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Many static configurations involving electrical currents and charges possess angular momentum
in electromagnetic form; two examples are discussed here, an electric charge in the field of a
magnetic dipole, and an electric charge in the vicinity of a long solenoid. These provide clear
evidence of the physical significance of the circulating energy flux indicated by the Poynting
vector, as the angular momentum of the circulating electromagnetic energy can be converted to
mechanical angular momentum by turning off the magnetic field. Electromagnetic momentum is
created whenever electric fields change in the presence of a magnetic field and whenever
magnetic fields change in the presence of an electric field. When simple dielectrics are involved,
the momentum density can be resolved into two components, a pure-field component e;EXB
and a component y.€,EXB associated with the polarization of the dielectric, the sum being
€,6gEXB=DXB. It is argued that the latter component should be considered to be part of the
electromagnetic momentum density, whose value then is DXB.

I. INTRODUCTION

The concept of electromagnetic momentum in static
electromagnetic configurations and the relationship be-
tween the vector potential of a current distribution and
electromagnetic momentum yere described at least as
early as 1904 by Thomson,"? but much of what he de-
scribed has been overlooked or ignored. Many examples
involving electromagnetic momentum are deceptively sim-
ple in their configurations, yet difficult to analyze, and
many errors have appeared in the literature over the years
in the analysis of simple problems. In this paper, we will
discuss the angular momentum associated with the follow-
ing systems: (1) an electric charge and a magnetic mono-
pole; (2) an electric charge and a magnetic dipole; and (3)
an electric charge and a long solenoid. All of these have
been discussed in the past, in many cases either incom-
pletely or erroneously, a notable exception being Furry’s
excellent analysis® of a variety of configurations. We will
also discuss the linear momentum associated with a
parallel-plate capacitor in a magnetic field. The latter ex-
ample is of special value in making clear the role played by
a dielectric in electromagnetic momentum whereby im-
pulses are delivered to the dielectric whenever there is a
change in the polarization of the dielectric in the presence
of a magnetic field, or whenever there is a change in the
magnetic ﬁeld with constant polarization.

Thomson' identified the angular momentum L associ-
ated with a configuration consisting of magnetic monopole
m and an electric charge ¢ as

L=tuogm/4m, (1)

where £ is the unit vector directed from ¢ to m. Thomson
evaluated the angular momentum in terms of the fields as

L= er(eoEXB)dr, 2)

where €;EXB is the electromagnetic momentum density
(emmd) in empty space and the integration is over all
space. Thomson did not present the details of the integra-
tion; to reproduce his result, place g at —b/2 and m+5b/2
on the z axis, as illustrated in Fig. 1. EXB is azimuthal
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about z, so all volume elements contribute to angular mo-
mentum in the 4z direction, and

L= J- peEB sin 0dr

=€of 9 P07 sin (6,—6,)dr
‘4176?14#72
m

uoqm . pod
f—‘;?sm (6,—6pdr="0 (3)

The details of the 1ntegratlon have been given by Adawi.*

Pugh and Pugh® have provided a very clear example in
which use of the concept of emmd is essential in explaining
the angular momentum of a system. Their system com-
prised a pair of concentric spheres with an electric field
between them, the inner one magnetized; as the system is
charged, it develops mechanical angular momentum with-
out the application of any external mechanical torques.
Romer® has also described two interesting examples in
which emmd plays a role in understanding the angular
momentum of the system—a solenoid with a coaxial cylin-
drical electrode inside it, and concentric spherical elec-
trodes with the outer sphere wound so as to constitute a
magnetic dipole. In both cases the inner electrode has a
charged particle source on it from which particles are al-
lowed to pass through an aperture in the outer electrode.

Thomson? was probably the first to provide a clear state-
ment to the effect that the vector potential A(r) of a static
current distribution J(r’) is equal to the electromagnetic
momentum of a unit charge placed at r in the vicinity of
that current distribution, where

J(r’)
A=) | 1o Q)

Nonetheless, the vector potential was long widely regarded
as a purely mathematlcal convemence without physical
meaning.” Calkin® and Konopinski® rediscovered this prop-
erty of the vector potential that Thomson described. How-
ever, even before their publications, it was common prac-
tice in quantum mechanics to regard the product of the
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Fig. 1. Geometry associated with the fields of charge ¢ at —b/2 and
magnetic monopole m at +5/2 on the z axis. The field of ¢;EXB is
azimuthal about the z axis, indicating the presence of angular momentum
in the +z direction. The angular momentum is gogm/4, directed from g
to m.

vector potential and the charge ¢ carried by a particle as
part of the generalized momentum of the particle.'®

The emmd in vacuum is simply the consequence of the
flow of the mass equivalent of energy. This can be seen
from the fact that e;,EXB=S/c? where S is the Poynting
vector. As S is the energy flux density, S/c? is the flux
density of the mass equivalent of the energy flow, and the

rate of flow of mass per unit area is momentum density. In
a material medium, the nature of the emmd is less obvious
and sometimes complicated; it will be discussed later.

