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3. Upcoming Changes to NRT GEOS-5

Beginning in mid-June, GEOS-5.7.3 will replace GEOS-5.2.0
as our NRT system (MERRA will continue unchanged)

Resolution will be increased to 0.25°x0.3125° with updates
to the model and enhanced capabilities in the analysis
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Figure 1.5.2: Hughes data: comparison of the forecast skill in the medium-range
from NWP guidance and from human forecasters.
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Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on
GEOS-3 Hurricane Analyses and Forecasts

ARTHUR Y. Hou, SArRA Q. ZHANG," AND ORESTE REALE™T
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

[Monthly Weather Review, 2004]
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FIG. 4. Analyzed 12-h positions of the minimum surface pressure of (left) Bonnie and (right) Floyd (rendered to the closest integer degree
in latitude and longitude) from CNTRL and PRECIP analyses, compared with NOAA best-track locations. The first analysis time of the
track is marked for each storm.

Datasets: Rainfall data from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI),
And the Special Sensor Microwave Imager (SSM/I)
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[Hou et al, 2004]
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@)  TMI+SSMI surface rain: 12UTC 10Sep99 CNTRL Analysis

c) PRECIP Analysis
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Fic. 7. (a) Combined TMI and SSM/I observations of Floyd surface rain in mm h-* at 1200 UTC 10 Sep
1999. (b) Surface rain in mm h~! (shaded) and SLP in hPa (contours) in CNTRL at the same analysis time.
(c) Same as (b), except for PRECIP analysis. (d) Changes between PRECIP and CNTRL analyses in 500-
hPa omega velocity in hPa d ! (shaded, with negative values indicating rising motion), divergence in s !
(contour interval of 2 X 1073 s~! with zero omitted), and horizontal winds in m s~ ! at 200 hPa. The vector
scale for 10 m s™! is given for reference. Note that the heavy observed rainfall maximum in Fig. 7a is
flagged by the preanalysis QC check since the background rain is zero at this location (Fig. 7b) and the O—

B exceeds 5 mm h!. [Hou et al, 2004]
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Abstract. An eight-year long reanalysis of atmospheric com-
position data covering the period 2003-2010 was constructed
as part of the FP7-funded Monitoring Atmospheric Compo-
sition and Climate project by assimilating satellite data into
a global model and data assimilation system. This reanaly-
sis provides fields of chemically reactive gases, namely car-
bon monoxide, ozone, nitrogen oxides, and formaldehyde, as
well as aerosols and greenhouse gases globally at a horizon-
tal resolution of about 80 km for both the troposphere and
the stratosphere. This paper describes the assimilation sys-
tem for the reactive gases and presents validation results for
the reactive gas analysis fields to document the data set and
to give a first indication of its quality.

Tropospheric CO values from the MACC reanalysis are
on average 10-20 % lower than routine observations from

commercial aircrafts over airports through most of the tro-
posphere, and have larger negative biases in the boundary
layer at urban sites affected by air pollution, possibly due to
an underestimation of CO or precursor emissions.

Stratospheric ozone fields from the MACC reanalysis
agree with ozonesondes and ACE-FTS data to within £10 %
in most seasons and regions. In the troposphere the reanaly-
sis shows biases of —5 % to +10 % with respect to ozoneson-
des and aircraft data in the extratropics, but has larger nega-
tive biases in the tropics. Area-averaged total column ozone
agrees with ozone fields from a multi-sensor reanalysis data
set to within a few percent.

NO; fields from the reanalysis show the right seasonal-
ity over polluted urban areas of the NH and over tropical
biomass burning areas, but underestimate wintertime NO,



Table 1. Satellite retrievals of reactive gases that were actively assimilated in the MACC reanalysis. PROF denotes profile data, TC total
columns, TRC tropospheric columns, PC partial columns, and SOE solar elevation. PC SBUV/2 data consist of 6 layers between the surface
and 0.1 hPa. NRT (near-real-time) data are available within a few hours after the observation was made, and are being used in operational
forecast systems. For periods towards the end of the MACC reanalysis period, NRT data were used for some of the species when no offline
products were available.

