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ABSTRACT

The parameter estimation problem for the coupled ocean–atmosphere system in the tropical Pacific
Ocean is investigated using an advanced sequential estimator [i.e., the extended Kalman filter (EKF)]. The
intermediate coupled model (ICM) used in this paper consists of a prognostic upper-ocean model and a
diagnostic atmospheric model. Model errors arise from the uncertainty in atmospheric wind stress. First, the
state and parameters are estimated in an identical-twin framework, based on incomplete and inaccurate
observations of the model state. Two parameters are estimated by including them into an augmented state
vector. Model-generated oceanic datasets are assimilated to produce a time-continuous, dynamically con-
sistent description of the model’s El Niño–Southern Oscillation (ENSO). State estimation without correct-
ing erroneous parameter values still permits recovering the true state to a certain extent, depending on the
quality and accuracy of the observations and the size of the discrepancy in the parameters. Estimating both
state and parameter values simultaneously, though, produces much better results. Next, real sea surface
temperatures observations from the tropical Pacific are assimilated for a 30-yr period (1975–2004). Esti-
mating both the state and parameters by the EKF method helps to track the observations better, even when
the ICM is not capable of simulating all the details of the observed state. Furthermore, unobserved ocean
variables, such as zonal currents, are improved when model parameters are estimated. A key advantage of
using this augmented-state approach is that the incremental cost of applying the EKF to joint state and
parameter estimation is small relative to the cost of state estimation alone. A similar approach generalizes
various reduced-state approximations of the EKF and could improve simulations and forecasts using large,
realistic models.

1. Introduction

This is Part II of a two-part study that deals with state
and parameter estimation for models of the ocean–

atmosphere system in the tropical Pacific Ocean. In the
first part of this study, Sun et al. (2002, hereinafter Part
I) successfully estimated the model state of an interme-
diate coupled model (ICM) of this system using an ex-
tended Kalman filter (EKF). However, studies on many
coupled tropical ocean–atmosphere general circulation
models (GCMs; Neelin et al. 1992) have shown that
there can be substantial discrepancies between simu-
lated and observed climatology, as well as between the
results of a coupled model and the same ocean model
forced with observed winds. Incorrect parameter values
used in the models are a likely cause for these system-
atic errors.

The behavior of coupled GCMs beyond the time
scales of numerical weather prediction is determined
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largely by the model’s parameterizations, rather than
by the initial state. Predictions of future global climate
change, for example, yield a wide range of changes be-
cause of large uncertainties in model parameters (Mur-
phy et al. 2004).

Estimating model parameters has always been an im-
portant part of the modeling enterprise (Ljung 1987).
Successful parameter estimation can be achieved pro-
vided that the system is sensitive to the parameters, and
state observations are sufficient. The former require-
ment is related to the concept of identifiability, that is,
whether the identification procedure will yield unique
values of the parameters and whether the resulting
model is identical to the true system that generates the
observations. In other words, are the observations in-
formative enough to distinguish between a correct and
an incorrect model parameter value (Navon 1997)?

Consequently, the problem of parameter estimation
has attracted considerable attention in the meteorologi-
cal and oceanographic literature (Ghil and Malanotte-
Rizzoli 1991; Ghil 1997; Navon 1997). However, to
implement systematic parameter estimation, rather
than the usual trial-and-error procedures in state-of-
the-art coupled GCMs, is still a considerable challenge,
and there have been few attempts to do so with obser-
vational data.

Smedstad and O’Brien (1991) have used an adjoint
method to estimate the wave speed in a linear tropical
ocean model. Adjoint methods, however, cannot readily
estimate the accuracy of both parameter and state. An-
nan et al. (2005) applied the ensemble Kalman filter
(EnKF; Evenson 2003) to tune the climatology of an
ICM by estimating 12 scalar model parameters in iden-
tical-twin experiments. The accuracy of the covariance
approximated from a limited EnKF ensemble depends,
however, on the number of realizations used and sev-
eral other factors, especially the sophistication of the
choice of basis for the ensemble. The high computa-
tional burden of state-of-the-art coupled GCMs,
though, puts severe constraints on the ensemble size
(Keppenne 2000; Keppenne and Rienecker 2002).

Interannual variability in the tropics is dominated by
the El Niño–Southern Oscillation (ENSO) phenom-
enon (Philander 1990; Neelin et al. 1998). Models of
various degrees of complexity are capturing different
aspects of interannual variability in the tropics with in-
creasing success (Latif et al. 1998). Linear and nonlin-
ear investigations of ENSO dynamics show that distinct
parameter values can modify the coupled model’s be-
havior, both quantitatively and qualitatively (Neelin et
al. 1998). One way to improve a coupled model and its
forecast skill is to estimate the correct values of its pa-
rameters from observations through data assimilation.

In this paper, we apply the EKF to help solve the
parameter estimation problem (Ghil and Malanotte-
Rizzoli 1991; Ghil 1997), by using the so-called aug-
mented-state approach (e.g., Hao 1994; Hao and Ghil
1995), which incorporates one or more parameters as
additional state variables. We will simultaneously esti-
mate the state and two key parameters of an ICM, using
first synthetic and then observational datasets. The ad-
vantage of using synthetic datasets is that the “true”
values of the parameters are known, which helps us to
evaluate the methodology. Observational datasets, on
the other hand, provide insight on the application of the
methodology to real problems.

