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MONTE CARLO TECHNIQUES 
FOR DATA ASSIMILATION IN LARGE SYSTEMS 

GEIR EVENSEN 

T
he ensemble Kalman fi lter (EnKF) [1] is a sequential Monte Carlo method 
that provides an alternative to the traditional Kalman fi lter (KF) [2], [3]
and adjoint or four-dimensional variational (4DVAR) methods [4]–[6] to 
better handle large state spaces and nonlinear error evolution. EnKF pro-
vides a simple conceptual formulation and ease of implementation, since 

there is no need to derive a tangent linear operator or adjoint equations, and there 
are no integrations backward in time. EnKF is used extensively in a large com-
munity, including ocean and atmospheric sciences, oil reservoir simulations, and 
hydrological modeling. 

To a large extent EnKF overcomes two problems associated with the traditional 
KF. First, in KF an error covariance matrix for the model state needs to be stored 
and propagated in time, making the method computationally infeasible for mod-
els with high-dimensional state vectors. Second, when the model dynamics are 
nonlinear, the extended KF (EKF) uses a linearized equation for the error covari-
ance evolution, and this linearization can result in unbounded linear instabilities 
for the error evolution [7]. 
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In contrast with EKF, EnKF represents the error covari-
ance matrix by a large stochastic ensemble of model re-
alizations. For large systems, the dimensionality problem 
is managed by using a low-rank approximation of the er-
ror covariance matrix, where the number of independent 
model realizations is less than the number of unknowns 
in the model. Thus, the uncertainty is represented by a set 
of model realizations rather than an explicit expression for 
the error covariance matrix. The ensemble of model states 
is integrated forward in time to predict error statistics. For 
linear models the ensemble integration is consistent with 
the exact integration of an error covariance equation in the 
limit of an infinite ensemble size. Furthermore, for non-
linear dynamical models, the use of an ensemble integra-
tion leads to full nonlinear evolution of the error statistics, 
which in EnKF can be computed with a much lower com-
putational cost than in EKF [8]. 

Whenever measurements are available, each individual 
realization is updated to incorporate the new information 
provided by the measurements. Implementations of the up-
date schemes can be formulated as either a stochastic [9] or 
a deterministic scheme [8], [10]–[13]. Both kinds of schemes 
solve for a variance-minimizing solution and implicitly as-
sume that the forecast error statistics are Gaussian by using 
only the ensemble covariance in the update equation. 

The assumption of Gaussian distributions in EnKF al-
lows for a linear and efficient update equation to be used. 
A more sophisticated update scheme needs to be derived 
to take into account higher order statistics, which leads 
to particle filtering theory [14], where the Bayes formula 
is solved at each update step, although normally at a huge 
computational cost. While the particle filter accounts for 
non-Gaussian distributions by representing the full pdf in 
the parameter space, its applicability is normally limited 
to estimation of a few unknowns at the cost of integrating 
a very large ensemble consisting of typically more than 
O (104)  realizations. 

In [8], EnKF is rederived as a sequential Monte Carlo 
method starting from a Bayesian formulation. The EnKF 
can then be characterized as a special case of the particle 
filter, where the Bayesian update step in the particle fil-
ter is approximated with a linear update step in the EnKF 
using only the two first moments of the predicted prob-
ability density function (pdf). With linear dynamics, EnKF 
is equivalent to a particle filter, since this case is fully de-
scribed by Gaussian pdfs. However, with nonlinear dy-
namics, non-Gaussian contributions may develop, and 
the EnKF only approximates the particle filter. Unlike the 
particle filters [14], EnKF does not need to re-sample the 
ensemble from the posterior pdf during the analysis step, 
since each prior model realization is individually updated 
to create the correct posterior ensemble. 

In EnKF, the solution is solved for in the affine space 
spanned by the ensemble of realizations. The ensemble, 
which evolves in time according to the nonlinear  dynamical 

model, provides a representation of the subspace where the 
update is computed at each analysis time. It is possible to 
formulate analysis schemes in terms of the ensemble, lead-
ing to efficient algorithms where the state error covariance 
matrix is not computed and is only implicitly used. 

A major approximation introduced in EnKF is related to 
the use of a limited number of ensemble realizations. The 
ensemble size limits the space where the solution is searched 
for and in addition introduces spurious correlations that 
lead to excessive decrease of the ensemble variance and 
possibly filter divergence. The spurious correlations can be 
handled by localization methods that attempt to reduce the 
impact of measurements that are located far from the grid-
point to be updated. Localization methods either filter away 
distant measurements or attempt to reduce the amplitude 
of the long-range spurious correlations. The use of a local 
analysis scheme effectively increases the ensemble solution 
space while reducing the impact of spurious correlations. 
The use of a local analysis scheme allows for a relatively 
small ensemble size to be used with a high- dimensional 
dynamical model. 

A chronological list of applications of EnKF is given 
in [8]. This list includes both low-dimensional systems 
of highly nonlinear dynamical models as well as high-
dimensional ocean and atmospheric circulation models 
with O (106)  or more unknowns. Applications include 
state estimation in operational circulation models for the 
ocean and atmosphere as well as parameter estimation or 
history matching in reservoir simulation models. For ex-
ample, [15]–[17] present an implementation of an EnKF 
with an isopycnal ocean general circulation model, while 
[18] examines an implementation of a local EnKF with a 
state-of-the-art operational numerical weather prediction 
model using simulated measurements. It is shown that a 
modest-sized ensemble of 40 members can track the evolu-
tion of the atmospheric state with high accuracy. 

An implementation of the EnKF at the Canadian Meteo-
rological Centre in [19] demonstrates EnKF for operational 
atmospheric data assimilation and reviews EnKF with fo-
cus on localization and sampling errors. A review in [20] of 
a variant of EnKF called the local ensemble transform Kal-
man filter includes a derivation of the analysis equations 
and the numerical implementation, which differ somewhat 
from what is normally used in the Kalman filtering litera-
ture. An implementation of the local ensemble transform 
Kalman filter with the National Centers for Environmental 
Prediction (NCEP) global model, given in [21], concludes 
that the accuracy of the method is competitive with opera-
tional algorithms and that this technique can efficiently 
handle large number of measurements. 

An implementation of EnKF with the NCEP model in 
[22] is compared with the operational NCEP global data as-
similation system. The ensemble data assimilation system 
outperforms a reduced-resolution version of the operation-
al three-dimensional variational (3DVAR) data assimilation 
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system and shows improvement in data sparse regions. An 
observation-thinning algorithm is presented in [22], where 
observations with little information content leading to low 
variance reduction are filtered out. The thinning algorithm 
improves the analysis when unmodeled error correlations 
are present between nearby observations. The need for the 
thinning is eliminated if the error correlations are properly 
specified in the measurement error covariance matrix. 

EnKF is currently used in several research fields in 
addition to the ocean and atmosphere applications cited 
throughout this article. In [23], the EnKF is used to update 
a model of tropospheric ozone concentrations and to com-
pute short-term air quality forecasts. It is found that the 
EnKF updated estimates provide improved initial condi-
tions and lead to better forecasts of the next day’s ozone 
concentration maxima. In [24], EnKF is applied to a mag-
netohydrodynamic model for space weather prediction. 
The performance of EnKF in a land surface data assimi-
lation experiment is examined in [25]. These results are 
compared with a sequential importance re-sampling (SIR) 
filter, and it is found that EnKF performs almost as well 
as the SIR filter. Furthermore, it is emphasized that EnKF 
leads to skewed and even multimodal distributions despite 
the normality assumption imposed when computing the 
analysis updates. 

In this article, we outline the theory behind the EnKF 
and demonstrate its use in various high-dimensional and 
nonlinear applications in mathematical physics while 
also considering the combined parameter and state es-
timation problem in some detail. The goal of this article 
is to serve as an introduction and tutorial for new users 
of EnKF. We thus present examples that illustrate par-
ticular properties of the EnKF, such as its capability to 
handle high- dimensional state spaces as well as highly 
nonlinear dynamics. 

DATA ASSIMILATION AND PARAMETER ESTIMATION
Given a dynamical model with initial and boundary con-
ditions and a set of measurements that can be related to 
the model state, the state estimation problem is defined as 
finding the estimate of the model state that in some weight-
ed measure best fits the model equations, the initial and 
boundary conditions, and the observed data. Unless we 
relax the equations and allow some or all of the dynami-
cal model, the conditions, and the measurements to contain 
errors, the problem may become overdetermined and no 
general solution exists. 