Sensor Satellite Provider Version Period Type Data usage Reference
criteria
GOME ERS-2 RAL 20030101-20030531 O3 PROF  Used if SOE > 15° and Siddans et al. (2007)
80°S <lat <80°N
MIPAS ENVISAT ESA 20030127-20040326 O3 PROF  All data used Carli et al. (2004)
MLS AURA NASA Vo2 20040808-20090315, O3 PROF  All data used Waters et al. (2006)
NRT data from
20090316
OMI AURA NASA V003  From 20041001, O3 TC Used if SOE > 10° Bhartia and Welle-
NRT data meyer (2002);
20070321-20071231 Levelt et al. (2006)
SBUV/2 NOAA-16 NOAA V8 From 20040101 O3 PC Used if SOE > 6° Bhartia et al. (1996)
SBUV/2 NOAA-17 NOAA V8 From 20030101 O3 PC Used if SOE > 6° Bhartia et al. (1996)
SBUV/2 NOAA-18 NOAA V8 From 20050604 O3 PC Used if SOE > 6° Bhartia et al. (1996)
SCIAMACHY ENVISAT KNMI From 20030101 03 TC Used if SOE > 6° Eskes et al. (2005)
IASI METOP-A LATMOS/ULB From 20080401 COTC Used if 70° S <lat<70°N  George et al. (2009);
Clerbaux et al. (2009)
MOPITT TERRA NCAR V4 From 20030101, NRT COTC Usedif 65°S < lat <65°N  Deeter et al. (2010)
data after 20100323
SCIAMACHY ENVISAT KNMI V104  20030101-20070630 NO TRC  Used if SOE > 6° and Boersma et al. (2004)
60°S <lat <60°N
SCIAMACHY ENVISAT KNMI V11 From 20070911 NO, TRC Usedif SOE > 6° and http://www temis.nl;

60° S <lat <60° N

Wang et al. (2008)

[Inness et al., 2013]
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Fig. 5. Time series (2003-2010) of monthly mean CO concentrations (ppbv) from the MACC reanalysis (red), the control run (blue), and

from NOAA/GMD ground-based measurements (black) over Mace-Head (top left), Key Biscayne (top right), Tenerife (bottom left), and
South Pole (bottom right) stations.

[Inness et al., 2013]
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Data Assimilation for a Coupled Ocean-Atmosphere Model. Part II:
Parameter Estimation

DmiTRI KONDRASHOV
University of California, Los Angeles, Los Angeles, California
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Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and
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MicHAEL GHILT
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(Manuscript received 29 January 2008, in final form 9 April 2008)
ABSTRACT

The parameter estimation problem for the coupled ocean-atmosphere system in the tropical Pacific
Ocean is investigated using an advanced sequential estimator [i.e., the extended Kalman filter (EKF)]. The
intermediate coupled model (ICM) used in this paper consists of a prognostic upper-ocean model and a
diagnostic atmospheric model. Model errors arise from the uncertainty in atmospheric wind stress. First, the
state and parameters are estimated in an identical-twin framework, based on incomplete and inaccurate
observations of the model state. Two parameters are estimated by including them into an augmented state
vector. Model-generated oceanic datasets are assimilated to produce a time-continuous, dynamically con-
sistent description of the model’s El Niio—Southern Oscillation (ENSO). State estimation without correct-
ing erroneous parameter values still permits recovering the true state to a certain extent, depending on the
quality and accuracy of the observations and the size of the discrepancy in the parameters. Estimating both
state and parameter values simultaneously, though, produces much better results. Next, real sea surface
temperatures observations from the tropical Pacific are assimilated for a 30-yr period (1975-2004). Esti-
mating both the state and parameters by the EKF method helps to track the observations better, even when
the ICM is not capable of simulating all the details of the observed state. Furthermore, unobserved ocean
variables, such as zonal currents, are improved when model parameters are estimated. A key advantage of
using this augmented-state approach is that the incremental cost of applying the EKF to joint state and
parameter estimation is small relative to the cost of state estimation alone. A similar approach generalizes
various reduced-state approximations of the EKF and could improve simulations and forecasts using large,
realistic models.

[Monthly Weather Review, 2008]



a) SSTA for delayed—oscillator regime:SS =0,u=0.76

b) SSTA for westward—propagating regime:S =0.8,u=0.56
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FIG. 1. Time evolution of equatorial Pacific SST anomalies (SSTA; °C) for the (a) delayed-
oscillator and (b) westward-propagating modes of the ICM; and (c) observations of monthly
SST data from the Climate Data Library at the IRVLDEO (see online at http:/ingrid.
Ideo.columbia.edu/).

[Kondrashov et al., 2008]



a) Ocean-atmosphere coupling coefficient
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FIG. 2. Time evolution of estimated parameters (a) w and (b) & for the identical-twin
assimilation run with the observations for SST data taken from 15 equatorial locations in the
east-central Pacific. The correct (true) values of p and §, are equal to 0.76 and 0, respectively.

[Kondrashov et al., 2008]
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FIG. 3. RMS errors in the zonal surface current for the identical-
twin experiment of Fig. 2. Blue and red lines are for actual errors
with and without parameter estimation, respectively; and the
black line indicates the pure forecast error.



a) SSTA from EKF withu and 85 estimation
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b) SSTA from EKF with fixed u=0.76,88=0
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FIG. 5. Time-longitude plots (Hovmoller diagrams) of SST anomaly results (°C) for three
EKF experiments: (a) combined state and parameter estimation, (b) state estimation only
with constant parameters from the delayed-oscillator mode, and (c) model simulation with a

time history of estimated u(f) and 8,(¢), but with no further data assimilation. [Kon draSh oV et al 2008]
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2.2.1 Probability density functions

A random variable is completely described by its probability distribution function. For a
continuous r.v., the probability distribution function, Fx(x), is given by:

F(z)=P(x<z) = /_:;px(s)(ls. (2.1)

(It is only continuous r.v.s that we will encounter in this course.) The function py(z) is the
probability density function or p.d.f. From this definition and the fact that 0 < py(z) < 1, it is
clear that Fi(z) is a non-decreasing function and that Fi(—oc) = 0 and Fy(+o00) = 1. In addition,

oo
px(s)ds = 1.
—0o0
It turns out that we almost always deal with p.d.f.’s rather than with probability distribution
functions. In fact, often when we refer to an underlying distribution of a process, we are actually
speaking of the the p.d.f. of the r.v., since one may otten be deduced from the other.