Ongoing efforts in the Bayesian statistics community
aim to develop a theoretical basis for the use of esti-
mation techniques when models have poorly known er-
rors, including those in parameters (Kennedy and
O’Hagan 2001; Smith 2002; Goldstein and Rougier
2008). This paper’s Kalman filter approach falls broadly
into the same category: from a Bayesian point of view,
its objective is to estimate not only the variables of
interest, whether the model’s state or its parameters,
but also some measure of uncertainty in these estimates
(Ihler et al. 2007).

The structure of the present paper is as follows. In
section 2, we review briefly the coupled ocean–atmo-
sphere model used in the study. In section 3, the EKF
methodology for nonlinear models is briefly reviewed,
and the augmented-state approach to parameter esti-
mation using the EKF is presented; the appendix out-
lines how this approach can be generalized to other
sequential estimators, in particular to the partitioned
Kalman filter (Fukumori 2002). Our main results on
state and parameter estimation studies for the coupled
model, using both synthetic and observational data, are
reported in section 4. Concluding remarks appear in
section 5.

2. The model

We use the ICM of Jin and Neelin (1993), which is
essentially a further idealization of the Zebiak and
Cane (1987) model. The major simplification is to treat
explicitly only the zonal dependence of sea surface tem-
perature (SST) over an equatorial strip, while the me-
ridional structure of the associated atmospheric forcing
is specified.

The meridional structure of the mean currents in the
tropical ocean’s upper layer is projected onto a basis of
Hermite functions, truncated here at M � 14 meridio-
nal modes. The coupled model thus boils down to a
spatially one-dimensional system of evolution equa-
tions in the zonal direction x and time t for the SST, the
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amplitude q0 of the oceanic Kelvin wave, and the am-
plitudes qn, n � 2, 4, . . . , 14, of seven Rossby waves.
The total length of the ocean basin is 150°, from 130°E
to 80°W, with a grid spacing of 6.25°. The grid points in
the x direction are numbered from 1 to 25, going from
the basin’s western to its eastern boundary; these points
are also used to identify the location of observing sec-
tions. The coupled system so discretized has (1 � 8) �
24 � 216 degrees of freedom, and the time step is 6 h.
Full details on this ICM appear in appendix A of Part I.

This coupled model presents two different kinds of
ENSO oscillations. The nature and properties of the
oscillation depend on the values of two key parameters,
namely, the relative coupling coefficient � and the sur-
face layer coefficient �s.

An increase of the coupling coefficient � enhances
the nonlinear impact of local coupling processes be-
tween the atmosphere and ocean [see Jin and Neelin
(1993), Hao et al. (1993), and Eq. (A20) in Part I].
When � is very small, the system behaves as an un-
coupled model, with SST decaying toward a steady cli-
matological solution. As � increases, the system under-
goes a Hopf bifurcation, and starts to oscillate with
many features that resemble the observed ENSO cycle
(Jin et al. 1994, 1996).

For small values of the surface layer coefficient �s,
the model behaves like the delayed oscillator of Suarez
and Schopf (1988) or Battisti and Hirst (1989), while it
tends to have westward-propagating features in the SST
anomalies when �s approaches unity. Moreover, �s

helps determine the period of the resulting oscillation
(Hao et al. 1993; Neelin et al. 1998).

In this paper we consider mainly two combinations of
parameter values; the pair (�s � 0, � � 0.76) that cor-
responds to the model’s delayed-oscillator regime,
while (�s � 0.8, � � 0.56) yields westward-propagating
behavior. The remaining model parameter values ap-
pear in Table 1 of Part I.

The evolution of the equatorial Pacific SST anomaly
field for these two modes is quite different, as can be
seen in Fig. 1, where results from a 30-yr model run are
shown. In the delayed-oscillator regime (Fig. 1a) the
SST anomalies are confined to the eastern part of the
basin, with a slight eastward propagation. Since �s is set
to zero here, the thermocline feedback dominates over
surface layer processes (Hao et al. 1993). Large cyclical
variations of the SST in the eastern part of the basin are
mainly due to the shallowness of the mean thermocline
there, and have a period of about 3.6 yr for this �s � 0.
In the western part, the SST anomalies are smaller,
since the mean thermocline depth there is much
greater. In contrast, the model run for the westward-
propagating regime (Fig. 1b), displays much smaller,

westward-propagating SST anomalies that are much
less well organized.

Figure 1c shows observational SST anomaly data
(Kaplan et al. 1998) for the equatorial Pacific over 30
yr, from 1975 to 2004, with the seasonal cycle removed;
these SST anomalies share features of both Figs. 1a,b. It
is quite obvious, though, that our ICM is highly ideal-
ized and that not all features present in the observa-
tions can be adequately captured by using such a
model. Several questions arise at this point, within a
broader perspective of a hierarchy of models for the
understanding, simulation and seasonal-to-interannual
prediction of ENSO-related climate phenomena (Ghil
and Robertson 2002). First, would a better set of pa-
rameters, which allows for the interaction of the two
modes, standing and westward propagating, give a bet-
ter match to the observations? Second, can this match
be further improved by allowing for parameter values
that vary in time, possibly reflecting changes in pro-
cesses that are not explicitly captured by this ICM?

The answer to the first question is still often given by
running the model many times over to find a “best
match” with observations, by using various parameter
combinations. Even if aiming merely at better, but still
constant parameter values, the trial-and-error approach
may not be a practical way to achieve such estimates,
since the possible combinations cannot be exhausted
when the number of state variables or the number of
parameters is large. The results in Fig. 1 thus indicate
the need for more accurate, automated techniques of
estimating the model parameters by using an optimized
combination of observed data and model results. The
Kalman filter described in the next section is capable of
providing such a combination. As we shall see in sec-
tion 4, the EKF can even provide a convenient answer
to the second question raised above.

