order of —15L /c. For a 1-cm interaction region, this in-
dicates that the peak of a pulse could leave the exit face
of the vapor cell half of a nanosecond earlier than the
peak of the incident pulse arrives at the entrance face.
Such a shift should be readily observable with a
nanosecond-pulsed laser, with a bandwidth on the order
of 1 GHz, much smaller than the hyperfine splitting; the
spectrum of such a laser would be nearly entirely outside
of the gain band of either line, even when Doppler
broadening (typically smaller than 1 GHz) is taken into
account. As we shall show below, and as can be seen in
Fig. 2, such a pulse also experiences very little dispersive
broadening.

In the absence of gain or loss, distortion of a pulse is
primarily due to group-velocity dispersion. When the
first-order GVD vanishes, the main contribution comes
from the first nonvanishing order,
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a straightforward consequence of (10). The most obvious
criterion for an experiment to display a clearly super-
luminal effect is that this broadening be small compared

780.03

wavelength (nm)

FIG. 1. Index (c/v,) and effective index (c /v,) for an inverted doublet split by 6.8 GHz, as in *’Rb at a density of 10'* atoms/cm’,
with a combined oscillator strength of unity. Each horizontal division corresponds to 0.01 nm at a wavelength of 780 nm, or approxi-
mately 5 GHz. The index (dashed line, left axis) is close to 1 except at the two resonances, where it diverges. The effective index
(solid line, right axis) also diverges at the resonances, but reaches a local maximum of approximately —20 halfway between them. A
1-GHz bandwidth pulse centered at this zero-group-velocity-dispersion point will travel at —c /20 with negligible distortion or
change in amplitude, as shown in Fig. 2. (Incomplete inversion and less-than-unity oscillator strengths will in practice make these

effects proportionately smaller.)
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FIG. 2. 1-GHz bandwidth (full width at half maximum)
Gaussian pulse before and after traversing 1 cm of an inverted
medium. Note that the transmitted pulse (solid line) arrives at
negative times with respect to the incident pulse (dashed line),
centered at approximately —20 cm divided by c (i.e., —0.7 ns).
The width of the incident pulse is about 12 cm or 0.4 ns. The
curves are based on an undamped Lorentz model for the index
of refraction of the inverted medium. In (a), the hyperfine split-
ting is suppressed and the result is for a pulse detuned by 3.4
GHz from a unit-oscillator-strength gain line; the effects of
group-velocity dispersion on the transmitted pulse are evident.
In (b), the pulse is tuned at the midpoint of a doublet split by 6.8
GHz, such as that of Fig. 1. Dispersion is essentially eliminated
in the latter case.

to the shift itself, that is, to |n.s—1|L /c. Since both the
shift and the broadening are proportional to the sample
length and to nf wf,, no restrictions are placed on these
quantities by this requirement. The only necessary condi-
tion is that

80w <0?/12 , (12)

again following trivially from (10). This is a simple
refinement of the natural stipulation that the bandwidth
be smaller than the separation between the two reso-
nances where the group delay diverges.

A more stringent condition arises when we introduce
two more criteria. First of all, for the distortion of the
pulse to be negligible, not only should A7 be small com-
pared to the group-delay shift, but it should also be small
compared to the initial pulse width, of the order of 1/6w.
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Secondly, for the shift to be easily resolvable, it should be
at least of the same order as the initial pulse width.
(These two conditions combine transitively to yield the
first criterion discussed above.) The first of these two
conditions can be written

2

[0)
24fL g 2 |20 | o L (13)
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which offers an upper bound for the sample length
and/or bandwidth, holding the parameters of the atomic
system constant. The second condition gives

mfL (@ | 1 s
c || b’ 13
ie.,
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This offers a lower bound on the length-bandwidth prod-
uct; for a shorter sample or a narrower bandwidth (and
hence longer) incident pulse, the superluminal effect is
not resolved. Since the bandwidth appears in different
powers in the two conditions (14) and (16), we can rewrite
them as separate conditions on the bandwidth and on the
sample length. For the bandwidth, we divide (14) by (16),
and immediately regain the condition we already saw in
(12); this reflects the syllogism mentioned earlier that
joins our two new constraints to imply that the broaden-
ing be smaller than the shift, the requirement that yielded
(12). To find a condition for the length L, on the other
hand, we cube (16) and then divide by (14), obtaining the
following lower bound on the sample length:

cQ
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For the example quoted earlier of a rubidium vapor at a
density of 10! atoms per cubic centimeter, this works out
to a length of approximately 0.07/7f centimeters. For
example, with an inversion of 20% (i.e., 60% of the
atoms in the excited state) and f ~0.5, a 1-cm cell and a
laser bandwidth on the order of 1 GHz will simultaneous-
ly satisfy the conditions of an easily resolvable superlumi-
nal effect and negligible pulse distortion.

In order for such an experiment to be successfully car-
ried out, there remain several hurdles, not the least of
which is the preparation of such an atomic inversion, or
the design of some other system that would provide two
strong, closely spaced gain lines with narrow linewidths.
While the stimulated Raman effect is known to offer ex-
tremely high gain [11-13], it is still generally smaller
than that of an inverted alkali-metal atom. There is,
however, no reason in principle that such a gain doublet
be unobtainable. That issue aside, there remains the fact
that there will be spontaneous emission noise at the two
gain lines (as well as stimulated emission if the tails of the
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probe spectrum overlap the gain lines at all), and this will
have to be filtered out in order for the signal to be observ-
able; care will also need to be taken to prevent lasing
from occurring on these lines. The extremely high gain
makes these systems reminiscent of those used in the
study of superradiance [15,16], a fact that led a referee to
point out that it might be impossible to sustain the neces-
sary population inversion. However, superradiance in-
volves atomic coherences that develop after an inversion
is prepared at one initial time; this differs from the
present case, where incoherent pumping would be used to
maintain a steady-state inversion. Calculations by Bolda,
Garrison, and Chiao suggest that under continuous
pumping, an initial transient superradiant pulse may be
followed by a steady-state inversion [17]; this question
certainly calls for more careful examination before an ex-
periment is attempted. Finally, for large effects to be ob-
served, the tails of the input pulse need to be very clean,
since this propagation process relies on a transient effect,
that is, on the analytic tails of the pulse. For ‘“dirty”
probe signals, the transmitted wave packet may be great-
ly distorted.

In conclusion, it should be feasible to observe super-

luminal propagation of Gaussian laser pulses in a trans-
parent medium, near but not within a region of high gain:
by situating the probe frequency between a pair of gain
lines, one can essentially eliminate any distortion or
broadening that would otherwise arise from the large
group-velocity dispersion. This proposal extends previ-
ous discussions of anomalous group velocities to a regime
in which the transmitted pulse is unchanged in intensity
and in form, and yet experiences extremely superluminal
propagation. This underscores the fact that although
Einstein causality rules out the propagation of any signal
faster than the speed of light, it does not limit the veloci-
ty of electromagnetic energy propagation (in the sense of
Sommerfeld and Brillouin) to ¢. Causality is saved not by
the smallness of the transmitted pulse, but by the smooth
nature of its long analytic tails. The amplification of the
pulse’s leading edge at the expense of its trailing edge
should be faithful even at the single-photon level.
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