II. LONG SOLENOID AND AN ELECTRIC
CHARGE

A useful example to consider in connection with electro-
magnetic momentum is a long solenoid with a charge ¢
located a distance r from its axis, inside or outside the
solenoid but otherwise near its midpoint. Let the radius of
the solenoid be R and the magnetic induction within the
solenoid be B. The magnetic field outside the solenoid is
small and is considered at first to be zero. The charge is the
source of the relevant electric field, and the electromag-
netic momentum associated with the charge can be evalu-
ated by integrating the field of emmd inside the solenoid
even when the charge is outside the solenoid.!! The mo-
mentum associated with q is

f €E, XB dr=¢qA, (5)

where the integration is over the volume within the sole-
noid. A, given by Eq. (4), is the vector potential of the
solenoid current at the point » where ¢ is located. (In the
approximation of an infinitely long solenoid, A=rB/2 for
r<R, and 4=R?B/2r for r>R.) The electric field E,is
the field of the charge g, disregarding any perturbation due
to conducting properties of the solenoid. This is illustrated
in Fig. 2(a) for r> R, along with the associated field of the
Poynting vector S. The field of the Poynting vector indi-
cates an energy source on the left-hand side of the solenoid
and an energy sink on the right-hand side, and the electro-
magnetic momentum describes the rate of flow of equiva-
lent mass across the solenoid. Physically, the fields indi-

(c)

Fig. 2. Electric fields and fields of the Poynting vector in and around a long solenoid whose axis is perpendicular to the plane of the diagram. (a) Electric
field of charge g, indicated by light solid lines. The field of the Poynting vector within the solenoid is shown by heavy solid lines, indicating a flow of
energy across the solenoid from left to right. The dashed lines show the field of the Poynting vector outside the solenoid, indicating a weak flow of energy
across the solenoid that supplements the much stronger flow inside the solenoid. (b) Field of the charge distribution induced on the surface of the
solenoid by the presence of charge ¢ and the field of the associated Poynting vector. The total flow of energy across the solenoid from right to left exactly
cancels the total flow of energy across the solenoid shown in (a). (¢) Combined fields of charge ¢ and the induced charges on the solenoid. The Poynting
vector field lines (the dashed lines) are roughly circular except for a detour around the solenoid. The angular momentum of this field corresponds to the
linear momenta shown in (a) for charge ¢ and in (b) for the induced charges on the solenoid.
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cated in Fig. 2(a) could be realized by making the solenoid
from a large array of small current generators, each with
its own local energy source (or smk), and each at the
potential established by charge ¢.'> Then the current gen-
erators on the left-hand side would be sources of electro-
magnetic energy and those on the right-hand side, sinks.

If the solenoid is regarded as a conductor and thus an
equipotential, then the flow of energy across the solenoid
described in the previous paragraph is canceled by the ef-
fects of a charge distribution that is induced on the surface
of the solenoid. The charge distribution induced on the
solenoid cancels the electric field of charge ¢ inside the
solenoid and modifies the total field outside so that it is
perpendicular to the surface of the solenoid. The electric
field E; of the induced charge distribution is illustrated in
Fig. 2(b); within the solenoid the fields exactly cancel
those shown in Fig. 2(a). The momentum associated with
the surface charges on the solenoid is equal and opposite to
that associated with the point charge. However, for a finite
solenoid the magnetic field outside, though very small, is
not zero, and this turns out to be critically important. We
shall soon see that this external field describes the angular
momentum of the system.

If the magnetic field is allowed to go to zero (by letting
the current in the solenoid decay to zero), g experiences an
induced electric field to the right, the impulse delivered to
it being

q (B=0 —qBR?
2r '’

where 7 is the distance to g from the axis of the solenoid.
This is just the product of g and the vector BR*/2ratq. It
is also equal to

7R*B) dt=

(6)

Eﬂ'_rggat

f &E,XBdr, (7

where E_ is the field of ¢ and the integration is over the
volume within the solenoid; this integral is evaluated in the
Appendix.

Associated with the impulse to the right delivered to g,
there is an equal impulse to the left delivered to the sole-
noid® as a consequence of the action of the induced electric
field on the charge distribution on the solenoid induced by
the presence of charge ¢.!* (There would be no force on the
solenoid if there were no shielding charges — that is, if the
solenoid were a nonconductor as discussed above — but
then the system would not be static.) The impulses gener-
ate a mechanical angular momentum since equal and op.
posite impulses act along lines separated by distance r.
The angular momentum must have been stored in the field
before the solenoid current was turned off, and this could
only be in the external field.

Consider the development of angular momentum as
charge ¢ is brought into position near an energized sole-
noid (rather than its being in place while the magnetic field
is increased from zero). Bring ¢ from infinity along the axis
of the solenoid, considering this to be the z axis (where the
x axis is to the right and the y axis upwards in Fig. 2); in
this way, it can be brought from infinity to the center of the
solenoid without experiencing any magnetic force. Then
move g along the y axis with velocity v so that it experi-
ences a magnetic force ¢ vXB to the left. This requires the
application of an external force to the right in Fig. 2(a)
(where B is in the —z direction) that will impart a total
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impulse grB to g by the time it reaches position 7, where
r<R. As g is moved from 0 to R, an equal impulse, but to
the left, must be delivered to the solenoid from an external
source to counter the electromagnetic force to the nght
that it experiences. Thus angular momentum gR>B/2 is
delivered to the system by external forces as ¢ moves from
0 to R. This angular momentum resides in electromagnetic
form; if it is converted into mechanical form by letting the
magnetic field go to zero at this point, the charge acquires
an impulse ¢R B/2 to the right and the solenoid an impulse
qR B/2 to the left, just the release of the angular momen-
tum that was delivered to them by external forces as g was
brought into position at r=R.

That equal and opposite forces must by applied to the
moving charge and the solenoid to maintain the specified
trajectory and position has been shown by Furry® in a more
general treatment of the subject.!* He showed that, for a
charge ¢ and a solenoid m surrounded by a conducting
shield s, the sum of the forces on the system is zero; the
relevant forces being the vXB force F, on charge ¢ moving
in the field of the solenoid, the vXB forces F, on the shield-
ing charges moving in the field of the solenoid, the JXB
force F,,,; on the solenoid due to the magnetic field of the
moving charge g, and the JXB force F,,, on the solenoid
due to the magnetic field of the moving shleldmg charges,
where J is the magnetization current flowing round the
solenoid. Although the sum of the forces is zero, there is
not pairwise cancellation. If we consider a charge ¢ ap-
proaching a long solenoid along the y axis from + 0, both
g and the shield receive small impulses to the left (infini-
tesimally small as the solenoid becomes infinitely long) due
to forces F, and F;. The largest impulses are to the sole-
noid due to F,,, acting to the left and F,, acting to the
right, their difference being small but to the right. The
combined impulse to the solenoid and the shield is to the
right, equal and opposite to the impulse delivered to g by
the electromagnetic interaction. Due to symmetry, the
vXB force on g due to the magnetic field of the moving
shielding charges and the vXB forces on the moving
shielding charges due to the magnetic field of ¢ do not enter
into this problem.