3. The Kalman filter and parameter estimation

A practical way to include estimation of model pa-
rameters into the Kalman filter is by the so-called state
augmentation method (Gelb 1974; Hao and Ghil 1995;
Galmiche et al. 2003; Kao et al. 2006; Kondrashov et al.
2007), in which the parameters of interest are treated as
additional state variables. For a linear system, the nu-
merical algorithm for advancing the state vector x from
time k�t to time (k � 1)�t is

xk
f � Mk�1xk�1

a . �1	

Here xk � x(k�t) represents a state column vector,
composed of all model variables, and the matrix M is
obtained by discretizing the partial differential opera-
tor. Superscripts “f” and “a” refer to forecast and analy-
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sis, respectively, with xa
k being the best estimate of the

state vector at the time k, based on the model and the
observations available so far. The evolution of xt, where
superscript “t” refers to true, is then assumed to differ
from the model by a random error 
. This model error
is commonly taken to be a Gaussian white noise se-
quence, with mean zero and model-error covariance
matrix Q, E�k � 0 and E�k�T

l � Qk�kl, where E is the
expectation operator and �kl is the Kronecker delta.

For simplicity, let us assume that there is only one
model parameter �: M � M(�). We can define equa-
tions for evolving the parameter’s “forecast” and true

values, by assuming, in the absence of additional infor-
mation, the following persistence model:

�k
f � �k�1

a and

�k
t � �k�1

t � �k
�, �2	

with E
�
k � 0 and E
�2

k � q�. When additional infor-
mation is available, Eq. (2) can be generalized to allow
for more complex spatial and temporal dependence;
such dependence may include, for instance, a seasonal
cycle (e.g., Kondrashov et al. 2005).

FIG. 1. Time evolution of equatorial Pacific SST anomalies (SSTA; °C) for the (a) delayed-
oscillator and (b) westward-propagating modes of the ICM; and (c) observations of monthly
SST data from the Climate Data Library at the IRI/LDEO (see online at http://ingrid.
ldeo.columbia.edu/).
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Next, we form an augmented-state vector x, model M
and error �:

x � �x

�
�, M � �M��	 0

0 1�, and � � �



��, �3	

and rewrite our model equations for the augmented
system:

xk
f � Mk �1xk�1

a and

xk
t � Mk�1xk�1

t � �k. �4	

The situation of interest is one in which � itself is not
observed, so

yk
o � �Hk0	�xk

t

�k
t � � �k

0 � Hkxk
t � �k

0. �5	

The observation matrix Hk accounts for the fact that
usually the dimension of yo

k is less than the dimension of
xt

k, that is, at any given time observations are not avail-
able for all numerical grid locations. In addition, Hk

represents transformations that may be needed if other
variables than the state vector are observed, as well as
any required interpolation from observation locations
to nearby numerical grid points. Matrix Hk is the ob-
servation matrix Hk augmented by the one column of
zeros to account for the fact that parameter � is not
observable.

The observational error �o is also taken to be Gauss-
ian, white in time, with mean zero and given covariance
matrix R, E�o

k�oT
l � Rk�kl. Moreover, one commonly

assumes, unless additional information is available, that
model error and observational error are mutually un-
correlated, E�o

k�oT
l � 0.

The optimal gain matrix Kk is computed by minimiz-
ing the analysis error variance trace(Pa

k), that is, the
expected mean-square error between analysis and the
true state. This Kalman gain matrix represents the op-
timal weights given to the observations in updating the
model state vector. The Kalman filter equations for the
augmented system then become

Pk
f � MkPk�1

a Mk
T � Qk,

Kk � Pk
f Hk

T�HkPk
f Hk

T � Rk	�1, and

Pk
a � �I � KkHk	Pk

f . �6	

The analysis step for the augmented system involves
only observations of the state:

xk
a � xk

f � Kk�yk
o � Hxk

f 	, �7	

while the augmented error covariance matrices involve
cross terms between the state variables and the param-
eter. Dropping from now on the time subscript k, we have

P f,a � �Pxx
f,a Px�

f,a

P�x
f,a P��

f,a �. �8	

Using the definition of H in Eq. (5), we obtain

K � �Pxx
f HT

P�x
f HT��HPxx

f HT � R	�1. �9	

The augmented model propagates the forecast error
of the parameter into the cross-covariance term P f

�x. By
substituting Eq. (9) into Eq. (7), we can readily see that
this error propagation enables the EKF to extract in-
formation about the parameter from the state observa-
tions and to update the unobserved parameter at the
analysis step:

�a � �f � P�x
f HT�HPxx

f HT � R	�1�yo � Hxf 	. �10	

This formulation can be easily extended to the case
when several unknown parameters have to be esti-
mated and � then becomes a vector instead of a scalar
(Ghil 1997).

Equations (9) and (10) show that, if the state estima-
tor is given, the innovation of parameter estimates re-
quires only knowledge of the cross-covariance matrix
P f

�x, which is readily available from Eq. (6) for the
propagation of the augmented error covariance matrix.
This feature allows one to combine the augmented-
state approach with other EKF-type algorithms, includ-
ing the EnKF (Evenson 2003) and reduced-rank Kal-
man filters (Fukumori and Malanotte-Rizzoli 1995;
Cohn and Todling 1996; Fukumori et al. 1999; Tippett
et al. 2000), which rely on various approximations for
computing covariance matrices. In the appendix, we
show how parameter estimation can be implemented,
at a very low additional cost, for a particular reduced-
rank EKF, the partitioned Kalman filter (Fukumori
2002).