We often use a prior assumption of Gaussian distribu-
tions for the error terms. It is also common to assume that 
errors in the measurements are uncorrelated with errors in 
the dynamical model. The problem can then be formulated 
by using a quadratic cost function whose minimum defines 
the best estimate of the state. 

The parameter estimation problem is different from 
the state estimation problem. Traditionally, in parameter 

estimation we want to improve estimates of a set of poorly 
known model parameters leading to an exact model solu-
tion that is close to the measurements. Thus, in this case we 
assume that all errors in the model equations are associ-
ated with uncertainties in the selected model parameters. 
The model initial conditions, boundary conditions, and the 
model structure are all exactly known. Thus, for any set 
of model parameters the corresponding solution is found 
from a single forward integration of the model. The way 
forward is then to define a cost function that measures the 
distance between the model prediction and the observa-
tions plus a term measuring the deviation of the parameter 
values from a prior estimate of the parameter values. The 
relative weight between these two terms is determined by 
the prior error statistics for the measurements and the pri-
or parameter estimate. Unfortunately, these problems are 
often hard to solve [8] since the inverse problem is highly 
nonlinear, and multiple local minima may be present in 
the cost function. 

In [8] the combined parameter and state estimation 
problem is considered. An improved state estimate and 
a set of improved model parameters are then searched 
for simultaneously. In [26] and [27] this problem is 
 formulated using a variational cost function that is mini-
mized using the representer method [28], [29]. Both [26] 
and [27] report convergence problems due to the non-
linearity of the problem and the possible presence of 
multiple local minima in the cost function. In [8] it is 
shown that the combined parameter and state estimation 
problem can be formulated, and in many cases solved 
efficiently, using ensemble methods. An illustrative ap-
plication of the EnKF for combined state and parameter 
estimation includes estimation of the permeability fields 
together with dynamic state variables in reservoir simu-
lation models [30]. These problems have huge parameter 
and state spaces with O (106)  unknowns. The formula-
tion and solution of the combined parameter and state 
estimation problem using ensemble methods are further 
discussed below. 

REVIEW OF THE KALMAN FILTER

Variance Minimizing Analysis Scheme
The KF is a variance-minimizing algorithm that updates 
the state estimate whenever measurements are available. 
The update equations in the KF are normally derived by 
minimizing the trace of the posterior error covariance ma-
trix. The algorithm refers only to first- and second-order 
statistical moments. With the assumption of Gaussian 
priors for the model prediction and the data, the update 
equation can also be derived as the minimizing solution 
of a quadratic cost function. We start with a vector of vari-
ables stored in c (x, t ),  which is defined on some spatial 
domain 'D  with spatial coordinate x . When c (x, t )  is 
discretized on a numerical grid representing the spatial 
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model domain, it can be represented by the state vector 
ck  at each time  instant tk . The cost function can then be 
written as 

 J 3c k
a 45 (c k

f 2 c k
a )T(Ccc

f ) k
21 (c k

f 2 c k
a )

 1 (dk 2 Mkc k
a )T(CPP) k

21 (dk 2 Mk 
c k

a ),  (1)

where c k
a and c k

f  are the analyzed and forecast estimates 
respectively, dk  is the vector of measurements, Mk  is the 
measurement operator that maps the model state ck  to the 
measurements dk , (Ccc

f ) k  is the error covariance of the pre-
dicted model state, and (CPP) k  is the measurement error co-
variance matrix. Minimizing with respect to c k

a yields the 
classical KF update equations 

 c k
a 5 c k

f 1 Kk(dk 2 Mk 
c k

f ),  (2)

 (Ccc) k
a 5 (I 2 KkMk) (Ccc) k

f,  (3)

 Kk 5 (Ccc) k
f   Mk

T(Mk(Ccc) k
f  Mk

T 1 (CPP) k) 21,  (4) 

where the matrix Kk  is the Kalman gain. Thus, both the 
model state and its error covariance are updated. 

Kalman Filter
It is assumed that the true state c t  evolves in time accord-
ing to the dynamical model 

 c k
t 5 Fc k21

t 1 qk21,  (5) 

where F  is a linear model operator and qk21 is the unknown 
model error over one time step from k 2 1 to k . In this case 
a numerical model evolves according to 

 c k
f 5 Fc k21

a ,  (6) 

where the superscripts a and f denote analysis and fore-
cast. That is, given the best possible estimate (traditionally 
named analysis) for c  at time tk21, a forecast is calculated 
at time tk , using the approximate equation (6). 

The error covariance equation is derived by subtracting 
(6) from (5), squaring the result, and taking the expecta-
tion, which yields 

 Ccc
f ( tk) 5 FCa

cc( tk21 )FT 1 Cqq( tk21 ) ,  (7) 

where we define the error covariance matrices for the pre-
dicted and analyzed estimates as 

 Ccc
f 5 (c f 2 c t ) (c f 2 c t ) T,  (8)

 Ca
cc 5 (ca 2 c t ) (ca 2 c t ) T.  (9) 

The overline denotes an expectation operator, which is 
equivalent to averaging over an ensemble of infinite size. 

Extended Kalman Filter
We now assume a nonlinear model, where the true state 
vector c k

t  at time tk  is calculated from 

 c k
t 5 G (c k21

t ) 1 qk21,  (10)

and a forecast is calculated from the approximate equation 

 c k
f 5 G (c k21

a ) .  (11) 

The error statistics then evolve according to the equation 

 Cf
cc( tk) 5 Gk21

r Ca
cc( tk21 )Gk21

rT 1 Cqq( tk21 ) 1 c,  (12) 

where Cqq( tk21 )  is the model error covariance matrix and 
Gk21
r  is the Jacobian or tangent linear operator given by 

 Gk21
r 5  

'G (c )

'c
2
ck21

.  (13) 

Note that in (12) we neglect an infinite number of terms 
containing higher order statistical moments and higher 
order derivatives of the model operator. EKF is based 
on the assumption that the contributions from all of the 
higher order terms are negligible. By discarding these 
terms we are left with the approximate error covari-
ance expression 

 Ccc
f ( tk) . Gk21

r Ccc
a ( tk21 )Gk21

rT 1 Cqq( tk21 ) .  (14) 

Higher order approximations for the error covariance evo-
lution are discussed in [31]. 

EKF with a Nonlinear Ocean Circulation Model
As an application of EKF we consider a nonlinear ocean 
circulation model [7]. The model in Figure 1 is a multilayer 
quasi-geostrophic model of the mesoscale ocean currents. 
The quasi-geostrophic model solves simplified fluid equa-
tions for the slow motions in the ocean and are formulated 
in terms of potential vorticity advection in a background 
velocity field represented by a stream function. Given a 
change in the vorticity field, at each time step we can solve 
for the corresponding stream function. 

It is found that the linear evolution equation for the er-
ror covariance matrix leads to a linear instability. This in-
stability is demonstrated in an experiment using a steady 
background flow defined by an eddy standing on a flat ba-
thymetry [see Figure 1(a)]. This particular stream function 
results in a velocity shear and thus supports a sheared flow 
instability. Thus, if we add a perturbation and advect it us-
ing the linearized equations, then the perturbation grows 
exponentially. This growth is exactly what is observed in 
Figure 1(b) and (c). By choosing an initial variance equal 
to one throughout the model  domain, we observe strong 
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 error-variance growth at locations of 
large velocity and velocity shear in the 
eddy. The estimated mean square errors, 
which equal the trace of Ccc divided by 
the number of gridpoints, indicate expo-
nential error-variance growth. 

This linear instability is not realistic. 
In the real world we expect the instabil-
ity to saturate at a certain climatologi-
cal amplitude. As an example, in the 
atmosphere it is always possible to de-
fine a maximum and minimum pres-
sure, which is never exceeded, and the 
same applies for the eddy field in the 
ocean. An unstable variance growth 
cannot be accepted but is in fact what 
the EKF provides in some cases. 

Thus, an apparent closure prob-
lem is present in the error-covari-
ance evolution equation, caused by 
discarding third- and higher order 
moments in the error covariance 
equation, leading to a linear insta-
bility. If a correct equation could be 
used to predict the time evolution of 
the errors, then linear instabilities 
would saturate due to nonlinear ef-
fects. This saturation is missing in 
EKF, as confirmed by [32]–[34]. 