2.2.3 Moments of a distribution

It is very difficult to determine the complete p.d.f. of a random variable, in practice. Often, it may
be sufficient to determine the properties of the p.d.f. Other times, these properties may simply be
the only information which can be practically obtained.

The mean or expected value of x is

00
p==E&{xz} = / rp(z)dx.

—00
In general, for any function, f(xz):
+00
E{f(x)} = / f(x)p(x)dx.
—00
If f(z)=2a", then
+00
E{a2"} = 2" p(x)dz

— 00

defines the nth moment of x. The first moment is the mean. The nth central moment is defined by

+00
E{(x—E(x)"} = / (x — E(x))"p(z)da.
—00
The second central moment 1s the variance:

var(z) = E{(z — £(2))?} = E{2?} — (E{x})°



2.2.2 Normal distribution

An r.v. has a normal or Gaussian distribution if its p.d.f. is given by

SRS S B G Ok
Px (l) - \/%O' Xp (24)

202
o0
[= / xpx(x)dx

— 00

where

+oo .
0? = / (x — p)2py()dz.

—00
The normal density is important because it has some very nice mathematical properties. One
important property is that the normal density is completely defined by its mean and variance and
Is written

x ~ N (i, 0?).
Variance is a measure of dispersion about the peak so that a small 02 corresponds to a sharp peak
while a large 02 corresponds to a flat peak. The normal distribution is also important because it
appears quite often in practice. One possible reason for this is given by the “Central Limit Theorem”
which says that a super-position of independent random variables always tends toward normality
regardless of the individual distributions involved. Therefore, if noise is due to a superposition of
many small contributions, it may be reasonable to assume normality.



2.3.1 Joint density and distribution functions

The r.v.s x and y are jointly distributed if they are defined in the same probability space.

joint p.d.f. is then pyy(2,y). The marginal densities of x and y are

m;
Px(z) = / Pxy (2, y)dy

— 00

py(y) = / Py (2, y)da.

Let us define an n-vector, x as
T
X = (X1,X2,...,Xp)
A realization of the random vector, x is then

xr = (rl,mg,...,mn)T.

As noted in Todling (1999), all of the previous definitions can be written in vector notation. For

example, the p.d.f. is
px(w) - pX1X2...Xn (:1"13 Ty .. 11771)'

The probability distribution is

Fo(x) — /_ipx(:c')da:'

T I'n
= / . / Pxyoxn (T, xh)day L dal. (2.23)
— 00 —
The probability density function is defined as the derivative of the distribution function:
O"Fx(x) — 0"Fx(x)
= - ) 2.24
Px(@) ox dry ...0xy ( )

The



X, y are statistically independent if pyy(2;, y;) = px(2:)py(y;) for all x;, v;.

Example 2.8 Darts (Brown, p35)
Let the position of a hit be given by its (x,y) coordinates. After sufficient practice, assume that
the scatter in position is unbiased in both directions. The joint p.d.f. is then

L@ +)20 (2.10)

Pxy(2,y) = DY)

The marginal densities are:

( ) / . ( ) l /—1 2?20
] €T = ALY )Ay = (&
DPx | Pxy\L,Yy)ay 7

() / (2, y)d /—1 v/
Dy 1 = Dxv (2, Y )dare = (& .
Py\Y ~ _] y&Y 5

The expectation of the product of two r.v.s is of special interest:

o0
E(xy) = / xyYpxy (z, y)dzdy. (2.11)

—00

If x and y are independent, then

E(xy) = /00 wpx(z)dx /O:o ypy(y)dy = E(x)E(y). (2.12)



It £E(xy) = E(x)E(y), then x, y are uncorrelated.

If x, v are independent, then they are uncorrelated.

If x, v are uncorrelated, this does not mean that they are independent.
If £(xy) = 0, x and y are said to be orthogonal.

The covariance of x and y is

cov(x,y) = E{(x — pta)(y — p1u) }-
The correlation coefficient is defined as

_ E{(x = pa)(y = pty) }
p= —
VEX =) E{(y — 1))

Note that if x=y, then p=1, and if x=-y, p=-1. If x and y are uncorrelated, then

E{(x = pa)(y = 1y)} = E{XY — pay — [yX + fpfly }
= E{XV} — paply = pybla + flafly
E{x}E{Y} — patty
= Hafly = fafly

= 0. (2.13)

Thus if x and y are uncorrelated, then p=0.