The Kalman gain is optimal for a linear system, when
both M(x) � Mx and H(x) � Hx, and under the Gauss-
ian noise assumptions mentioned above. In this case,
the gain is based on the correct estimation of forecast
error covariances from initial uncertainties, model er-
rors, and model dynamics.

Even when the original model M is linear, the aug-
mented model becomes nonlinear as soon as one or
more parameters are included into the augmented
model state, and the model contains products or other
nonlinear functions of the state variables and param-
eters (Jazwinski 1970; Gelb 1974; Kondrashov et al.
2007). In any such case, one needs to use the EKF
formulation or some other sequential-estimation ap-
proach that can deal with a nonlinear model. In our
application, the SST equation is nonlinear to start with,
and so is the augmented model.

In the EKF, the nonlinear model is linearized around
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the current state when estimating the propagation of
the forecast error, while the full nonlinear model is still
used to advance the state. So we will use the lineariza-
tions M̃ and H̃ of the augmented M(x) and H(x), respec-
tively, about the current augmented state x � x f

k to
propagate the error covariances and compute the Kal-
man gain matrix in Eq. (6):

�M̃	ij �
�Mi

�xj and �H̃	ij �
�Hi

�xj , �11	

where indices i and j refer to a particular matrix and
state vector entry. The EKF is first-order accurate in
general but it may diverge in the presence of strong
nonlinearities (Miller et al. 1994; Chin et al. 2007). The
identical-twin experiments in section 4a demonstrate
that, in our case, we can obtain reliable and robust
estimates of both the state and parameters with the
EKF.

We apply sequential estimation to the relative cou-
pling coefficient � and surface layer coefficient �s,
along with the state, and so we need to linearize M
around the current values of the augmented state vec-
tor formed by the state vector itself and the two param-
eters, � and �s. Since we utilize an explicit scheme,
linearization with respect to the state vector and the
two estimated parameters is readily available and it fol-
lows from the known coefficients of M. For an implicit
scheme, linearization with respect to the estimated pa-
rameters can be more laborious. In such cases, one can
use small perturbations in the parameter values on the
right-hand side of the governing equations and then
apply numerical differentiation (Kondrashov et al.
2007).

Error covariances

1) MODEL ERROR COVARIANCE Q

The most severe errors in tropical ocean prediction
seem to arise from wind stress errors (Leetmaa and Ji
1989; Graham et al. 1992; Hao and Ghil 1994; Miller et
al. 1995). We introduce, therefore, model errors at ev-
ery time step by adding noise to the wind stress that is
obtained from the model atmosphere’s response to SST
anomalies. The wind stress error is specified as in Miller
and Cane (1989), Miller et al. (1995) and Cane et al.
(1996). It is taken as white in time and Gaussian cor-
related and homogeneous in space. The errors are as-
sumed to have the same meridional structure as the
atmospheric response to the SST anomalies.

The particular form used for each component of the
wind stress error covariance matrix Qw is given by

�ek,i el,j� � ��
2�kle

��xi�xj	
2�2Lx

2
, �12	

where ek,i and el,j are the wind stress errors at locations
i and j, at time steps k and l, respectively; �kl is the
Kronecker delta; � is the magnitude factor of the wind
tress error; and Lx is the prescribed decorrelation dis-
tance. We follow Miller and Cane (1989) and use � �
0.02 Pa and Lx � 10° of longitude. Model error is con-
structed by projecting the wind stress error onto the
prognostic model variables, as described in appendix B
of Part I.

The weights obtained from Eq. (10) for the innova-
tions in the parameter � are proportional to the size of
its cross-covariance forecast error P f

�x; the latter, in
turn, is related to the parameter’s contribution q� to the
model error Q; see Eqs. (2), (6), and (8). This value q�

should be chosen according to how much variation we
allow the estimated parameter to have and also to how
much information is needed from the observations of
the state. Since a smooth estimation of the parameters
is often required, small error values tend to be a good
choice: here we used 2% of the parameter’s squared
initial values for q�.

2) OBSERVATION ERROR COVARIANCE R

We prescribe the observation error covariance ma-
trix R as a diagonal matrix, Rij � 2

i �ij, where i is the
standard deviation of the noise in the observations of
the state variable xi. The observations are represented
as measurements T of SST, amplitudes q�n of the oce-
anic waves, or atmospheric wind stress data � at longi-
tudinal locations; they are all taken twice a month if no
other specification is given.

The observations are contaminated by white noise,
with the following standard deviations: o

T � 0.5 K,
o

q0 � 0.02, o
qn � 0.01, and o

� � 0.01 Pa. Note that the
standard deviations for all wave coefficients are in non-
dimensional units. The equivalent observational errors
for the corresponding physical variables, namely, zonal
current u, thermocline depth anomaly h, and vertical
velocity w, are o

u � 0.02 m s�1, o
h � 1.2 m, and o

w �
0.275 cm day�1.

3) INITIAL FORECAST ERROR COVARIANCE P f
0

The initial errors are white in space, with the follow-
ing standard deviations at all grid points: T � 0.9
K, q0

� 0.06, and qn
� 0.04, for n � 2, 4, 6; and qn

�
0.03, for n � 8, 10, 12, 14. The standard deviations for
all wave coefficients are in nondimensional units, as for
the observation errors. The initial forecast error covari-
ance P f

0 is assumed to have a diagonal structure, with its
elements equal to the variances of the state variables at
t � 0: P f

0ij � 2
i �ij.

