Why the speed of light is reduced in a transparent medium
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It is well known from optics that the speed of light in a transparent medium is reduced by a factor
of n (the index of refraction) as compared with vacuum. Maxwell’s electrodynamics provides a
simple account of this phenomenon, and relates » to the electric susceptibility of the material. But
the conventional analysis does little to illuminate the mechanism involved. This paper offers some
elucidation of the “miracle” by which the radiation from many induced molecular dipoles
conspires to produce a single wave propagating at the reduced speed.

1. INTRODUCTION

From Maxwell’s equations
(1) VE = (1/ey)p, (iii) V-B =0,

JB

(i) VxE= - 23 (iv) VXB = pod + el (1)

ot

it follows that electromagnetic waves propagate through
the vacuum at speed

¢ = 1/\eqy- 2)
For if we apply the curl to Eq. (1) (ii), invoke the math-
ematical identity VX (VXE) = V(V-E) — V’E, and set
p =0,J =0, we obtain the wave equation
_1JE

v o2’
with v = 1/Vé€g,.

In a linear dielectric medium of susceptibility y,, Max-
well’s equations can be written in the form
(i) V'E = (1/e)p,, (iii)) V-B=0,

(i) YXE = — 2B,
at

V’E (3)

(lV) VXB =,quf +ﬂ0€aa_tE9 (4)

where p, and J, are the free charge and current densities,
and

e=(1+y.)e. (3)

The same argument as before, using p, =0 and J, =0,
leads again to the wave equation, but this time

v=1/eu, =c/\/1+ y.. (6)
In this way classical electrodynamics accounts for the fact-
familiar from geometrical optics—that the speed of light in
a transparent medium is reduced by a factor of # (the index
of refraction); evidently

n=1+y.. (7N

That argument is quick and beautiful, but it does little to
elucidate the mechanism involved. Why should light travel
slower in glass or water than in vacaum? Well, when an
electromagnetic wave strikes dielectric material, the elec-
tric field induces an oscillating electric dipole in each mole-
cule, and these oscillating dipoles radiate new electric and
magnetic fields. By a marvelous coincidence, these second-
ary fields combine just right with the primary fields to pro-
duce a single wave propagating at the reduced velocity.

This story is perfectly correct, as far as it goes, but scarce-
ly satisfying, since it relies on a seemingly miraculous con-
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spiracy of the induced dipole fields. It becomes a little more
plausible when reformulated as follows: an electric field
(E) produces a polarization (P) in the material:

P = 60/1/2 E, (8)
and a changing polarization creates a current (J,) 2
ap
J,=—. (9
Pt

Inserting (8) and (9) into Maxwell’s equation (1) (iv)
with total current J = J, + J,, yields

a JE
VXB = uod, + po— (€ox.E) + to€o——
X Hody ,uoat( ol E) + o€ E»

JE
= prod + pio€ ——.
Hodyr T Ko 9t

(10)
So the change from €, to € [between (1) and (4)] isindeed
attributable to fields generated by currents associated with
the polarization of the material.

Still, it would be nice to track the mechanism step by
step, and see just how the “miraculous conspiracy” occurs.
In this paper we study the process as a perturbation expan-
sion in powers of y,. Imagine that a plane wave is incident
on a piece of dielectric material. In zeroth order it simply
continues along without modification. But this zeroth-or-
der field polarizes the medium, and the resulting polariza-
tion currents give rise to a first-order field. This first-order
field, in turn, further polarizes the medium, and the result-
ing currents generate a second-order field...and so on. We
will show explicitly that the sum of a// these fields is a wave
propagating at speed ¢/n within the medium. Meanwhile,
outside the dielectric the higher-order fields combine to
form the reflected wave.

There are no surprises here—only a comforting confir-
mation that the story we have told is consistent, and per-
haps a somewhat deeper understanding of the mechanism
by which the speed of light is reduced in a dielectric medi-
um. Before we begin—pursuant to Feynman’s famous in-
junction (never start a calculation until you know the an-
swer)—we shall briefly review the standard
(nonperturbative) approach to the problem.