Extended Kalman 
Filter for the Mean
Equations (11), (13), and (14) are the most commonly 
used for EKF. A weakness of the formulation is that the 
central forecast is used as the estimate. The central fore-
cast is the single model realization initialized with the 
expected value of the initial state and then integrated 
by the dynamical model and updated at the measure-
ment steps. For nonlinear dynamics the central forecast 
may not be equal to the expected value, and thus it is 
just one realization from an infinite ensemble of pos-
sible realizations. 

An alternative approach is to derive a model for the evo-
lution of the first moment or mean. First G (c )  is expanded 
around c  to obtain 

 G (c ) 5G (c ) 1Gr (c ) (c 2 c ) 1
1
2

Grr (c ) (c 2 c ) 2 1 c.
 (15)

Inserting (15) in (11) and taking the expectation or ensem-
ble average yields 

 ck 5 G (ck21 ) 1
1
2

Gk21
rr Ccc( tk21 ) 1 c.  (16) 

It can be argued that for a statistical estimator it makes 
more sense to work with the mean than a central forecast. 
After all, the central forecast does not have any statistical 
interpretation as illustrated by running an atmospheric 
model without assimilation updates. The central forecast 
then becomes just one realization out of infinitely many 
possible realizations, and it is not clear how we can relate 
the central forecast to the climatological error covariance 
estimate. On the other hand the equation for the mean 
provides an estimate that converges to the climatological 
mean, and the covariance estimate thus describes the er-
ror variance of the climatological mean. All applications 
of the EKF for data assimilation in ocean and atmospheric 
models use an equation for the central forecast. However, 
the interpretation using the equation for the mean sup-
ports the formulation used in EnKF. 

ENSEMBLE KALMAN FILTER
We begin by representing the error statistics using an en-
semble of model states. Next, we present an alternative to 
the traditional error covariance equation for predicting 
error statistics. Finally, we derive the traditional EnKF 
 analysis scheme. 
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FIGURE 1 Example of an extended Kalman filter experiment from [7]. (a) shows the stream 
function defining the velocity field of a stationary eddy, while (b) shows the resulting error 
variance in the model domain after integration from t 5 0 to t 5 25. Note the large errors 
at locations where velocities are high. (c) shows the exponential time evolution of the 
estimated variance averaged over the model domain.
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Representation of Error Statistics
The error covariance matrices Ccc

f  and Ccc
a  for the 

 predicted and analyzed estimate in the Kalman filter are 
defined in terms of the true state in (8) and (9). How-
ever, since the true state is not known, we define the en-
semble covariance matrices around the ensemble mean 
c   according to 

 (Ccc
e ) f5 (c f2c f ) (c f2c f ) T,  (17)

 (Ccc
e ) a5 (ca2ca ) (ca2ca )T, (18) 

where now the overline denotes an average over the ensem-
ble. Thus, we can use an interpretation where the ensemble 
mean is the best estimate and the spreading of the ensem-
ble around the mean is a natural definition of the error in 
the ensemble mean. 

Thus, instead of storing a full covariance matrix, we can 
represent the same error statistics using an appropriate en-
semble of model states. Given an error covariance matrix, 
an ensemble of finite size provides an approximation to the 
error covariance matrix, and, as the size N  of the ensemble 
increases, the errors in the Monte Carlo sampling decrease 
proportionally to 1/"N . 

Suppose now that we have N  model states or realizations 
in the ensemble, each of dimension n. Each realization can 
be represented as a single point in an n-dimensional state 
space, while together the realizations constitute a cloud of 
such points. In the limit as N  goes to infinity, the cloud of 
points can be described using the pdf 

 f(c ) 5
dN
N

,  (19) 

where dN  is the number of points in a small unit volume 
and N  is the total number of points. Statistical moments 
can then be calculated from either f(c )  or the ensemble 
representing f(c ) . 

Prediction of Error Statistics
A nonlinear model that contains stochastic errors can be 
written as the stochastic differential equation 

 dc5G (c )dt1 h(c )dq.  (20) 

Equation (20) states that an increment in time yields an in-
crement in c , which, in addition, is influenced by a random 
contribution from the stochastic forcing term h(c )dq , rep-
resenting the model errors. The term dq  describes a vector 
Brownian motion process with covariance Cqqdt . Since the 
model operator G  in (20) is not an explicit function of the 
random variable dq , the Ito interpretation is used rather 
than the Stratonovich interpretation [35]. 

When additive Gaussian model errors forming a Markov 
process are used, it is possible to derive the Fokker-Planck 
equation (also called Kolmogorov’s equation), which 

 describes the time evolution of the pdf f(c )  of the model 
state. This equation has the form 

 
'f(c )

't
1 a

i

' (gi f(c ) )

'ci
5

1
2ai,j

'2f(c ) (hCqqh
T ) ij

'ci'cj
,  (21) 

where gi  is the component number i  of the model operator 
G  and hCqqh

T is the covariance matrix for the model errors. 
The Fokker-Planck equation (21) does not entail any ap-

proximations and can be considered as the fundamental 
equation for the time evolution of the error statistics. A de-
tailed derivation is given in [35]. Equation (21) describes the 
change of the probability density in a local “volume,” which 
depends on the divergence term describing a probability flux 
into the local “volume” (impact of the  dynamical equation) 
and the diffusion term, which tends to flatten the probabil-
ity density due to the effect of stochastic model  errors. If (21) 
could be solved for the pdf, it would be possible to calculate 
statistical  moments such as the mean and the error covariance 
for the model forecast to be used in the analysis scheme. 

A linear model for a Gauss-Markov process, in which the 
initial condition is assumed to be taken from a normal distri-
bution, has a probability density that is completely character-
ized by its mean and covariance for all times. We can then 
derive exact equations for the evolution of the mean and the 
covariance as a simpler alternative than solving the full Fok-
ker-Planck equation. These moments of (21), including the er-
ror covariance (7), are easy to derive, and several methods are 
illustrated in [35]. The KF uses the first two moments of (21). 

For a nonlinear model, the mean and covariance matrix 
do not in general characterize the time evolution of f(c ) .  
These quantities do, however, determine the mean path 
and the width of the pdf about that path, and it is possible 
to solve approximate equations for the moments, which is 
the procedure characterizing the EKF. 

The EnKF applies a Markov chain Monte Carlo 
(MCMC) method to solve (21). The probability density 
is then represented by a large ensemble of model states. 
By integrating these model states forward in time ac-
cording to the model dynamics, as described by the 
stochastic differential equation (20), this ensemble pre-
diction is equivalent to using a MCMC method to solve 
the Fokker-Planck equation. 

Dynamical models can have stochastic terms embedded 
within the nonlinear model operator, and the derivation of 
the associated Fokker-Planck equation can become com-
plex. Fortunately, the explicit form of the Fokker-Planck 
equation is not needed, since, to solve this equation using 
MCMC methods, it is sufficient to know that the equation 
and a solution exist. 

Analysis Scheme
We now derive the update scheme in the KF using the 
ensemble covariances as defined by (17) and (18). For 
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convenience the time index k  is omitted in the equa-
tions to follow. As shown by [9] it is essential that the 
observations be treated as random variables having a 
distribution with mean equal to the observed value and 
covariance equal to CPP . Thus, we start by defining an 
ensemble of observations 

 dj 5 d 1 Pj,  (22) 

where j  counts from one to the number N  of ensemble 
members. By subtracting any nonzero mean from the N  
samples Pj , it is ensured that the simulated random mea-
surement errors have mean equal to zero and thus the ran-
dom perturbations do not introduce any bias in the update. 
Next we define the ensemble covariance matrix of the mea-
surement errors as 

 CPP
e 5 PP T, (23) 

while, in the limit of infinite ensemble size this matrix con-
verges to the prescribed error covariance matrix CPP used in 
the Kalman filter. The following discussion is  valid using 
both an exactly prescribed CPP  and an ensemble representa-
tion CPP

e  of CPP , which can be useful in some implementa-
tions of the analysis scheme. 