DECEMBER 2008 K O N D R A S H O V E T A L . 5067



4. Results and discussion

a. Identical-twin experiments

To test the parameter estimation scheme described in
section 3b, we first conduct identical-twin experiments
in which both the true state and model parameters are
known. We call the model with correct parameter val-
ues the “perfect model,” and the correct parameter val-
ues (� � 0.76, �s � 0) are referred to as the “reference
values.” The “observations” are drawn from the perfect
model solutions with observation errors superimposed.

The forecast run differs from the “nature” or “con-
trol” run not only because of initial state errors and
model errors, but also because of incorrect model pa-
rameter values. Using standard data assimilation termi-
nology (Bengtsson et al. 1981; Ide et al. 1997), the fore-
cast errors are defined as the instantaneous root-mean-
square (RMS) difference between the model forecast x f

and the nature run x t at any given time tk [see Eq. (4)].
The time-dependent forecast error variances are esti-
mated by the Kalman filter algorithm as diagonal ele-
ments of the covariance matrix P f, and represent an
ensemble average for different realizations of �. For the
identical-twin experiments, these errors can be com-
puted directly using the known “truth,” which helps to
verify the given data assimilation scheme’s optimality;
however, there is no way of knowing the true evolution
of the system when using real data, given the partial and
inaccurate nature of atmospheric and oceanic datasets
(see Ghil et al. 1981; Ghil and Malanotte-Rizzoli 1991).

Two types of assimilation runs with the EKF are per-
formed: one updates the model state only; the other
updates both model state and parameters. We use in
either case SST and subsurface currents at a single lo-
cation, situated at 111°W, as well as a more plentiful
dataset from 15 equatorial Pacific locations that re-
sembles the Tropical Atmosphere–Ocean (TAO) ar-
ray; these two datasets are referred to as “1 data” and
“TAO data,” respectively. We start the forecast model
with incorrect parameter values and prescribed model
error (i.e., the wind stress errors added at each time
step).

1) RELATIVE COUPLING COEFFICIENT � ONLY

Here, the relative coupling coefficient � is initially
set to 0.56, while its reference value is 0.76; the value of
�s is kept fixed, �s � 0. Without including parameter
estimation, � stays the same at the initial value. Since
this smaller value of � places the model in the clima-
tological steady regime, the forecast SST anomalies
simply decay to zero.

Five-year-averaged RMS errors for the SST and oce-
anic waves are given in Table 1. The forecast errors in

the first row of the table, (FCST), are for a model run
with incorrect � and without data assimilation.

With the incorrect �, we performed state estimation
using the TAO-data and 1-data datasets. The results,
shown as ASML (TAO data) and ASML (1 data) in
Table 1, indicate that the EKF estimation of the model
state alone does reduce the forecast errors significantly.
In the case of ASML (TAO data), these errors, in both
SST and waves, are just slightly larger than those using
the same data with the perfect model. The improve-
ments suggest that assimilation of observations can
compensate for the deficiency in the model parameter
�, even without correcting it. This is good news for
constructing consistent fields from observations when
using a model that might have some errors in its pa-
rameters, provided one applies an advanced data as-
similation method like the EKF.

For the purposes of seasonal-to-interannual forecast-
ing, however, the error in � will prevent the model from
showing the correct oscillatory features even when the
initial data have been corrected through data assimila-
tion; therefore, parameter estimation is still of the es-
sence. In updating �, the dataset 1 data can be very
useful, as shown under ASML (1 data, �) in Table 1.
Even this minimal amount of data, when using the EKF
to estimate �, helped restore the oscillation with the
correct phase and period, as well as the amplitude of
the SST anomalies (not shown). The improvements in
all model fields here are also comparable to those using
the same dataset with the perfect model.

The results above suggest that the observations of
both SST and ocean waves at a single location, prefer-
ably in the eastern basin (see Hao and Ghil 1994 and
Part I), are sufficient for both the state and parameter
estimation, when only the � value is poorly known in
this ICM.

The ASML (TAO data, �) results in the table,
though, show larger improvements of both model state
and parameter, when a larger dataset, the TAO data, is

TABLE 1. Five-year-averaged RMS errors for FCST, the fore-
cast run with the incorrect coupling coefficient � � 0.56; ASML (1
data), state estimation only using the 1 data and the incorrect �
value; ASML (TAO data), same as previous row, but using the
full TAO data; ASML(1 data, �), assimilation run with the �
corrected using the single-section data; and ASML(TAO data, �),
same as previous row, but using the full TAO data.

SST q0 q2 q4 �

FCST 0.543 0.0642 0.0421 0.0199 0.2
ASML (1 data) 0.2332 0.0515 0.0278 0.0128 0.2
ASML (TAO data) 0.091 0.0341 0.0141 0.0028 0.2
ASML (1 data, �) 0.1131 0.0389 0.0178 0.0037 0.015
ASML (TAO data, �) 0.088 0.0328 0.0132 0.0025 0.004
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available. In fact, the improvements in model states are
identical to those with the perfect model using the same
data (not shown).

2) SURFACE LAYER COEFFICIENT �S ONLY

In this experiment, the surface layer coefficient is
initially set to a large value of �s � 0.8, while its refer-
ence value is zero; the value of � is kept at its reference
value: � � 0.76. Five-year-averaged forecast errors are
given in Table 2 (FCST); these are larger than those
with the incorrect � value in Table 1. Updating only
model states with the EKF does improve substantially

the state fields; see ASML (1 data) and ASML (TAO
data) in Table 2.