Going back to the previous example where ¢ was taken
along the y axis from the center of the solenoid, the charge
experiences no magnetic force as it moves beyond R (in the
approximation of zero magnetic field outs1de the long so-
lenoid) and its angular momentum qR B/2 is conserved.
Accordingly, the linear electromagnetic rnomentum asso-
ciated with g decreases as 1/r and its value is gR> B/2r, just
the product of the vector potential R2B/2r and ¢. The
solenoid has equal and opposite linear electromagnetic mo-
mentum. In the approximation of an infinitely long sole-
noid, F, and F are zero and F,, and F,, cancel one
another; however the latter two forces can be related to the
decrease in linear momenta associated with the charge and
with the solenoid, the angular momentum remaining con-
stant as r increases.

The above discussion has ignored the fact that the mag-
netic induction outside the solenoid, though small, is not
zero. Taking the weak external magnetic field into account,
there is a weak magnetic force on ¢ as it moves along the y
axis beyond R, and the force decreases very slowly with
distance. The magnetic induction as a function of distance
r from the axis of a long solenoid of length L and radius
R (L>»R) is
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where a is the magnetizing current per unit length ﬂowin§
round the solenoid. Near the solenoid B,=2uqaR%/L?,
and it falls to about one-tenth of this value at r=0.95L.
The angular momentum conveyed to g in resisting this
magnetic force as the particle goes to infinity along the y
axis just cancels the angular momentum that was conveyed
to g (and stored as emmd) as it proceeded from the axis of
the solenoid to its surface, so the angular momentum at
infinity is zero.

The above makes clear where the field of electromag-
netic momentum exists for a charged particle ¢ outside a
long solenoid, and this is illustrated in Fig. 2(c), which
shows schematically the electric field and the field of the
Poynting vector. The field lines of emmd are roughly cir-
cular about g in the plane of the figure, with a detour
around the solenoid. As there are no energy sources or
sinks, the integral of the emmd over all space is zero; this
can be seen from the continuity of the field lines of the
Poynting vector. Thus the total linear momentum of the
system is zero, but the angular momentum is not. Though
the fields outside the solenoid are weak, they are extensive
and the integrated angular momentum over all space is
finite. The volume within the solenoid makes no contribu-
tion to the electromagnetic momentum. The angular mo-
mentum could be evaluated by integrating the groduct of
the emmd and a radius vector over all space'® but it is
easier to make use of the property noted by Thomson,
evaluating the angular momentum in terms of the charge ¢
and magnetic monopoles maR? and —7aR? at the ends of
the solenoid. Each pole in its interaction with charge ¢ has
angular momentum pogmaR%/4m=qu,aR?/4, with axial
component guoaR*/4 \/1+4;5/ L2. Therefore, the angu-
lar momentum of the system is quoaR%/21+47/L?
~ quotR?/2 for r< L. If the magnetic field is turned off
with the charge and the solenoid fixed in position, the im-
pulse delivered to each of them is guqaR%/2r V1 +47/12,
to the right in the case of the charge and to the left in the
case of the solenoid. This transfer of momentum is due to
the decay of the field of emmd, all of which is external to
the solenoid. However, as we showed earlier, these im-
pulses can be calculated from the canceling fields inside the
solenoid of the emmd for the charge g and for the induced
charge distribution on the solenoid; the canceling fields of
the two sources of electric field simply serve as proxies for
the properties of the external field.

Much of what has been said in the context of r> R is
applicable for 7 <R. The angular momentum possessed by
the system for »<R is ¢Br°/2. The linear momentum as-
sociated with g, expressed in terms of the electromagnetic
momentum within the solenoid, is €/, E,XB dr, where the
integration is over the volume within the solenoid. The
integration has been performed in the Appendix; for r <R,
its value is g Br/2 in the +x direction, just the product of
g and the vector potential at . The linear momentum as-
sociated with the solenoid is equal and opposite, i.e., €, [ E;
XBdr=—¢,[,E,XBdr, where E is the field of the
charge distribution induced on the solenoid; this has mag-
nitude g Br/2 and is in the —x direction. Even though the
fields of ¢ and the charge distribution on the solenoid have
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different topologies, the integrals of the Poynting vector
over the volume inside the solenoid are equal and opposite.

A toroidal coil with a charge g at its center is a natural
extension of the picture for a long solenoid. The magnetic
field is entirely within the toroid and the electric field to-
tally outside (assuming its surface to be conducting), so
the two do not overlap. The system has neither linear nor
angular electromagnetic momentum, but the charge and
the toroid will acquire equal and opposite linear momenta
by letting the magnetic field decay to zero. The momentum
of the charge can be evaluated in terms of electromagnetic
momentum by considering its field to penetrate the toroid,
that is, by neglecting the shielding charges; it is €, [,E,
XB dr=[E,Xm dr/c?, where m is the magnetic dipole
moment per unit volume and 7 is the volume within the
solenoid. The momentum of the toroid can be evaluated in
similar manner by considering the field of the shielding
charges alone, that is, by neglecting the field of charge g.