The analysis step in EnKF consists of updates performed 
on each of the ensemble members, as given by 

     c j
a 5 c j

f 1(Ccc
e ) fMT(M (Ccc

e ) fMT1CPP
e ) 21 (dj2Mc j

f ) .  (24)

With a finite ensemble size, the use of the ensemble covari-
ances introduces an approximation of the true covarianc-
es. Furthermore, if the number of measurements is larger 
than the number of ensemble members, then the matrices 
M (Ccc

e ) fMT and CPP
e  are singular, and pseudo inversion 

must be used. 
Equation (24) implies that 

   ca 5 c f 1 (Ccc
e ) fMT(M (Ccc

e ) fMT 1 CPP
e ) 21 (d 2 Mc f ) ,  (25) 

where d 5 d  since the measurement perturbations have 
ensemble mean equal to zero. Thus, the relation between 
the analyzed and predicted ensemble mean is identical 
to the relation between the analyzed and predicted state in 
the standard Kalman filter, apart from the use of (Ccc

e ) f,a  
and CPP

e  instead of Ccc
f,a  and CPP . Note that the introduction 

of an ensemble of observations does not affect the update 
of the ensemble mean. 

It is now shown that, by updating each of the ensemble 
members using the perturbed observations, we can create 
a new ensemble with the correct error statistics. We derive 
the analyzed error covariance estimate resulting from the 
analysis scheme given above, although we retain the stan-
dard Kalman filter form for the analysis equations. First, 
(24) and (25) are used to obtain 

 c j
a 2 ca 5 (I 2 KeM ) (c j

f 2 c f ) 1 Ke (dj 2 d) ,  (26) 

where we use the Kalman gain

 Ke 5 (Ccc
e ) fMT(M (Ccc

e ) fMT 1 CPP
e ) 21.  (27) 

The error covariance update is then derived as 

(Ccc
e ) a 5 (ca 2 ca ) (ca 2 ca )T

 5 ( (I 2 KeM ) (c f 2 c f ) 1 Ke (d 2 d ) )

 3 ( (I 2 KeM ) (c f 2 c f ) 1 Ke (d 2 d ) )T

 5 (I 2 KeM ) (c f 2 c f ) (c f 2 c f ) T(I 2 KeM )T

 1 Ke (d 2 d ) (d 2 d )TKe
T

 5 (I 2 KeM ) (Ccc
e ) f (I 2 MTKe

T) 1 KeCPP
e Ke

T

 5 (Ccc
e ) f 2 KeM (Ccc

e ) f 2 (Ccc
e ) fMTKe

T

 1 Ke (M (Ccc
e ) fMT 1 CPP

e )Ke
T

 5 (I 2 KeM ) (Ccc
e ) f.  (28)

The last expression in (28) is the traditional result for the mini-
mum error covariance found in the KF analysis scheme. Thus, 
(28) implies that EnKF in the limit of an infinite ensemble size 
gives the same result as KF. It is assumed that the distributions 
used to generate the model-state ensemble and the observa-
tion ensemble are independent. Using a finite ensemble size, 
neglecting the cross-term introduces sampling errors. Note 
that the derivation (28) shows that the observations d must 
be treated as random variables to introduce the measurement 
error covariance matrix CPP

e  into the expression. That is, 

 CPP
e 5 PP T 5 (d 2 d) (d 2 d)T. (29)

A full-rank measurement error covariance matrix can 
be used in (27), but the use of an ensemble representation of 
the measurement error covariance matrix leads to an exact 
cancellation in the second last line in (27), which becomes 

 Ke (M (Ccc
e ) fMT 1 CPP

e )Ke
T 5 Ke(M(Ccc

e )fMT1CPP
e )

 3 (M(Ccc
e )fMT1CPP

e )21M(Ccc
e ) f

 5 KeM (Ccc
e ) f.  (30) 

Thus, we conclude that the use of a low-rank measurement 
error covariance matrix, represented by the measurement 
perturbations, when computing the Kalman gain, reduces 
the sampling errors in EnKF. The remaining sampling er-
rors come from neglecting the cross- correlation term be-
tween the measurements and the forecast ensemble, which 
is nonzero with a final ensemble size, and from the approx-
imation of the state error covariance matrix using a finite 
ensemble size. 
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The above derivation assumes that the inverse in the Ka-
lman gain (27) exists. However, the derivation also holds 
when the matrix in the inversion is of low rank, for ex-
ample, when the number of measurements is larger than 
the number of realizations and the low-rank CPP

e  is used. 
The inverse in (27) can then be replaced with the pseudoin-
verse, and we can write the Kalman gain as 

 Ke 5 (Ccc
e ) fMT(M (Ccc

e ) fMT 1 CPP
e ) 1.  (31)

When the matrix in the inversion is of full rank, (31) 
becomes identical to (27). Using (31) the expression (30) 
becomes 

Ke (M (Ccc
e ) fMT 1 CPP

e )  Ke
T 5 (Ccc

e ) fMT(M (Ccc
e ) fMT1 CPP

e )1

 3 (M (Ccc
e ) fMT1 CPP

e )

 3 1M 1Ccc
e 2 fMT1CPP

e 21M 1Ccc
e 2 f

 5 (Ccc
e ) fMT(M (Ccc

e ) fMT

 1 CPP
e ) 1M (Ccc

e ) f

 5 KeM (Ccc
e ) f,  (32) 

where we have used the property Y1 5 Y1YY1  of the 
pseudoinverse. 

It should be noted that the EnKF analysis scheme is ap-
proximate in the sense that non-Gaussian contributions 
in the predicted ensemble are not properly taken into ac-
count. In other words, the EnKF analysis scheme does 
not solve the Bayesian update equation for non-Gaussian 
pdfs. On the other hand, the EnKF analysis scheme is not 
just a resampling of a Gaussian posterior distribution. 
Only the updates defined by the right-hand side of (24), 
which are added to the prior non-Gaussian ensemble, are 
linear. Thus, the updated ensemble inherits many of the 
non-Gaussian properties from the forecast ensemble. In 
summary, we have a computationally efficient analysis 
scheme where we avoid resampling of the posterior. 

Ensemble Kalman Filter with 
a Linear Advection Equation
The properties of EnKF are now illustrated in a simple 
example when used with a one-dimensional linear ad-
vection model. The model describes general transport 
in a prescribed background flow on a periodic domain 
of length 1000 m. The model has the constant advection 
speed u 5 1 m/s, the grid spacing Dx 5 1 m, and the time 
step Dt 5 1 s. Given an initial condition, the solution of 
this model is exactly known, which facilitates realistic 

experiments with zero model error to examine the im-
pact of the dynamical evolution of the error covariance. 

The true initial state is sampled from a normal dis-
tribution N , with mean equal to zero, variance equal 
to one, and a spatial decorrelation length of 20 m. The 
first guess solution is generated by drawing  another 
sample from N  and adding this  sample to the true state. 
The initial ensemble of 1000 realizations is generated 
by adding samples drawn from N  to the first guess 
solution. Thus, the initial state is assumed to have an 
error variance equal to one. Four measurements of the 
true solution, distributed regularly in the model do-
main, are assimilated every fifth time step. The mea-
surements of the wave amplitude are contaminated 
by errors of variance equal to 0.01, in nondimensional 
units, and we assume uncorrelated measurement er-
rors. The length of the integration is 300 s, which is 50 
s longer than the time of 250 s needed for the solution 
to advect from one measurement to the next. 

The example in Figure 2 illustrates the convergence of 
the estimated solution at various times during the experi-
ment. In particular, Figure 2 shows how information from 
measurements is propagated with the advection speed and 
how the error variance is reduced each time measurements 
are assimilated. The first plot shows the result of the first 
update with the four measurements. Near the measurement 
locations, the estimated solution is consistent with both the 
true solution and the measurements, and the error variance 
is reduced accordingly. The second plot is taken at t 5 150 s, 
that is, after 30 updates with measurements. Now the infor-
mation from the measurements has propagated to the right 
with the advection speed, as seen both from direct compari-
son of the estimate with the true solution, as well as from the 
estimated variance. The final plot, which is taken at t 5 300 
s, shows that the estimate is now in good agreement with 
the true solution throughout the model domain. Note also 
the linear increase in error variance to the right of the mea-
surements, which is caused by the addition of model errors 
at each time step. It is also clear that the estimated solution 
deteriorates far from the measurements in the advection 
direction. For linear models with regular measurements at 
fixed locations and stationary error statistics, the increase 
of error variance from model errors balances the reduction 
from the updates with measurements. 