When using the TAO data, the assimilation errors for
the oceanic waves are similar to those in the corre-
sponding cases when the perfect model was employed,
but SST errors are much larger (cf. Table 2 in Part I and
also Table 1 here). This difference in the degree of
improvement for the SST and oceanic wave fields is due
to the fact that �s values affect mainly the SST equation,
but do not impact the oceanic waves directly. These
results suggest that, with oceanic wave observations
alone, it would be difficult to obtain an accurate SST
analysis with the value of �s left uncorrected.

Estimating �s along with the state by using the 1-data
dataset improves the SST field relative to ASML (TAO
data), while the results for the ocean waves are only
slightly poorer, see ASML (1 data, �s) in Table 2. The
1-data dataset, however, is barely sufficient for the es-
timation of �s itself. On the other hand, the last row
ASML (TAO data, �s) in Table 2 shows that �s and the
model state can be greatly improved when a larger
number of observations, as in TAO data, are used.

3) BOTH PARAMETERS � AND �S

Figure 2 shows results from an ICM experiment with
synthetic SST observations, but not subsurface cur-

FIG. 2. Time evolution of estimated parameters (a) � and (b) �s for the identical-twin
assimilation run with the observations for SST data taken from 15 equatorial locations in the
east-central Pacific. The correct (true) values of � and �s are equal to 0.76 and 0, respectively.

TABLE 2. Five-year-averaged RMS errors as in Table 1, but for
the surface layer coefficient �s, which is kept at the incorrect value
of 0.8 in the first three rows, and estimated along with the state in
the last two rows. The results of state estimation only using the 1
data and TAO data appear in the second and third row,
respectively.

SST q0 q2 q4 �s

FCST 0.679 0.0667 0.0475 0.0266 0.8
ASML (1 data) 0.456 0.0442 0.0323 0.0151 0.8
ASML (TAO data) 0.256 0.0341 0.0143 0.0031 0.8
ASML (1 data, �s) 0.183 0.0398 0.0186 0.0042 0.215
ASML (TAO data, �s) 0.123 0.0330 0.0133 0.0028 0.144
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rents, from the “TAO” array to estimate both the � and
�s parameters. The assimilation run starts with incorrect
model parameters that correspond to the westward-
propagating regime (� � 0.56, �s � 0.8); these param-
eter values are corrected by assimilating observations
taken from the control run, that uses delayed-oscillator
parameter values (� � 0.76, �s � 0).

The parameters adjust within 1 yr (heavy blue line)
to fluctuate about their true values (dashed black line)
and remain within the EKF’s estimated standard devia-
tion (solid red line in Fig. 2), thus recovering the de-
layed-oscillator regime in the evolution of the state
variables (not shown). The convergence time depends
largely on the assumed model error of the parameters:
increasing this error will usually accelerate the conver-
gence. Numerical sensitivity experiments (not shown)
confirm that other combinations of true and “incorrect”
parameter values did not produce any adverse effects
on the convergence of the parameter estimation pro-
cess.

In the EKF framework, corrections of the full state
vector, consisting of both the SST and ocean wave
fields, are made in the analysis step in accordance with
the new SST measurements alone. Figure 3 shows RMS
errors in the zonal surface current from EKF experi-
ments with and without parameter estimation. When
no data assimilation is performed, the errors are very
large (black curve). Even though the wave fields are not
directly observed, our assimilation scheme still provides
considerable improvement in their estimates, with the
best results obtained when we estimate both the state
and parameters simultaneously (blue curve).

The surface current errors in Fig. 3 contain a very
large periodic component; such a component is present
also, albeit much weaker, in the errors made in estimat-
ing the two parameters in Fig. 2. This periodic compo-
nent in the errors is due to our identical-twin setup,
where the truth is dominated by the delayed-oscillator
mode, while the incorrect model contains no such
highly periodic signal (cf. Figs. 1a,b).

The rapid convergence of the parameter estimates—
in spite of the obviously chaotic, unstable character of
the ENSO model dynamics—suggests extending the
theory for state estimation in nonlinear forecast-
assimilation systems (Carrassi et al. 2008) to the com-
bined, state and parameter estimation problem. Such
an extension could further optimize the convergence of
parameter estimation in the augmented-state approach.

b. Experiments using actual SST observations

To explore the applicability of this methodology us-
ing real-world observations, we assimilated monthly
SST observations over the 30-yr interval from January
1975 to December 2004, obtained from the Climate
Data Library at the International Research Institute for
Climate Prediction/Lamont-Doherty Earth Observa-
tory (IRI/LDEO). This dataset is a statistically homog-
enous concatenation of Kaplan et al.’s (1998) SST fields
and the National Centers for Environmental Prediction
(NCEP) optimal-interpolation SST fields of Reynolds
and Smith (1994); the latter dataset is on a finer grid
(i.e., 1° � 1°) and was regridded to the resolution of the
former (i.e., 5° � 5°).

We first interpolated the observations to the equato-
rial grid points of our ICM and removed the seasonal
cycle. To match the climatology of the model and ob-
servations, we removed the climatology of the observa-
tions at each grid point and then added the model cli-
matology to the observational anomalies. The climato-
logical mean of the modified observational dataset thus
obtained is the same as the basic state of the model.