II1. INFINITESIMAL DIPOLE AND AN ELECTRIC
CHARGE

The conversion of mechanical angular momentum into
electromagnetic angular momentum and vice versa cannot
be demonstrated for a magnetic monopole and a charge,
but it can be for a dipole and a charge. The mechanical
angular momentum that is conveyed to the system in
bringing a charge from infinity into the proximity of a
magnetic dipole exists in the form of electromagnetic an-
gular momentum, and it can be released as mechanical
angular momentum by letting the dipole decay to zero. The
angular momentum is easily evaluated using Thomson’s
result for the angular momentum associated with a charge
g and a magnetic monopole m. It immediately follows that
the angular momentum associated with a charge ¢ and a
magnetic dipole M is

HogM sin 8 b
T 4ar ’

where the charge is at »,0 relative to the dipole, 6 being
measured from the dipole axis.

To illustrate how angular momentum is put into the
system as a charge is brought from infinity into the prox-
imity of a magnetic dipole, any path can be selected; the
one that we use here serves as an example. We consider a
dipole at the origin of our coordinate system with the z axis
along the dipole axis. Let the coordinates of the charge be
(x,0,b), and let it move in the +x direction from — e
with velocity v. The electromagnetic angular momentum
from Thomson’s relation is

L= 9

quoM sin 0 .
Lem=— 4mr 9
= (k sin? 6 cos 6-+1i sin @ cos® 9). (10)
47b
The magnetic field in the xz plane has components:
2
B,= —lero—g sin 6 cos 6,
B,=0,
and
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Bzd:‘moﬂ cos’ 6—1), (11)
where O=tan~!(—x/b). The magnetic force on g as it
moves parallel to the x axis requires the application of an
external force in the y direction to keep it on its prescribed
path, and this external force is

Y N
Fe-_-?{%m cos? 6—1)]. (12)
The force experienced by M is equal and opposite to that
experienced by g, so another external force —F, must be
applied to M to keep it from moving. The two external
forces constitute a couple that adds angular momentum to
the system, the contribution during time interval dt being

quuoM

dL.;==3—(3 cos” 6—1)b dt. (13)

As vdt=dx=—rd6/cos @ and r=>b/cos 0,

dL, = _qf;f(a cos? 6—1)(—k sin 6+1 cos )d6,
(14)
and
6 A -~
L= 7 (3 cos? 6—1) (& sin 6+ cos 8)d6
41Tb /2
_ quoM

{cos 0 sin® 6k + [sin 6 cos 6

~ 4mb
—(1—sin 6]i}. (15)

There is an additional torque that must be applied to the
system as g moves along its prescribed path; the magnetic
field of the moving charge produces a torque on M, and an
equal and opposite torque from an external source must be
applied to M to stop it from turning. The magnetic field of
qgat Mis B,= (g Ué/4’le3 )j, so the torque exerted on M
is ——(qyoubyl{/%‘l'l;g )i. The angular momentum conveyed
to the system in resisting this torque is

© quovbM . quoM (9 A
_wwdtl-——m—fﬂ/z cos 0 doi

gpoM .ot
__4—77_5—(1—-sm 0i.

Thus the total angular momentum delivered to the system
from external sources is
quoM
L= 4mb

(16)

(k sin® 8 cos §+1 sin 0 cos? 9), (17)
in agreement with the electromagnetic angular momentum
of the system as given by Eq. (10).

To release the electromagnetic angular momentum in
mechanical form, let the dipole decay to zero. The impulse
delivered to g can be evaluated by calculating the induced
electric field. The flux of magnetic induction through a
circle generated by revolution around the z axis passing
through g is (uoM/2r)sin? 0. The electric field at g is

1 d[uMsin’6@
2msin 6 d_t( 2r )
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Fig. 3. A capacitor configuration to demonstrate the concept of electro-
magnetic momentum density. In charging the capacitor, an impulse to the
left is delivered to the circuit. There is equal opposing momentum in the
form of electromagnetic momentum density in the space between the
capacitor plates. If a dielectric of relative permittivity ¢, is placed between
the capacitor plates, the effect is increased by the factor €, associated with
an impulse delivered to the dielectric by the polarization current.

and the integrated impulse delivered to ¢ as the dipole is
reduced to zero is

gpoM sin 6,
p

The easiest way to calculate the impulse delivered to the
dipole is to use Costa de Beauregard’s' relation for the
force on a changing magnetic dipole in an electric field.
The force is (E/c*)X(dM/dt), and this yields
(guoM sin 8/4wr%)j for the impulse, equal and opposite to
the impulse delivered to the charge. Alternatively and con-
ceptually better, this result can be asserted on the basis of
Furry’s conclusion that the force on the shielding charges
on the magnet is equal and opposite to that on charge g.
Thus the angular momentum released from the electro-
magnetic field as a consequence of the decay of M is
(quoM sin 0/47r)0, in agreement with both the electro-
magnetic angular momentum determined from Thomson’s
relation and the mechanical angular momentum added to
the system by external forces as ¢ was brought from infinity
to position r,6.

(18)

IV. THE PARALLEL-PLATE CAPACITOR

Further insight into the nature of electromagnetic mo-
mentum can be obtained by considering the charge and
discharge of a parallel-plate capacitor in a magnetic field,
the magnetic field being parallel to the plates. The example
that we consider is illustrated in Fig. 3. The parallel-plate
capacitor is arranged so that moving a switch to position
“@” charges the capacitor, and moving it to position “b”
discharges it. 4 is the area of the plates, s is the distance
between them, V is the potential difference supplied by the
battery, and the electric field between the capacitor plates
is E=—V/s when the capacitor is fully charged. The role
of resistor R is to make the charging and discharging pro-
cesses slow enough so that radiation can be ignored. The
constant magnetic field B is in the —z direction, directed
into the plane of the figure. When the switch is moved to
position “a,” a current 7 flows to charge the capacitor and
a force to the left (the —x direction) is exerted on the
circuit joining the capacitor plates due to the interaction
between the charging current and the magnetic field. The
impulse delivered to the circuit in the +x direction is
— Bs [I dt= —e,AsE B, neglecting edge effects, where B
and E are both negative in Fig. 3.