Discussion
We now have a complete system of equations that consti-
tute the EnKF, and the similarity with the standard KF is 
maintained both for the prediction of error  covariances 

This article provides a fundamental theoretical basis for understanding EnKF 

and serves as a useful text for future users.
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and in the analysis scheme. For lin-
ear dynamics the EnKF solution 
converges exactly to the KF solution 
with increasing  ensemble size. 

One of the advantages of EnKF is 
that, for nonlinear models, the equa-
tion for the mean is solved and no 
closure assumption is used since each 
ensemble member is integrated by the 
full nonlinear model. This nonlinear 
error evolution is contrary to the ap-
proximate equation for the mean (16), 
which is used in EKF. 

Thus, it is possible to interpret EnKF 
as a purely statistical Monte Carlo meth-
od where the ensemble of model states 
evolves in state space with the mean as 
the best estimate and the spreading of 
the ensemble as the error variance. At 
measurement times each observation 
is represented by another ensemble, 
where the mean is the actual measure-
ment and the variance of the ensemble 
represents the measurement errors. 
Thus, we combine a stochastic predic-
tion step with a stochastic analysis step. 

PROBABILISTIC FORMULATION
For the ensemble Kalman smoother 
(EnKS) [8], the estimate at a particular 
time is updated based on past, present, 
and future measurements. In contrast, a 
filter estimate is influenced only by the 
past and present measurements. Thus, 
EnKF becomes a special case of EnKS, 
where information from measurements 
is not projected backward in time. The 
assumptions of measurement errors 
being independent in time and the dy-
namical model being a Markov process 
are sufficient to derive the EnKF and 
the EnKS. These assumptions are nor-
mally not critical and are already used 
in the original KF. It is also possible to 
include the estimation of static model 
parameters in a consistent manner. The 
combined parameter and state estimation problem for a dy-
namical model can be formulated as finding the joint pdf of 
the parameters and model state, given a set of measurements 
and a dynamical model with known uncertainties. 

Model Equations and Measurements
We consider a model with associated initial and boundary 
conditions on the spatial domain D  with boundary 'D,  and 
with observations 

 
'c (x,t )

't
5 G (c (x, t ) , a (x ) ) 1 q (x, t ) ,  (33) 

 c (x, t0 ) 5 C0 (x ) 1 a(x ) ,  (34) 

 c (j, t ) 5 Cb(j, t ) 1 b (j, t ), for all j [ dD,  (35) 

 a (x ) 5 a0 (x ) 1 a r (x ) ,  (36) 

 M 3c, a 45 d 1 P.  (37) 

The model state c (x, t ) [ R
nc  is a vector consisting of the 

nc  model variables, where each variable is a function of 
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FIGURE 2 An ensemble Kalman fi lter experiment. For this experiment a linear advection 
equation illustrates how a limited ensemble size of 100 realizations facilitates estimation 
in a high-dimensional system whose state vector contains 1000 entries. The plots show 
the reference solution, measurements, estimate, and standard deviation at three different 
times, (a) t 5 5 s, (b) t 5 150 s, and (c) t 5 300 s.
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space and time. The nonlinear model is defined by (33), 
where G (c, a ) [ R

nc  is the nonlinear model operator. More 
general forms can be used for the nonlinear model opera-
tor, although (33) suffices to demonstrate the methods con-
sidered here. 

The model state is assumed to evolve in time from the ini-
tial state C0 (x ) [ R

nc defined in (34), under the  constraints 
of the boundary conditions Cb(j, t ) [ R

nc defined in (35). 
The coordinate j  runs over the surface 'D,where the bound-
ary conditions are defined. The variable b is used to repre-
sent errors in the boundary conditions. 

We define a (x ) [ R
na  as the set of na  poorly known pa-

rameters of the model. The parameters can be a vector of 
spatial fields in the form written here, or, alternatively, a 
vector of scalars, and are assumed to be constant in time. 
A prior estimate a0 (x ) [ R

na  of the vector of parameters 
a (x ) [ R

na  is introduced through (36), and possible errors 
in the prior are represented by a r (x ) . 

Additional conditions are present in the form of the 
measurements d [ R

M. Both direct point measurements of 
the model solution and more complex parameters that are 
nonlinearly related to the model state can be used. For the 
time being we restrict ourselves to the case of linear mea-
surements. An example of a direct measurement functional 
is then 

Mi 3c 45 33c
T(x, t )dci

d ( t2 ti)d (x2 xi)dt dx5c (xi, ti)dci
,  

 (38)

where the integration is over the space and time domain of 
the model. The measurement di  is related to the model-state 
variable as selected by the vector dci

[ R
nc   and evaluated at 

the space and time location (xi, ti).  If a model with three 
state variables is used and the second variable is measured, 
then dci

 becomes the vector (0, 1, 0)T, while d ( t2 ti)  and 
d (x2 xi) are Dirac delta functions. 

In (33)–(37) we include unknown error terms, q , a , b,  
a r,  and P,  which represent errors in the model equations, 
the initial and boundary conditions, the first guess for the 
model parameters, and the measurements, respectively. 
Without these error terms the system as given above is 
overdetermined and has no solution. On the other hand, 

when we introduce these error terms without additional 
conditions, the system has infinitely many solutions. The 
way to proceed is to introduce a statistical hypothesis 
about the errors, for example, assuming that the errors are 
 normally distributed with means equal to zero and known 
error covariances. 

Bayes Theorem
We now consider the model variables, the poorly known 
parameters, the initial and boundary conditions, and the 
measurements as random variables, which can be described 
by pdfs. The joint pdf for the model state, as a function of 
space, time, and the parameters, is f(c, a ) .  Furthermore, 
for the measurements we can define the likelihood func-
tion f(d|c, a ) .  Thus, we may have measurements of both 
the model state and the parameters. Using Bayes theorem, 
the parameter and state estimation problem is now written 
in the simplified form 

 f(c, a|d) 5gf(c, a ) f(d|c, a ),  (39) 

where g  is a constant of proportionality whose computa-
tion requires the evaluation of the integral of (39) over the 
high-dimensional solution and parameter space. 

Parameter estimation problems, in particular, for ap-
plications involving high-dimensional models, such as 
oceanic, atmospheric, marine ecosystem, hydrology, and 
petroleum applications, often do not include the model 
state as a variable to be estimated. It is more common to 
first solve for the poorly known parameters by minimizing 
an appropriate cost function where the model equations 
act as a strong constraint and then rerun the model to find 
the model solution. It is then implicitly assumed that the 
model does not contain errors, an assumption that gener-
ally is invalid. 

In the dynamical model, we specify initial and bound-
ary conditions as random variables, and we include prior 
information about the parameters. Thus, we define the pdfs 
f(c0 ) ,  f(cb) ,  and f(a )  for the estimates c0, cb , and a  of 
the initial and boundary conditions, and the parameters, 
respectively. Instead of f(c,a ) ,  we write 

 f(c, a, c0, cb) 5 f(c|a, c0, cb) f(c0 ) f(cb) f(a ) .  (40) 

Equation (39) should accordingly be written as 

 f(c, a, c0, cb|d)5gf(c|a, c0, cb) f(c0 ) f(cb) f(a ) f(d|c, a ),  
 (41)

where it is also assumed that the boundary conditions 
and initial conditions are independent, although this as-
sumption may not be true for the locations where initial 
and boundary conditions intersect at t0. Here the pdf 
f(c|a, c0, cb)  is the prior density for the model solution 
given the parameters and initial and boundary conditions. 

t0 t1 t2 t3 t4 t5 t6 t7 ti tk
ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψi ψk

dJd2 d3d1
ti(1) ti(2) ti(3) ti(j) t i(J)

dj

. . .

. . .

. . .. . .
. . . . . .

. . .

. . .