II. TRANSMITTED AND REFLECTED WAVES AT
A DIELECTRIC BOUNDARY

A monochromatic plane wave incident from vacuum
(x <0) on a transparent dielectric medium (x> 0) gives
rise to a transmitted wave and a reflected wave:?
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Fig. 1. Plane wave incident from vacuum (x <0) on dielectric (x> 0).
incident:
1 _ iChkx — o)
E(-x,t)'—EOe ..]1 . (x<0)’
Bi(x,t) = (1/c)Epe" ™~ 9k,
reflected:
R _ i( o kX — 1)
B Con) = Ere 5 . (x<0), (1)
BR(x,t) = — (1/c)Ege’t ~ =0k,
transmitted:
T _ i(k'x — o)
E'(x,t) = Ere ‘ ]’,  (x>0),
B7(x,t) = (n/c)Ere"* >~ “"k,
where
k=w/c and k' = nw/c (12)
incident:
E’(x,t) — Eoei(kx — wl)}’
) - 0),
B'(x,t) = (1/c) Eye ™~ “?k, (x<O
reflected:
ER(x,t) — ER ei( - kx-—wt)},
) A 0), 11
BR(x,t)= _(I/C)Eket(ka——wg)k’ (x< ) ( )
transmitted:
X ET(x,t) — ETei(k'x~ wt)“]\"
T i(k'x — ,)“ (x>0),
B7(x,t) = (n/c)Epe"* >~ “k,
where
k=w/c and k' = new/c (12)

(see Fig. 1). At x = 0 the fields must satisfy the usual elec-
tromagnetic boundary conditions:

(i) €,E,, = 6E,, (i) E, =E,,
(ii) B, = B,,, (iv) (1/p0)B, = (1/4,)B, .

In this case (normal incidence) E, and B, are zero, and
1L, = i1, = Mo, SO the boundary conditions simply require
that E and B be continuous at x = O:

(13)

E,+Ey=E;, E,—E;=nk; (14)

from which it follows that
Er=[2/(n+ D]E, Egx= —[(n—1)/(n+1)]E,
(15)

Thus the transmitted and reflected electric fields are

E7(x,0) = [2/(n + 1) [ Ege* "~ "), (x>0),
ER(x,t) = —[(n— 1)/(n+ D]Eg~**~ %, (x<0).
(16)
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For future reference we express these fields in terms of
the susceptibility, using Egs. (7) and (12):

2 i1+ xeokx — )
———————Ege ¢ J (x>0),
(,/1 +x.+1
1 —1 ) n
ER(x,1) = — (———-—V“‘) Ee %o} (x<0).
JI+y. +1

In particular, expanding in powers of y,:

E'(x,t) = ( 2 eV H X~ 1”‘")Eoe"”‘"‘ w0

GT+x.+1D ’
= [1 = iy, (1 — 2ikx) + {2
X (1 — 2ikx — kx*) + -]

E7(x,t) =

(17)

(18)

ER(xt) = ~ {r. (1 =3y, + 512 + -+ ) Epe =20,
(19)

ITII. PERTURBATIVE APPROACH

We now attack the same problem from the perturbative
perspective outlined in the Introduction. To zeroth order
the incident wave continues on to the right:

E°(x,t) onei(kx—wt)}" (x>0) (20)
[this is the first term in Eq. (18)], producing a polariza-
tion in the medium

P'(x,1) = 1. E° = egy. Ege™™ ~ ")), (x>0). (21)

The resulting polarization current is
I (x,2) = é;—f = — iwegy, Epe"™ ™ @0} (x>0). (22)

To calculate the field generated by this polarization current
we chop the dielectric into slabs of infinitesimal thickness
dx’ (see Fig. 2). In the Appendix we show that the electric
field at a distance s from a neutral plane surface current
K(1) is’

E= — (u,c/2)K(t —s/c). (23)
So the field at x due to J, is
b tJ p
dx’
— X' S — _
vacuum | dielectric X
Fig. 2. Chopping the dielectric into current sheets.
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E'(x,t) = ( — “7"6) ( — iv€py Eo))

X
X (J. ei[kx’ — ot — (x—x')/c)]dx' ‘

0
o
+ j ei[kx'—m(tw (x’—X)/C)]dx')
x

= iXeEOJA'(e"‘k" - “’”‘[ dx’
¢

0
o0
i( — kx — wt) 2ikx' ’
+e:( X wj etxdx)’
x

which simplifies to*
E'(x,0) = (y./4) (1 — 2ikx)E’(x,), (x>0)

[reproducing the second term in Eq. (18)].
This first-order field further polarizes the dielectric:

P2(x,1) = €y E' (x,0),
resulting in an additional polarization current

(24)

I (xt) = ivey E' (x,1),

which, in turn, generates the second-order field (calculated
as before):

E2(x,t) = (x2/2)(1 — 2ikx — k2x?)E%(x,t), (x>0)
: (25)

[ consistent with the third term in Eq. (18)]. The progres-
sion is now clear: the nth-order field is of the form

E"(x,0) = (— ¥./2)"Q, (DE(x,8), (x>0), (26)

where Q, is a polynomial of degree # in the variable
Z=_2ikx' [Q0=19 Q1=(1+Z)/2y Q2=(1+Z
+ 22/4)/2]. The resulting polarization current is

Jrt I(X,t) = — i(l)EOXeE"(x9t)’ (27

and this produces a field’