Something must have acquired equal and opposite mo-
mentum, and it can be considered to be the electromag-
netic field within the volume of space between the capaci-

Johnson, Cragin, and Hodges 37



tor plates; this volume has acquired emmd g=¢,EXB,
which is directed towards the right in Fig. 3. The total
electromagnetic momentum between the plates is €,4sE B,
equal and opposite to the impulse delivered to the circuit.
The rate of creation of emmd is (3/9t) (;EXB)=J,XB,
where J,;=€,0E/0t is the displacement current in vacuum;
the rate is also equal to the stress per unit volume indicated
by the magnetic portion of the Maxwell stress tensor.!” In
general, the presence of a displacement current in vacuum
in a region of space in which there is a steady magnetic
field indicates that emmd is being created.

It is conceptually better to regard the momentum re-
quired to balance the momentum delivered to the capacitor
as having been delivered to the source of the magnetic field;
the use of electromagnetic momentum is simply a device to
avoid the necessity of examining the details. Coleman and
Van Vleck'® have shown that the total linear momentum of
the entire system must be zero. The location of some of the
momentum may be difficult to find, and it may at times be
categorized as hidden momentum. In this example, the
electromagnetic momentum between the capacitor plates
describes momentum possessed by the source of the mag-
netic field.

The example provides additional insight if the volume
between the plates is filled by a nonmagnetic dielectric of
relative permittivity €,, in which case the charge acquired
by the capacitor and the impulse delivered to the circuit
are correspondingly larger by the factor €,. What is the
emmd in this case? Practice varies as to how it should be
defined, ,EXB or DXB=¢,6,EXB, the difference be-
tween the two being the momentum per unit volume de-
livered to the dielectric, described next. We consider the
dielectric to be supported separately from the capacitor
plates and the connecting circuit so that the effects of the
forces acting on each can be considered separately.

With the dielectric in place, the displacement current
includes a polarization term, and J;=¢€,dE/dt+dP/at.
The first term is indicative of the same rate of creation of
emmd that existed without the dielectric, €;0E/3tXB; it
can be thought of as indicating the rate of production of
pure-field momentum. The second term involves a force
per unit volume, dP/3:XB, delivered to the dielectric as a
consequence of the polarization current. It is this momen-
tum delivered to the dielectric that is considered to be part
of the emmd when it is defined as DXB=¢JE/dtXB
+dP/3tXB . Further, the example provides an argument
that it is more appropriate from a physical point of view to
consider the emmd to be given by DXB rather than by
€EXB, with the mechanical momentum treated sepa-
rately in the latter case. During the discharge of the capac-
itor the emmd collapses and the circuit receives an impulse
to the right €,6p4sEB and the dielectric an impulse to the
left (e,— 1)€yAsE B, irrespective of the momentum state of
the dielectric at the time when the discharge commences.
During the charging of the capacitor, the dielectric did
receive an impulse to the right. Whether the dielectric re-
tains this momentum or delivers it to something else (the
dielectric support structure, for example), an impulse to
the left is delivered to the dielectric when the capacitor is
discharged.' It is not simply a matter of momentum being
stored in the dielectric while the capacitor is charged;
rather it is a property of the electromagnetic field that an
impulse be delivered to the dielectric whenever there is a
change in its polarization, the impulse being (e,—1) =y,
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times the change in ¢;,EXB, where y, is the electrical sus-
ceptibility. This argues that the emmd, including its inter-
action with the dielectric, should be regarded as a property
of the electromagnetic field and equal to DXB.

The emmd between the capacitor plates in this example
can be produced by a different sequence of events. Suppose
that the capacitor without the dielectric is charged in the
absence of any magnetic field and that the magnetic field is
then applied slowly with 3 B/d¢ negative (for the axes cho-
sen in Fig. 3) and constant until it reaches a specified
negative value B. While the magnetic field is changing
there is an induced electric field described by VXE;=dB/
dt. This gives rise to a force to the left on the charges on
both capacitor plates, the total force in the +x direction
being QsdB/dt=e€yAsEIB/Jt, where Q= —¢eyAE is the
charge on the capacitor glates and E is the electric field
when B is not changing.’ (8B/8t and E are negative and
Q is positive.) The total impulse that has been delivered to
the plates when the magnetic field reaches the value B is
—epdsE B; this is associated with the generation of emmd
between the capacitor plates, the total amount of field mo-
mentum between the plates being + €y4sE B, as before.

The picture can also be described in terms of the electric
portion of the Maxwell stress tensor, which is a useful
device for calculating electromagnetic forces. First, it is
necessary to evaluate the electric field while the magnetic
field is changing. The induced electric field E; causes a
redistribution of the charges on the capacitor plates, driv-
ing charges to the left until the resultant field within the
plates is zero. (Note that the plates are not equipotentials
while the magnetic field is changing.) The resultant field E,
between the plates is E.=E—j (dB/dt) x, where the origin
is at the center of the capacitor. The only term in the stress
tensor that contributes to a force in the x direction is the
T, term, and T, =€ E%/2=¢€,(E—xdB/3t)%/2. The elec-
tromagnetic stress per unit volume in the region between
the capacitor plates is —(€y/2)(d/3x)(E —xdB/dt)?
=¢€,E,0B/dt, and the total electromagnetic stress exerted
on the volume between the plates is [e,E,0B/dtdr
=¢yEAsd B/t , in the +x direction. The reaction force is
exerted on the capacitor plates. Thus the impulse delivered
to the capacitor plates as B changes from 0 to B, as indi-
cated by the stress tensor, is —eydsEB.