FIGURE 3 Discretization in time. The time interval is  discretized into 
k1 1 nodes, t 0 to t k,  where the model state vector ci 5c 1 ti 2  is 
defined. The measurement vectors dj  are available at the discrete 
subset of times t i 1j2,  where  j5 1, . . . , j.  
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Discrete Formulation

In the following discussion we work with a model state that 
is discretized in time, that is, c (x, t )  is represented at fixed 
time intervals as ci(x ) 5c (x, ti)  with i5 0, 1, c, k ; see 
Figure 3. Furthermore, we define the pdf for the model in-
tegration from time ti21 to ti  as f(ci|ci21, a, cb( ti) ) , which 
assumes that the model is a first-order Markov process. The 
joint pdf for the model solution and the parameters in (40) 
can now be written as 

f(c1, c, ck, a, c0, cb)

 5 f(a ) f(cb) f(c0 ) q
k

i51
f(ci|ci21, a, cb) .  (42) 

Independent Measurements
We now assume that the measurements d [ R

M can be divided 
into subsets of measurement vectors dj [ R

mj, collected at times 
ti(j) , with j5 1, c, J  and 0 , i(1) , i(2) ,c, i( J ) , k. 
The subset dj depends only on c ( ti(j) ) 5ci(j)  and a. Further-
more, it is assumed that the measurement errors are uncorre-
lated in time. We can then write 

 f(d|c, a ) 5q
J

j51
f(dj|ci(j), a ) ,  (43) 

and from Bayes theorem we obtain 

 f(c1, c, ck, a, c0, cb|d)

 5gf(a ) f(c0 ) f(cb) q
k

i51
f(ci|ci21, a ) q

J

j51
f(dj|ci(j), a ) .  (44) 

Sequential Processing of Measurements
It is shown in [36] and [37] that, in the case of time- correlated 
model errors, it is possible to reformulate the problem as a 
first-order Markov process by augmenting the model er-
rors to the model-state vector. A simple equation forced by 
white noise can be used to simulate the time evolution of 
the model errors. 

In [38] it is shown that a general smoother and filter can 
be derived from the Bayesian formulation given in (44). We 
now rewrite (44) as a sequence of iterations 

 f(c1, c, ci(j), a, c0, cb|d1, c, dj)

 5gf(c1, c, ci(j21), a, c0, cb|d1, c, dj21 )

 3 q
i(j)

i5i(j21)11
f(ci|ci21, a ) f(dj|ci(j), a ) .  (45)

Thus, we formulate the combined parameter and state-
 estimation problem using Bayesian statistics and see that, 
under the condition that measurement errors are indepen-
dent in time and the dynamical model is a Markov process, 
a recursive formulation can be used for Bayes theorem. 

That is, the model state and parameters with their respec-
tive uncertainties are updated sequentially in time when-
ever the measurements become available. 

We note again that this recursion does not introduce 
any significant approximations and thus describes the full 
inverse problem as long as the model is a Markov process 
and the measurements errors are independent in time. 
Further, for many problems the recursive processing of 
measurements provides a better posed approach for solv-
ing the inverse problem than trying to process all of the 
measurements simultaneously as is normally done in vari-
ational formulations. Sequential processing is also conve-
nient for forecasting problems where new measurements 
can be processed when they arrive without recomputing 
the full inversion. 

Ensemble Smoother
The ensemble smoother (ES) can be derived by assuming 
that the pdfs for the model prediction as well as the likeli-
hood are Gaussian and by using the original Bayes theo-
rem (41). The derivation requires that we approximate 
the pdfs resulting from an integration of the ensemble 
through the whole assimilation time period with Gauss-
ian pdfs. We can then replace Bayes theorem with a least 
squares cost function similar to (1), but with the time di-
mension included, and the analysis becomes a standard 
variance minimizing analysis in space and time. All of 
the data are processed in one step, and the solution is up-
dated as a function of space and time, using the space-
time covariances estimated from the ensemble of model 
realizations. The ES in [39] is computed as a first-guess 
estimate, which is the mean of the freely evolving ensem-
ble, plus a linear combination of time-dependent influ-
ence functions, which are calculated from the ensemble 
statistics. Thus, the method is equivalent to a variance-
minimizing objective analysis method where the time 
dimension is included. 

Ensemble Kalman Smoother
An assumption of Gaussian pdfs for the model prediction 
(the prior) and the distribution for the data (the likeli-
hood function) in (45) allows us to replace the Bayesian 
update formula with a least squares cost function sim-
ilar to (1) but additionally including the state vector at 
all previous times. Again the cost function is minimized 
using a standard variance-minimizing analysis scheme, 
involving a state variable defined from the initial time to 
the current update time. That is, we also update the state 
variables backward in time using the combined time and 
space ensemble covariances. This scheme results in the 
EnKS as in [38]. 

Ensemble Kalman Filter
The EnKF is just a special case of EnKS where the up-
dates at previous times are skipped. EnKF is obtained by 
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 integrating out the state variables at all previous times 
from (45) and assuming that the resulting model pdf for 
the current time as well as the likelihood function are 
Gaussian. The incremental update (45) can then be re-
placed by the penalty function (1), leading to the standard 
Kalman filter analysis equations. Thus, the measurements 
are filtered. At the final time, or, actually, from the lat-
est update and for predictions into the future, EnKF and 
EnKS provide identical solutions. 

EXAMPLE WITH THE LORENZ EQUATIONS
The example from [40] and [38] with the chaotic Lorenz 
model of [41] is now used to compare ES, EnKS, and EnKF. 
The Lorenz model consists of the coupled system of nonlin-
ear ordinary differential equations given by 

 
dx
dt

5 g (y 2 x ) ,  (46)

 
dy

dt
5 rx 2 y 2 xz,  (47)

 
dz
dt

5 xy 2 bz.  (48) 

Here x ( t ), y ( t ), and z ( t ) are the dependent variables, 
and we choose the parameter values g 5 10, r 5 28, and 
b 5 8/3. The initial conditions for the reference case are 

given by (x0, y0, z0 ) 5 (1.508870, 2 1.531271, 25.46091)  and 
the time interval is t [ 30, 40 4 . 

The observations and initial conditions are simulated by 
adding normally distributed white noise with zero mean 
and variance equal to 2.0 to the reference solution. All of 
the variables x , y , and z  are measured. In the calculation 
of the ensemble statistics, an ensemble of 1000 members is 
used. The same simulation is rerun with various ensemble 
sizes, and the differences between the results are negligible 
with as few as 50 ensemble members. 

The three methods discussed above are now exam-
ined and compared in an experiment where the time 
between measurements is Dtobs 5 0.5 , which is similar to 
Experiment B in [40]. In the upper plots in figures 4–6, 
the red line denotes the estimate and the blue line is the 
reference solution. In the lower plots the red line is the 
standard deviation estimated from ensemble statistics, 
while the blue line is the true residuals with respect to 
the reference solution. 

Ensemble Smoother Solution
The ES solution for the x-component and the associated 
estimated error variance are given in Figure 4. It is found 
that the ES performs rather poorly with the current data 
density. Note, however, that even if the fit to the reference 
trajectory is poor, the ES solution captures most of the tran-
sitions. The main problem is related to the estimate of the 
amplitudes in the reference solution. The problem is linked 
to the appearance of non-Gaussian contributions in the dis-
tribution for the model evolution, which can be expected in 
such a strongly nonlinear case. 

Clearly, the error estimates evaluated from the pos-
terior ensemble are not large enough at the peaks where 
the smoother performs poorly. The underestimated errors 
again result from neglecting the non-Gaussian contribution 
from the probability distribution for the model evolution. 
Otherwise, the error estimate looks reasonable with mini-
ma at the measurement locations and maxima between the 
measurements. Note again that if a linear model is used, 
then the posterior density becomes Gaussian and the ES 
provides, in the limit of an infinite ensemble size, the same 
solution as the EnKS and the Kalman smoother. 

Ensemble Kalman Filter Solution 
EnKF does a reasonably good job tracking the reference 
solution with the lower data density, as can be seen in Fig-
ure 5. One transition is missed near t 5 18, while EnKF has 
problems, for example, at t 5 1, 5, 9, 10, 13, 17, 19, 23, 26, and 
34. The error variance estimate is consistent, showing large 
peaks at the locations where the estimate obviously has 
problems tracking the reference solution. Note also the sim-
ilarity between the absolute value of the residual between 
the reference solution and the estimate, and the estimated 
standard deviation. For all peaks in the  residual, a corre-
sponding peak is present in the error  variance estimate. 
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FIGURE 4 Ensemble smoother. (a) shows the inverse estimate 
(red line) and reference solution (blue line) for x. (b) shows the 
corresponding estimated standard deviations (red line) as well as 
the absolute value of the difference between the reference solu-
tion and the estimate, that is, the real posterior errors (blue line). 
(Reproduced from [38] with permission.) 