I+ (x,0) = % (= 3./2)"+ E°(x,0)

X(f Q,(2)dz + e’f Q,(z)e " dz’).
0 z

(28)
Evidently the recursion relation for Q, is

Q,..1(2)= —%— (J- 0,.(z)dz + esz Q,(Z)e " dz’).
0 z

(29)
It follows that
d ® . )
Qc;z+ L. % e’J; Q,.(Z)e %d7
1 i ’ 7
=0 -1 [ e.az,
2 Jo
and hence
d ZQn +1 40, . 1
_ —Q,=0. 30
dz? dz + 2 Q (30)
Now, the fotal transmitted wave is
E'(x,5) = Y E'(x0) =f(2)E(x,1), (x>0), (31)
n=0
where
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fa=73 (— )g) 2.(2). (32)
n=20 .
From Eq. (30) it follows that
d’f df 1 & ( Xe )"
eJ_4, 2 _Ae =0,
dz*  dz + 2 ,,;o 2 Qi
or, redefining the summation index n—-n + 1:
d*f df X. :
_Y _ Ae 0 33
dZ? dz 4 / (33)

This is a differential equation for f(z); the general solution
is

fiz) = Ay, )el TVTFXI L gy yel! HVIT X2 (3g)

It remains to determine A(y, ) and B(y. ).

For y. =0 we get f(z) = A4(0) + B(0)e* however,
from (32) we know that f(z) = @y(z) =1 when y, =0.
Evidently 4(0) = 1 and B(0) = 0. Similarly, differentiat-
ing (34) with respect to y. and setting y, =0 we find
f(z) =A'(0) —z/4 + B'(0)e’, whereas (32) gives
flz)=—-10,(2)= —}—2/4. So 4'(0)= —} and
B'(0) = 0. As we continue in this way the derivatives of B
will always be accompanied by a factor of e°, which is ab-
sentin (32), and hence @/l the derivatives of B must vanish.
Conclusion:

B(y.) =0. (35)

To determine A(y.) we proceed as follows: From (29)
we have

Qn+1(0)=%f e~ ?Q,(z)dz, for n>O0.
0

So (32) yields

(36)

A0) = :\; ( - )"Q,,(O)

0+ 5 (L)L e

g (-

=1- —)—(-e——fw e~ “f(Z)dz.
4 Jb

X Yo, @) )iz

(37)

Inserting (34), with B = 0, we have
A =1 =2 ) [T emret O gy
0

X.
—1-Xe 4
2 4

2
)
1+yT+x,

Or, solving for A4:

Ax) =2/ +{1+%.), (38)
and hence ’
flz)=[2/01 +\/]_..|_—/1/_e)]e(1_m)z/2. (39)

Returning, finally, to Eq. (31)—and recalling that
2z = — 2ikx—we conclude that
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2 o~ X1 =T +X¢-)E0ei(kx—wl)’:

Dy =—— J
T+ 1+x.

E"(x,1)

i1 : Jkx — ]
Eoel(\ + Y hx — wl) ; (40)

2
1+ 1+,

which is precisely what we got in Sec. II1 [Eq. (17)] by
more traditional means.

IV. THE REFLECTED WAVE

The reflected wave (in the region x <0) can be recov-
ered by the same procedure. In zeroth order there is no
reflection; to first order we have the field generated by J ,‘,

[Eq. (22)]:
E!(x,t)

—_ ( _ IU’TOC) ( _ weOXeEO})f ei[kx’ —w(t— (x' — x)/c]dx:
0

g et e
2 o
~ _%Eoe"(*’“‘*“’”}, ; (41)

which is consistent with the first term in Eq. (19). The
second-order field is generated by J3:

E*(x,f) = ( - ”7“) (- z‘wonn( - )i Eo}')

XJ (1 - 2ikx')e'“‘"" — @t —(x —x)/c]dx:
(4]

iky? . R
N ( N ?)Eo"" TR0

XJ (1 — 2ikx"Ye*** dx’
0

XZ
78

Eoei( — kx — ml)}’ (42)

consistent with the second term in Eq. (19).
In general, E"* ' is generated by J; * ' [Eq. (27)]:

E" 1 (xt) = (— poe/2)(—iwEy y ) (— x./2)"E,

Xei( —kx—mt)}( lzlk) J Qn (zr)eAz' le
-_ (0]
o _ A Xe n+1 1
— i( — kx — wt) _ —
Foe / ( 2 ) 2

xfw Q,(z)e *dz
0

_ Eoei( —kx—-wt)} (Xe/z)wr 1Q”+ ,(0)

[we used Eq. (36) in the last step]. Thus the total reflected
wave is
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Efxn = 3 E'(x0)

n=1

_ ( i ( _ )nQn (0))E0e,’( — kx~(ut)}'
n=1
= [f(0) — I]Eoei( - kxfmt)}-

(VT =X i koo 43
0€ ) (43)
1+T+x.

which is what we got in Sec. II [Eq. (17)] by the conven-
tional method.