If this sequence, in which the magnetic field is changed
from zero, is repeated with the dielectric in place, the im-
pulse to the left delivered to the plates is larger by the
factor €,, the increase being associated with an impulse to
the right in the amount (€,—1)egdsEB delivered to the
dielectric. The impulse to the dielectric is due to the action
of the induced electric field on the bound charge density
(e,—1)€oE on the surfaces of the dielectric (or on the
surfaces of volume elements of the dielectric), the charge
being negative on the upper surface of the dielectric slab
(or of the volume elements).?! Thus the force is propor-
tional to the polarization of the dielectric. Alternatively, it
can be seen in terms of the negative gradient of the electric
field energy density — (8/9x) (€,60E%/2), which is larger
than the pure-field value by the factor ¢,.

If B and E change in proportion, the contributions to
emmd from JE/dt and dB/dt are equal, no matter what
their ratio may be, but the nature of the forces exerted on
the medium by the two terms is different. The force on the
dielectric associated with the variation in £ is due to the
polarization current interacting with the magnetic field,
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thus conveying momentum to the medium,; this is also re-
flected in the spatial distribution of B as perturbed by the
polarization current and in the gradient of magnetic field
energy density. The force associated with the time varia-
tion of B is due to an electrical force on the polarization
surface charges of volume elements of the dielectric, and
this is reflected in the spatial distribution of E and the
gradient of the electric field energy density; the force per
unit volume on the dielectric is the negative gradient of the
electric field energy density 6,£0E /2 less the negatlve gra-
dient of the pure electric field energy density e,E2/2, or
(e,—1)€,E?/2. As this force per unit volume due to the
time variation in B is not easily visualized, it might be
overlooked, which would lead to a factor of 2 error in
evaluating the mechanical momentum delivered to the me-
dium.

The above discussion has not considered edge effects and
fields outside the volume between the capacitor plates.
They can be seen to be inconsequential to the arguments
presented above by considering the equivalent of a guard
ring. Visualize the capacitor as being simply an element of
a much larger capacitor consisting of closely spaced coax-
ial cylinders with the outer surface grounded. On the other
hand, if the source of the magnetic field is considered to be
a large solenoid with a relatively small capacitor along its
axis, the edge effects and the interactions between the
charging current and shielding currents induced on the
surface of the solenoid are important, and it makes an
interesting exercise to discuss them.

V. SUMMARY

The angular electromagnetic momentum possessed by a
magnetic dipole and an electric charge, and by a long so-
lenoid and an electric charge, provide two examples of
convincing evidence of the physical significance of circu-
lating energy fields as indicated by the Poynting vector. If
the magnetic field is turned off, the circulating energy flow
stops and its associated angular momentum is converted to
mechanical angular momentum; this is manifested in equal
and opposite impulses being delivered to the charge and to
the source of the magnetic field.

When a system (such as a charged capacitor in a mag-
netic field) possesses linear electromagnetic momentum,
this is just a proxy for momentum existing elsewhere in the
system, and that momentum involves motion (usually the
currents producing the magnetic field).

Consideration of a parallel-plate capacitor in a magnetic
field shows that the linear electromagnetic momentum pos-
sessed by the system consists of a pure-field component,
€EXB, plus an additional amount y.,EXB associated
with the dielectric. The additional amount depends on the
polarization of the dielectric, not on its mechanical mo-
mentum,; it is a property of the electromagnetic field that
an amount of linear momentum dependent upon the po-
larization will appear as mechanical momentum when the
capacitor is discharged, irrespective of whatever mechani-
cal momentum the dielectric happens to possess when the
discharge commences. The momentum transfer to or from
the dielectric always accompanies any change in the pure-
field momentum and depends on the polarization of the
dielectric. The reasons for regarding y.6,EXB as part of
the emmd are about the same as those for including the
polarization current €,6,0E/d¢ in the definition of the dis-
placement current
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J,=€,0E/dt+3IP/0t .

Emmd is created whenever the electric field changes in
the presence of a magnetic field and whenever the magnetic
field changes in the presence of an electric field, according
to

9 EXB aEXB xaB
51 ( €0 )=€kga XB+eEX -

The first term on the right is just J;XB, with J,;=¢,6,0E/
Ot=€,0E/3t+dP/dt; €,0E/0tXB is the rate of change of
pure-field momentum, and P/3tXB=J,XB is the rate at
which momentum is conveyed to the d1e1ectr1c, where J, is
the polarization current. The second term can also be bro-
ken up into two terms, one the rate of change of pure-field
momentum, €;EXJB/dt, and the other, y e,EXJB/dt=P
X dB/dt, the rate at which momentum is conveyed to the
dielectric by the induced electric field acting on the polar-
ization charges. The presence of a changing electric field in
a magnetic field and the the presence of a changing mag-
netic field in an electric field both provide evidence that
emmd is being produced.