To achieve robust parameter estimates over the
whole assimilation interval, we perform the parameter
estimation iteratively, using the previous parameter es-
timates in the next forward estimation. Recall from Eq.
(10) that parameter changes are related to their cross
covariances with the model state; these cross covari-
ances are not generally known in advance, so they are
set to zero initially and modified on the next pass
through the observations. Also, unlike in the identical-
twin case, the true model parameters are neither known
nor necessarily constant in time, and so their initial
values have to be educated guesses at best. The first
pass of the EKF helps to establish the cross covariances

FIG. 3. RMS errors in the zonal surface current for the identical-
twin experiment of Fig. 2. Blue and red lines are for actual errors
with and without parameter estimation, respectively; and the
black line indicates the pure forecast error.
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in the assimilation cycle, while providing preliminary
parameter estimates. As we shall see, the second pass
achieves a robust, albeit time-varying parameter esti-
mate over most of the record.

Convergence of parameter estimates within two such
iterations, for both �s and �, is illustrated in Fig. 4. The
estimates of � (Fig. 4b) do not change much between
the first and second iteration (blue and red curves, re-
spectively, in Figs. 4b,c), while �s (Fig. 4c) varies sig-
nificantly over an initial, 8-yr time interval (1975–83).
When using quite different initial parameter values �s0,

the second iterates of the �s estimation agree very well
(Fig. 4d); similar results (not shown) are obtained when
estimating �. The remaining discrepancy in the initial
transition interval (1977–83), in Figs. 4c,d, could be at-
tributed to the very small SST anomalies in that interval
(see Figs. 1a and 4a); these small anomalies do not
constrain the surface layer parameter �s in an effective
manner.

The parameters can vary on fairly short time scales
and switch between values that are associated with one
or the other of the two distinct modes of ENSO behav-

FIG. 4. Time evolution of estimated parameters, during an assimilation run: (a) observations
of monthly SST data from IRI/LDEO Climate Data Library, taken from 15 equatorial loca-
tions in the east-central Pacific; (b) evolution of the nonlinear coupling parameter �; and (c),
(d) evolution of the surface layer parameter �s. In (c) two successive iterations of our �s

estimate are illustrated for an initial parameter value of �s0 � 0.3, while (d) shows the second
iterate of the �s estimation for three distinct initial values, �s0 � 0.3, 0.5, and 0.8.
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ior, the delayed-oscillator and westward-propagating
mode. Rapid adjustments of these parameters occur, in
particular, during the two strong ENSO events, 1982/83
and 1997/98, during which the uncertainty in both pa-
rameters becomes very small (thin black curves in Figs.
4b,c).

Figure 5 shows the evolution of the equatorial Pacific
SST anomaly field obtained from state estimation only
(Fig. 5b) and simultaneous state and parameter estima-
tions (Fig. 5a). The experiment with only state estima-
tion held the parameters �s and � constant at values in

the delayed-oscillator regime. The main differences be-
tween the two panels are the westward spatial extent,
intensity, and duration of the strong ENSO events of
1982/83 and 1997/98, which are better captured by the
EKF with parameter estimation.

Figure 5c shows the SST anomalies obtained when
forcing the model with the time history of estimated
�s(t) and �(t), but without assimilating any other data.
It is interesting to note that this model simulation elimi-
nated the regular ENSO oscillations in the delayed-
oscillator regime. The model response is rather modest,

FIG. 5. Time–longitude plots (Hovmöller diagrams) of SST anomaly results (°C) for three
EKF experiments: (a) combined state and parameter estimation, (b) state estimation only
with constant parameters from the delayed-oscillator mode, and (c) model simulation with a
time history of estimated �(t) and �s(t), but with no further data assimilation.
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except for the two strong ENSO events during 1982/83
and 1997/98, when the “correct” history of the param-
eters seems to reproduce the SST anomalies obtained
from EKF with state estimation alone.

Assimilating SST thus improves the model’s SST es-
timates, as expected. This result does not guarantee,
however, that unobserved model fields, such as cur-
rents, would also be improved. Figure 6 shows the
anomaly field for the equatorial zonal surface current
that is obtained from simultaneous state and parameter

estimation (Fig. 6a), as well as the result when perform-
ing state estimation only, with the fixed parameters in
the delayed-oscillator regime (Fig. 6b). The main dif-
ference between these two assimilation experiments is
the intensification of the currents during the strong
ENSO event of 1997/98, which is better captured by the
EKF with state and parameter estimation.

This intensification is in qualitative agreement with
the observational data displayed in Fig. 6c, which plots
1993–2004 surface current anomalies from the Ocean

FIG. 6. Hovmöller diagrams of zonal surface current anomalies (m s�1). Two EKF experi-
ments: (a) combined state and parameter estimation and (b) state estimation for constant
parameters from the delayed-oscillator mode. (c) Observed surface current anomalies from
OSCAR data for the 12-yr interval 1993–2004.
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Surface Current Analyses–Real Time (OSCAR) dataset,
derived from satellite altimeter and scatterometer data
(Bonjean and Lagerloef 2002). The OSCAR data along
the equator (0.5°N–0.5°S) were interpolated to the
ICM’s grid and then smoothed by using a 3-month run-
ning mean and spatial averaging over the 3 nearest grid
points.

The results in Figs. 4–6 suggest that our ICM is too
idealized to represent in detail the complex evolution
patterns of the observed SST and surface currents, but
it has skill in the eastern tropical Pacific, especially
when the ENSO signals are strong. Moreover, missing
mechanisms in the physical model may be at least par-
tially compensated for by skillful parameter estimation
in seasonal-to-interannual prediction.