JUNE 2009 « IEEE CONTROL SYSTEMS MAGAZINE 95

The error estimates show the same behavior as in [32] 
with very strong error growth when the model solution 
passes through the unstable regions of the state space and 
otherwise weak error variance growth or even decay in the 
stable regions. Note, for example, the low error variance for 
t [ 328, 34 4  corresponding to the oscillation of the solution 
around one of the attractors. 

In this case, the nonlinearity of the problem causes 
EnKF to perform better than the ES. In fact, at each up-
date, the realizations are pulled toward the true solution 
and are not allowed to diverge toward the wrong attrac-
tors of the system. In addition, the Gaussian increments 
of the ensemble members lead to an approximately 
Gaussian ensemble distributed around the true solution. 
This property of the sequential updating is not exploited 
in the ES, where realizations evolve freely and lead to 
non-Gaussian ensemble distributions. Note again that if 
the model dynamics are linear, then, in the limit of an 
infinite ensemble size, EnKF gives the same solution as 
the Kalman filter and the ES  solution gives a better result 
than EnKF. 

Ensemble Kalman Smoother Solution 
Figure 6 shows the solution obtained by EnKS. This so-
lution is smoother in time than the EnKF solution and 
provides a better fit to the reference trajectory. All of the 
problematic locations in the EnKF solution are recov-
ered in the smoother estimate. Note, for example, that 
the additional transitions at t 5 1, 5, 13, and 34 in the 
EnKF solution are eliminated in the smoother. In addi-
tion, the missed transition at t 5 17 is recovered by EnKS. 

The error estimates are reduced throughout the time in-
terval. In particular the large peaks in the EnKF solution are 
now significantly reduced. As for the EnKF solution, there 
are corresponding peaks in the error estimates for all the 
peaks in the residuals, which suggests that the EnKS error 
estimate is consistent with the true errors. In fact, in [40], it 
is found that the EnKS solution with Dtobs 5 0.5 seems to do 
as well or better than the EnKF solution with Dtobs 5 0.25. 

Note that, if only z  is measured in the Lorenz equations, 
the measured information is not sufficient to determine the 
solution. EnKF in this case develops realizations located at 
both attractors, and a bimodal distribution develops. The 
EnKF update breaks down with the bimodal distribution, 
but even the use of a Bayesian update in a particle filter does 
not suffice to determine the correct solution in this case since 
the bimodal distribution has the same probability for both 
peaks of the distribution. Note also that the assumption of 
Gaussian pdfs in the analysis equation is an approximation, 
whose severity must be judged on a case-by-case basis. 

PRACTICAL IMPLEMENTATION
In [37] it is shown that the EnKF analysis scheme can be 
formulated in terms of the ensemble without reference to 
the ensemble covariance matrix, which allows for efficient 

numerical implementation and an alternative interpretation 
of the method. In the discussion below, we omit the time in-
dex, since all variables refer to the same update time. 

Ensemble Representation of the Covariance
We define the matrix A  whose columns are the ensemble 
members ci [ R

n  by 

 A 5 (c1, c2, c, cN) [ R
n3N,  (49) 

where N  is the number of ensemble members and n  is the 
size of the model state vector. The ensemble mean is stored 
in each column of A , which is defined as 

 A 5 A1N,  (50) 

where 1N [ R
N3N  is the matrix whose entries are all equal 

1/N . We then define the ensemble perturbation matrix as 

 Ar 5 A 2 A 5 A (I 2 1N) .  (51) 

The ensemble covariance matrix Ccc
e [ R

n3n  can be de-
fined as 

 Ccc
e 5

1
N 2 1

Ar (Ar )T. (52) 

Measurement Perturbations
Given a vector of measurements d [ R

m , where m  is the 
number of measurements, we define the N  vectors of per-
turbed observations as 

 dj 5 d 1 Pj,  j 5 1, c, N,   (53) 

which are stored in the columns of the matrix 

 D 5 (d1, d2, c, dN) [ R
m3N,  (54) 

while the ensemble of perturbations, with ensemble mean 
equal to zero, are stored in the matrix 

 E 5 (P1, P2, c, PN) [ R
m3N,  (55) 

from which we construct the ensemble representation of 
the measurement error covariance matrix 

 CPP
e 5

1
N 2 1

EET. (56)

Analysis Equation
The analysis equation (24), expressed in terms of the en-
semble matrices, is 

 Aa 5 A 1 Ccc
e MT(MCcc

e MT 1 CPP
e ) 21 (d 2 MA ) .  (57) 
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Using the ensemble of innovation vectors defined as 

 Dr 5 D 2 MA,  (58) 

along with the definitions of the ensemble error cova-
riance matrices in (52) and (56), the analysis can be ex-
pressed as 

 Aa 5 A 1 ArArTMT(MArArTMT 1 EET) 21Dr,  (59) 

where all references to the error covariance matrices are 
eliminated. 

We now introduce the matrix S [ R
m3N  holding the 

measurements of the ensemble perturbations by 

 S 5 MAr,  (60) 

and the matrix C [ R
m3m , 

 C 5 SST 1 (N 2 1)CPP.  (61) 

Here we can use the full-rank, exact measurement error co-
variance matrix CPP  as well as the low-rank representation 
CPP

e  defined in (56). 

The analysis equation (59) can then be written as 

 Aa 5 A 1 ArSTC21Dr  
 5 A 1 A (I 2 1N)STC21Dr  
 5 A (I 1 (I 2 1N)STC21Dr )  
 5 A (I 1 STC21Dr )  
 5 AX,  (62) 

where we use (51) and 1NST ; 0 . The matrix X [ R
N3N  is 

defined as 

 X 5 I 1 STC21Dr.  (63) 

Thus, the EnKF analysis becomes a combination of the fore-
cast ensemble members and is searched for in the space 
spanned by the forecast ensemble. 

It is clear that (62) is a stochastic scheme due to the use 
of randomly perturbed measurements. Thus, (62) allows 
for a nice interpretation of EnKF as a sequential Markov 
chain Monte Carlo algorithm, while making it easy to un-
derstand and implement the method. The efficient and 
stable numerical implementation of the analysis scheme is 
discussed in [8], including the case in which C  is singular 
due to the number of measurements being larger than the 
number of realizations. 

In practice, the ensemble size is critical since the com-
putational cost scales linearly with the number of real-
izations. That is, each individual realization needs to be 
integrated forward in time. The cost associated with the 
ensemble integration motivates the use of an ensemble 
with the minimum number of realizations that can pro-
vide acceptable accuracy. 

There are two major sources of sampling errors in EnKF, 
namely, the use of a finite ensemble of stochastic model re-
alizations as well as the introduction of stochastic measure-
ment perturbations [8], [42]. In addition, stochastic model 
errors influence the predicted error statistics, which is ap-
proximated by the ensemble. The sampling of physically 
acceptable model realizations and realizations of model er-
rors is chosen to ensure that the ensemble matrix has full 
rank and good conditioning. Furthermore, stochastic per-
turbation of measurements used in EnKF can be avoided 
using a square root implementation of the analysis scheme, 
to be discussed below. 

EnKF for Combined Parameter and State Estimation
When using EnKF to estimate poorly known model 
 parameters, we start by representing the prior pdfs of the 
parameters by an ensemble of realizations, which is aug-
mented to the state ensemble matrix A  at the update steps. 
The poorly known parameters are then updated using the 
variance-minimizing analysis scheme, where the covari-
ances between the predicted data and the parameters are 
used to update the parameters. 
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FIGURE 5 Ensemble Kalman filter. (a) shows the inverse estimate 
(red line) and reference solution (blue line) for x . (b) shows the 
corresponding estimated standard deviations (red line) as well as 
the absolute value of the difference between the reference solu-
tion and the estimate, that is, the real posterior errors (blue line). 
(Reproduced from [38] with permission.)
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The updated ensemble for the parameters is included in 
the space defined by the initial ensemble of realizations. Thus, 
EnKF reduces the dimension of the combined parameter and 
state estimation problem to a size given by the dimension of 
the ensemble space. This simplification allows us to handle 
large sets of parameters, but it requires that the true param-
eters can be well represented in the ensemble space. 