APPENDIX

Here, the volume integral P of the emmd ¢EXB is
evaluated explicitly for the case of a point charge ¢ located
a distance r from the axis of an infinitely long, nonconduct-
ing solenoid. The solenoid has radius R, and the magnetic
field within it has the constant value B= Bk; outside the
solenoid the magnetic field is zero. The electric field inside
the solenoid is taken to be the undisturbed electric field of
g, ignoring any effects of shielding charges on the surface of
the solenoid, as prescribed by Konopinski.!! Taking the
origin of the coordinate system to coincide with ¢, we have

_ 9 [xp2
X0z 41T60 \/x2+ y2+ 22 3

and the solenoid’s axis is along the line x=0, y=r. From
symmetry, the only nonvanishing component of P inte-
grated over the volume within the solenoid is

(A1)

P= f &E,B, dr

—eoBf dx dy f dzE,,
Ymin —®

where ppi,=r— {RZ—x2, Ymax=r+ yR"—x*, and E, is ob-
tained from Eq. (Al). Upon the substitution tan §=z/
\/x7+ )7, the integration over z reduces to elementary form,
with the result that

(A2)

P qB fR Jj’max y d
=) - g Y. (A3)
This in turn is easily integrated to give
» gB f 1 r2+R2+2r\/R2—x7d A4
* 2w ) _g2 n P+R*-2r JR*—x* * (A4)
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P+R24+2rR \fl —x2

P+R*—2rR |1 —x*

1+a\/1 xE
a;h x7

dx

qukflll
T2 Jo2 "

qB 11
_Z#ZRJ;

where

(A35)

2rR
a=a(r) =m—r§. (A6)

Integrating Eq. (AS) by parts,
gBR 14a1-x* ! gBR
xIn =) —
27 l—ayl-x 2
J‘l 1 1+oz\(l—x7
X 0" nl—-oz;}l—x2
gBR 1 ax?
g, :
2T ol+aJ1—x
14+aql1— X2
X1+
l—a\[l —x? \/l—x

gBR 1! x? dx
T afo 1—a?+a’x J1—x*"
The integrals appearing in Egs. (A5) and (A7) are not
found in standard tables. However, the integral in Eq.

(A7) can be evaluated using the tabulated results of Grad-
shteyn and Ryzhik:?

P=

(A7)

/2
J. In (1+a sin® x)sin? x dx
0

T 1+yl4+a 11—l1+4a
==—|1In R~ (A8)
2 21+ Jl+a
and
/2
f In (1+a sin® x)cos? x dx
0
T 1+Jl+ 11— 1+a
== (A9)
2 2 21+ 1+a

for a > —1. Adding Egs. (A8) and (A9) and differenti-
ating both sides of the result with respect to the parameter
a, we find

/2 sin®x T 1
fo mdx=51+a+ 1ta’ (A10)
The substitution x=sin"! u then yields
Lo du w 1
fo 1+au? \/1—u2=5 1+at J1+a (A11)

After a simple rescaling and redefinition of variables, this
becomes

J‘ dx T 1
0 @4+ I—x2 2 +b+aya+b

(A12)
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The integral appearing in Eq. (A7) is 2 special case of this
result, obtained by setting a>=1—a?(r) and b’=d?(r).
Thus

p =qBR a(r) (A13)
x 1+ J1—a*(r)
_gBR 2rR
2 R 44+ (R*-P)
=qBr/2, or ¢BR%/2r. (A14)

For r <R, symmetry demands that P,—0 as r—0, and the
first solution, obtained by choosing the positive square
root, is applicable. For r> R, it is necessary that P,—-0 as
r— o0, and the second solution applies.

1. J. Thomson, Elements of the Mathematical Theory of Electricity and
Magnetism, 3rd ed. (Cambridge University, London, 1904).

23, J. Thomson, Electricity and Matter (Charles Scribner’s Sons, New
York, 1904), pp. 26-35.

’W. H. Furry, “Examples of momentum distribution in the electromag-
netic field and in matter,” Am. J. Phys. 37, 621-636 (1969).

1, Adawi, “Thomson’s monopoles,” Am. J. Phys. 44, 762-765 (1976).
’E. M. Pugh and G. E. Pugh, “Physical significance of the Poynting
vector in static fields,” Am. J. Phys. 35, 153-156 (1967).

°R. H. Romer, “Angular momentum of static electromagnetic fields,”
Am. J. Phys. 34, 772-778 (1966), “Electromagnetic angular momen-
tum,” ibid. 35, 445-446 (1967). The first of these papers suffers from
the lack of consideration of the external field of the solenoid, something
that is dealt with in the second paper.

’E. B. Moullin, The Principles of Electromagnetism (Oxford University,
London, 1932), p. 218; Y. Aharonov and D. Bohm, “Significance of
electromagnetic potentials in quantum theory,” Phys. Rev. 115, 485-
491 (1959); E. J. Konopinski, “What the electromagnetic vector poten-
tial means,” Am. J. Phys. 46, 499-502 (1978); E. J. Konopinski, Elec-
tromagnetic Fields and Relativistic Particles (McGraw-Hill, New York,
1981).

SM. G. Calkin, “Linear momentum of quasistatic electromagnetic
fields,” Am. J. Phys. 34, 921-925 (1966).

°E. J. Konopinski, Ref. 7 (1978).

101, Landau and E. Lifshitz, The Classical Theory of Fields (Addison-
Wesley, Reading, MA, 1951); p. 42; Y. Aharonov and D. Bohm, Ref. 7;
R. K. Wangsness, Introduction to Theoretical Physics (Wiley, New
York, 1963), p. 399.

Vg, J. Konopinski, Ref. 7 (1981), p. 160.

121t might be supposed that the equivalent of a nonconducting solenoid
could be realized using nonconducting permanent magnets, but S. Cole-
man and J. H. Van Vleck [“Origin of hidden momentum forces on
magnets,” Phys. Rev. 171, 1370-1375 (1968)] have shown that this is
not true, that there is a relativistic counter flow of energy whose mo-
mentum just cancels the electromagnetic momentum.