These results encourage us to extend parameter es-
timation to large, state-of-the-art GCMs, where the im-
provement might be more substantial, since these mod-
els are much more realistic and hence closer to the
observations. The main obstacle in doing so is the size
and nonlinearity of the problem in this case (Ghil
1997). We propose in the appendix an approach to solv-
ing the size problem.

5. Conclusions

In this paper, we demonstrated parameter estimation
in an intermediate coupled model (ICM) using the EKF
and the “augmented state” approach. The EKF method
was first used to estimate the state and parameters in an
identical-twin framework, based on incomplete and in-
accurate observations of the model state. Model-
generated oceanic datasets (Fig. 1) were assimilated to
produce a time continuous, dynamically consistent de-
scription of the model’s El Niño–Southern Oscillation
(ENSO). Two unknown model parameters, the cou-
pling coefficient � and surface layer coefficient �s, were
estimated by treating them as additional state variables.
The results of section 4a show that the augmented-state
approach in the EKF methodology can estimate these
two parameters successfully (Figs. 2 and 3). In addition,
state estimation with an imperfect model can be im-
proved by including the estimation of model param-
eters in the assimilation process.

Errors in the model parameters can impact the as-
similation results in different ways. An error in the rela-
tive coupling coefficient � did little harm in estimating
the state (Table 1). A large error in the surface layer
coefficient �s, however, made it difficult to assimilate
SST anomalies well without correcting the parameter
(Table 2). Assimilation of observations can thus be im-
proved if we identify first the erroneous model param-
eter(s). On the other hand, all parameter errors will
hamper successful model forecasts. Identifying a priori

an erroneous model parameter and assigning a proper
error to it are left for further work.

In section 4b, we performed additional experiments
to evaluate the applicability of this method to real-
world SST observations. In this case, the true param-
eters are not known and are not necessarily constant
over time. The parameters adjust on fairly short time
scales, in particular during strong ENSO events (Fig. 4);
they switch between values that are associated with one
or the other of the two distinct modes of ENSO behav-
ior, the delayed-oscillator and westward-propagating
mode. The results show that the estimation of the un-
known parameters still helps improve the state estima-
tion (Fig. 5), and that missing mechanisms in the physi-
cal model may be partially compensated for by skillful
parameter estimation.

The impact of parameter estimation on SST evolu-
tion when using SST observational data is less notable.
An encouraging result is that our assimilation scheme
does provide considerable improvement in current es-
timation (Fig. 6) even though the flow fields are not
directly observed. Performing both state and parameter
estimation yields again the best results.

Future work will include applying EKF parameter
estimation efficiently to much larger, state-of-the-art,
coupled ocean–atmosphere general circulation models
(GCMs). The key idea in our approach to this problem
(see the appendix) is that the number of parameters
one wishes to estimate, even for a global coupled GCM,
is small relative to the number of state variables. Thus,
given any sequential-type filter (Ghil and Malanotte-
Rizzoli 1991) for state estimation, the increase in rank
for the augmented-state approach to parameter estima-
tion is quite small, which offers a good opportunity for
efficiently estimating parameters in a GCM. To do so,
we have shown that the evolution of the parameter
estimates in the EKF estimation process can be sepa-
rated from that of the state estimates. It is this separa-
tion that is crucial and extending it to any efficient EKF
implementation, such as the partitioned Kalman filter
of Fukumori (2002), can help to estimate the param-
eters of the coupled GCM, along with its state.
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APPENDIX

Parameter Estimation for the Partitioned Kalman
Filter

The partitioned Kalman filter (Fukumori 2002) con-
sists of using a series of reduced-state approximations
with physically or statistically independent errors; this
partitioning allows one to compute a number of much
smaller estimation problems, independent of each
other. The key step consists of approximating model
state x by a sum of independent substates, x�1, x�2, . . . ,
x�l , each with a much smaller dimension than the full
model state itself:

x � B1x�1 � B2x�2 � 	 	 	 � Bix�l, �A1	

where Bi denotes a transformation approximating par-
ticular elements of the model state x by x�i . Now we will
consider x to be the augmented state, including the
parameters to be estimated, and each partitioned sub-
state x�i will be a separate, reduced-order approxima-
tion of the augmented state x. Here x�i may be the
amplitudes of various physical modes or approxima-
tions corresponding to different parts of a spatial par-
tition of the full domain.

With these slight changes in interpretation, we can
now follow the formalism of Fukumori (2002) without
any further change. Assuming that the observation er-
ror R is much larger then forecast errors, the Kalman
filter K and the error covariance matrix P for the full
augmented state can be approximated as

P � �BiP�i Bi
T and

K � �BiP�i H i�
TR�1. �A2	

The forecast error covariance matrix of the partitioned
augmented state P�i is propagated separately from the
others by the standard Kalman filter algorithm [cf. Eq.
(6)], based on the partitioned state transition matrix M�i ,
observation matrix H�i , and model error Q�i :

H�i � HBi and

M�i � B*i MBi , �A3	

where B*i is the generalized inverse of the transforma-
tion Bi. Following Eq. (10), the analysis step for updat-
ing the single parameter � is approximated by

�a � �f � �BiP��iH i�
T R�1�y0 � Hx f 	, �A4	

where P��i is the cross-covariance term of the parti-
tioned augmented state available to us from error co-
variance propagation. This equation effectively com-
bines parameter estimates in distinct partitions and thus

naturally accounts for their expectedly different influ-
ence on the partitioned state.
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