Xe
2

V. CONCLUSION

We do not, of course, pretend that the perturbative ap-
proach developed here is superior to the traditional one.
But it is instructive (and comforting) to see in detail how
the induced polarization currents in a dielectric medium
give rise both to a reflected wave and to a transmitted wave
traveling at the reduced speed ¢/n.
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APPENDIX: THE ELECTRIC FIELD OF A
NEUTRAL PLANE CURRENT SHEET

Suppose that the yz plane carries a uniform (but time-
dependent) surface current K(#). The retarded vector po-
tential at a point a distance x above the plane is given by®

K(t
A(x,?) = &JLM’
47T ";2 ..+_ x2
where ¢, =t—+FP +x°/c is the retarded time, and
da = 27r dris an infinitesimal element of area (see Fig. 3).
Thus

A(x,) =Ho wK(t—\/;z—}- 20) —L _dr.(A2)
(x 5 ), x —

To simplify the integral, let u = (1/c) P+ x> —x), $0
that

(A1)

e E

X

K._@//

Fig. 3. The electric field of a current sheet.
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du=— dr and t————“+x=t—i'——u.
(4 +x 4 4
Then
A(x,r) =E€ K(t ~ X u)du. (A3)
2 o ¢

From the vector potential it is easy to compute the elec-
tric field:’

=04 2 (2 )
e [Ln-2-
e e-2-)

--tele-2) w0

o

0

Assuming the current goes to zero in the distant past, we
can drop the second term, leaving

E(x,t) = — (uec/2)K(t — x/c). (A4)

'P. Lorrain, D. P. Corson, and F. Lorrain, Electromagnetic Fields and
Waves (Freeman, New York, 1988), 3rd ed., Eq. 9-9.

2Reference 1, Chap. 30.

3Equation (23) presupposes that the current goes to zero in the distant
past (see the Appendix). Although this is not strictly true for the sinusoi-
dal current in Eq. (22), it better describes the physical circumstance, in
which the incident light source was turned on at some finite time. As a
formal device we can handle the problem by attaching a small imaginary
part to the frequency (w— @ + i€), which attenuates the field at large
negative 7, and taking the limit €—0 at the end of the calculation.

“The upper limit on the second integral yields a term of the form
e?hLglt —kx = w0 (with L— 0 ), representing a wave reflected back from
the far side of the dielectric (at x = L). Obviously, we do not want sucha
term here; it is, again, an artifact of the pure sinusoidal current (22), and
disappears if we attenuate the incident wave, as in Ref. 3: the factor **~
then goes to zero in the limit L— co.

SActually, the upper limit on the second integral is 2L(e/c — ik), with
L— «. But the integrand is nonsingular, and a suitable rotation in the
complex plane brings it around to the real axis.

SReference 1, Sec. 37.4.

"Reference 1, Eq. 23.46. Note that since the surface is neutral, the scalar
potential is zero.
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Special relativity appears to violate the conservation of angular momentum L since it predicts that
an accelerated gyroscope will precess, i.e., L will change in the absence of any applied torque. The
paradox is resolved in a simple example by demonstrating that there is a torque present. The mass
distribution in the gyroscope undergoes a relativistic distortion, and the center of mass is
displaced away from the position of the accelerating force. The resulting torque 7 = d L/dr. The
model also shows the physical origins of spin-orbit coupling and of the “oscillating term.” A
related calculation shows why a moving magnetic dipole has an electric dipole moment.

I. INTRODUCTION

According to the special theory of relativity, a gyroscope
that moves along a curved path will also precess, i.e., the
direction of its spin angular momentum will change. This
effect is known as the “Thomas precession” after L. H.
Thomas, who showed how this effect could resolve a para-
dox in atomic physics." The standard derivation’ of
Thomas precession uses the fact that the product of succes-
sive Lorentz transformations is equivalent to a single Lor-
entz transformation plus a rotation. The most straightfor-
ward derivation known to the author is reproduced in the
Appendix.

Even those who feel comfortable with one of the stan-
dard derivations may be at a loss to explain how angular
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momentum can be conserved. Angular momentum L is
related to torque 7 through the vector relation

aL _
dt

Yet the angular momentum of the gyroscope is chang-
ing, in the apparent absence of torque. How can that hap-
pen?

The resolution of the paradox is simple: There is a torque
applied to the gyroscope, by the same force that accelerates
the gyroscope along the curved path. The torque exists be-
cause of a relativistic distortion of the mass distribution in
the gyroscope that moves the center of mass away from the
axle.
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