13An alternative approach to the evaluation of the force on the solenoid as
B is reduced to zero has been provided by O. Costa de Beauregard [“A
new law of electrodynamics,” Phys. Lett. 24A, 177-178 (1967)], but it
is not conceptually correct. He states as a new law of electrodynamics
that the force on a slowly varying current / in an electric potential field
Vis (di/dt) § V dI/c* and that the force on a varying magnetic dipole is
(1/)EXdM/dt. Furry (Ref. 3) has shown that the force in question
is actually that on the shielding charges induced on the solenoid or on
the surface of a permanent magnet, and it is zero in their absence.
However, with this reservation, Costa de Beauregard’s relations are
handy in evaluating the forces.

“This problem has been treated by others. Konopinski (Ref. 8) did not
discuss the force on the solenoid, and Calkin (Ref. 9) incorrectly stated
that it was zero. Calkin ignored the shielding charges; see Furry (Ref.
4). J. J. Thomson (Ref. 2, p. 32) stated correctly that a charge and a
magnet (both stationary) possessed equal and opposite electromagnetic
momenta, but for a charge and an electric circuit he stated incorrectly
that the combination had linear momentum and that the circuit pos-
sessed no momentum; in this he failed to recognize the significance of
shielding charges.

Johnson, Cragin, and Hodges 40



5Furry’s treatment may be regarded as the basis for the reaction concept
for the electromagnetic force exerted by one system upon another, that
the forces are equal and opposite even if they are not in line. The
reaction concept was also presented by V. H. Rumsey in lectures at the
University if Illinois in 1956.

%Furry (Ref. 3) has done this for an arbitrary magnetic dipole [his Eq.
(26)], showing result to be independent of the particular structure as-
sumed for the dipole.

"The force per unit volume indicated by the stress tensor is regarded as
real only to the extent that it describes the force on charged particles,
that is, to the extent that it includes the Lorentz force. The portion of
the force per unit volume that is equal to the rate of formation of emmd
in vacuum is not considered to be a real force.

8Coleman and Van Vleck, Ref. 12.

9If the dielectric in the capacitor example is fixed to the capacitor plates,

Magnetically imploded soft drink can
A. W. DeSilva

then the impulse delivered to the capacitor-dielectric combination is
just the change in &EXB, the same impulse that would occur without
the dielectric in place, something that has been noted by P. Lorrain
[“The Abraham force; comments on two recent experiments,” Can. J.
Phys. 3, 233-245 (1980)]. This interesting fact should not divert atten-
tion from the real nature of the interactions.

There may be in addition a torque due to equal and opposite forces in
the x direction on the two capacitor plates if the induced field is sym-
metrical about some point other than the center of the capacitor; this
does not affect the net force in the x direction on the capacitor plates.

MLorrain (Ref. 19) has described forces on the medium that reduce
for the simple system considered here to u,(dP/df)XH and
1P X (3H/8t), which are equivalent to the expressions used here.

221,'S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts (Academic, New York, 1980), p. 594, 4.399 1.

Department of Physics and Laboratory for Plasma Research, University of Maryland, College Park,

Maryland 20742-3511

(Received 28 December 1992; accepted 1 April 1993)

A demonstration apparatus is described suitable for use in a large lecture hall, in which the
“pinch effect” applied to an empty aluminum soft drink can provides a dramatic and instructive
example of induction and of the repulsion of oppositely directed current elements. The can is
placed in a coil into which a short pulse of electrical current is driven from a charged capacitor.
The current in the primary coil induces an oppositely directed current in the can wall, and the
portion of the can under the coil is driven violently inward, pinching the can down to form a
waist, or with a larger charge on the storage capacitor, separating it into two pieces.

1. INTRODUCTION

An impressive demonstration of the phenomenon of
magnetic induction, and of the repulsion of two oppositely
directed current elements is provided by the “Can
Crusher,” one of the most popular and instructive of the
many physics lecture demonstrations used at the Univer-
sity of Maryland (see Fig. 1). An ordinary empty soft
drink can is inserted into a close fitting coil through which
a large amplitude but short duration pulse of current is
driven from a charged capacitor. Induced current in the
can is repelled from the primary current in the coil, and the
wall of the can is impulsively driven radially in, pinching
the can more or less uniformly to a smaller diameter under
the coil. An example of the result appears at the top of Fig.
1. With a larger charge on the capacitor, the can may be
pinched so vigorously that it separates violently into two
pieces. This provides a very memorable demonstration of
the force of repulsion between two current carrying con-
ductors having oppositely directed currents, and makes use
of familiar and readily available cost-free supplies.

The action is known as the “pinch effect,” and may be
equally well described by the concept of pressure exerted
by.a magnetic field B.! This pressure is B%/2p,, exerted
perpendicular to any surface lying parallel to the field. For
a rapidly rising current in the driver coil, the induced cur-
rent in the can wall excludes magnetic field from inside of
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the can, so the field is confined to the narrow annulus
between the can and coil, and the pressure it exerts is
therefore not balanced by a corresponding pressure from
the inside. Under the intense pressure of the magnetic field
outside the can, the wall accelerates radially inward, buck-
ling to accommodate the smaller radius. The coils we have
used are about 1 cm wide, so the can is pinched down only
in a narrow waist.

Such strong pulsed magnetic fields find application in
industry, where the ability to exert pressure from different
directions offers unique possibilities.>* Larger versions of
the pinch apparatus that utilize considerably higher volt-
age on the capacitor are used in plasma physics research to
create hot dense plasmas. In that case, the can is replaced
by a glass tube filled to a low pressure with some test gas.
The induced azimuthal electric field causes the gas to break
down into a plasma, which is pinched to the center of the
tube and heated intensely by the compression.*

II. CIRCUIT ANALYSIS

The circuit analysis is interesting and has many ramifi-
cations. Without the can in place, it is a simple LRC cir-
cuit, with initial condition that the current is zero, and the
capacitor charged to a potential ¥,,. The inductance is L,
+ L., where L, represents the sum of primary circuit 1n-
ductances due to the spark gap, buswork, and internal in-
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