The parameter estimation approach used in EnKF and 
EnKS is a statistical minimization, or sampling of a posterior 
pdf, rather than a traditional minimization of a cost function. 
Thus, EnKF does not to the same extent suffer from the typical 
problems of converging to local minima as in parameter-esti-
mation methods. EnKF rather has a problem with multimodal 
pdfs. However, the EnKF does not search for the mode but 
rather the mean of the distribution. Thus, in many cases where 
a minimization method might converge to a local minimum, 
EnKF provides an estimate that is the mean of the posterior. 
An important point is that the sequential updating used in 
EnKF reduces the risk of development of multimodal distribu-
tions, a result that is supported by the Lorenz example. 

DETERMINISTIC SQUARE 
ROOT SCHEME
The perturbation of measurements used in the EnKF 
standard analysis equation (57) is an additional source of 
sampling error. However, methods such as the square root 
scheme compute the analysis without perturbing the mea-
surements [10]–[13], [43], [44]. 

Based on results from [10]–[13], a variant of the square 
root analysis scheme is derived in [42] and further elab-
orated on in [8]. The perturbation of measurements is 
avoided, and the scheme solves for the analysis without 
 imposing any additional approximations, such as the as-
sumption of uncorrelated measurement errors or knowl-
edge of the inverse of the measurement error covariance 
matrix. This implementation requires the inverse of the 
matrix C , defined in (61), which can be computed effi-
ciently, either using the low-rank ensemble representation 
Ce  or by projecting the measurement error covariance ma-
trix onto the space defined by the columns in S  from (60). 
This version of the square root scheme is now presented. 

Updating the Mean
In the square root scheme, the analyzed ensemble mean is 
computed from the standard Kalman filter analysis equa-
tion, which can be obtained by multiplying the first line 
in (62) from the right with 1N , so that each column in the 
resulting equation for the mean becomes 

 ca 5  c f 1 ArSTC21 (d 2 M c f ) .  (64) 

Updating the Ensemble Perturbations
The deterministic algorithm used to update the ensem-
ble perturbations is derived starting from the traditional 

analysis equation for the covariance update (28) in the Kal-
man filter. By using the ensemble covariances, (28) can be 
 written as 

(Ccc
e ) a

5 (Ccc
e ) f 2 (Ccc

e ) fMT(M (Ccc
e ) fMT 1 R ) 21M (Ccc

e ) f,   (65) 

with the time index dropped for convenience. When using 
the ensemble representation for the error covariance matrix 
CPP

e  defined in (52), (65) becomes 

 AarAarT 5 Ar (I 2 STC21S)ArT, (66)

where S  and C  are defined in (60) and (61), and we drop the 
superscripts “f” on the forecast ensemble. We now derive 
an equation for updating the ensemble perturbations Ar  by 
defining a factorization of (66), which does not involve the 
measurements or measurement perturbations. 

We start by forming C  as defined in (61). For now we 
assume that C21 exists, which requires that the rank of the 
ensemble be greater than the number of measurements. 
The low-rank case involves pseudo inversion [8]. Note also 
that the use of a full rank CPP

e  can result in a full rank C  
even when m $ N . 
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By computing the eigenvalue decomposition ZLZT 5 C , 
we obtain the inverse of C  as 

 C21 5 ZL21ZT, (67) 

where Z [ R
m3m  is an orthogonal matrix and L [ R

m3m  is 
diagonal. The eigenvalue decomposition may be the most 
demanding computation required for the analysis when m  
is large. An efficient alternative inversion algorithm is pre-
sented in [8]. 

We now write (66) as 

 AarAarT 5 Ar (I 2 STZL21ZTS)ArT

 5 Ar (I 2 (L21/2ZTS)T(L21/2ZTS) )ArT

 5 Ar (I 2 X2
TX2 )ArT, (68) 

where X2 [ R
m3N  is defined as 

 X2 5 L21/2ZTS,  (69) 

and where rank (X2) = min(m, N–1). Thus, X2 is a projection 
of S  onto the eigenvectors of C  scaled by the square root of 
the eigenvalues of C . 

Next we compute the singular value decomposition of 
X2 given by 

  U2S2V2
T 5 X2,  (70) 

with U2 [ R
m3m , S2 [ R

m3N  and V2 [ R
N3N . Since U2 

and V2 are orthogonal matrices, (68) can be written 

 AarAarT 5 Ar (I 2 3U2S2V2
T 4T 3U2S2V2

T 4 )ArT

 5 Ar (I 2 V2S2
TS2V2

T)ArT 

 5 ArV2 (I 2 S2
TS2 )V2

TArT 

 5 (ArV2"I 2 S2
TS2 ) (ArV2"I 2 S2

TS2 )T. (71) 

Thus, a solution for the analysis ensemble perturbations is 

 Aar 5 ArV2"I 2 S2
TS2.  (72) 

As noted in [45] the update equation (72) does not conserve 
the mean of the ensemble perturbations and in fact leads to 
the production of outliers that contain most of the ensem-
ble variance as explained in [46] and [8], which is further 
illustrated in the example below. 

We now write the square root update in the more gen-
eral form 

 Aar 5 ArT,  (73) 

where T  is a square root transformation matrix. 
It is shown in [44] and [47] that for the square root analy-

sis scheme to be unbiased and preserve the zero mean in the 

updated perturbations, the vector (1/N )1 , where 1 [ R
N  

has all components equal to one, must be an eigenvector 
of the square root transformation matrix T . As noted in 
[44] and [47], this condition is not satisfied for the update 
in (72). 

Multiplying (73) from the right with the vector 1  and as-
suming that (1/N )1  is an eigenvector of T , we can write 

 0 5 Aar1 5 ArT1 5 lAr1 5 0.  (74) 

Equation (74) shows that a sufficient condition for the 
mean to be unbiased is that (1/N )1  be an eigenvector of T . 
If the transform matrix is of full rank, then this condition is 
also necessary [47]. 

The symmetric square root solution for the analysis en-
semble perturbations is defined as 

 Aar 5 ArV2 (I 2 S2
TS2 ) 1/2V2

T. (75) 

It is easy to show that (75) is also a factorization 
of (71) since V2  is an orthogonal matrix. As shown in 
[44], [47], the symmetric square root has an eigenvector 
equal to (1/N )1  and is unbiased. In addition, the sym-
metric square root resolves the issue with outliers in the 
factorization used in (72). The analysis update of the 
perturbations becomes a symmetric contraction of the 
forecast ensemble perturbations. Thus, if the predicted 
ensemble members have a non-Gaussian distribution, 
then the updated distribution retains the shape but the 
variance is reduced. 

A randomization of the analysis update can be used 
to generate updated perturbations that better resemble a 
Gaussian distribution [42]. Thus, we write the symmetric 
square root solution (75) as 

 Aar 5 ArV2 (I 2 S2
TS2 ) 1/2V2

TF T, (76) 

where F  is a mean-preserving random orthogonal matrix, 
which can be computed using the algorithm from [44]. 

The properties of the square root schemes are illus-
trated in Figure 7, which shows the resulting ensemble up-
dates using several variants of the EnKF analysis scheme. 
The Lorenz equations (46)–(48) are used since the strong 
nonlinearities lead to the development of a non-Gaussian 
distribution for the forecast ensemble. Three observations 
are used in the update step. Each ensemble member is plot-
ted as a circle in the x, y  plane. In Figure 7(a) and (b) the 
forecast ensemble members are plotted as the blue circles, 
which have a non-Gaussian distribution in the x, y  plane. 

In Figure 7(a) the updated analysis from the “one-
sided” square root scheme in (72) is shown as the yellow 
circles. It can be seen that N 2 3 of the updated ensemble 
perturbations collapse onto (0, 0), while the three non-
zero “outliers,” one for each measurement, determine 
the ensemble variance. However, one of the outliers is 
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too close to zero to be distinguished 
from the other points at zero. The 
variance of the updated ensemble is 
correct, but the analysis introduces a 
bias through a shift in the ensemble 
mean. The shift in the mean should 
come as no surprise since we do not 
impose a condition for the conserva-
tion of the mean when the update 
equation is derived. The particular 
ensemble collapse related to the use 
of (72) is discussed and explained in 
[8]. It is in fact shown that with three 
measurements and a diagonal mea-
surement error covariance matrix, 
we obtain an ensemble with three 
outliers, while the remainder of the 
perturbations collapse onto zero. 

In Figure 7(a) the updated analy-
sis from the symmetric square root 
scheme in (75) is shown as the red 
circles. This scheme has the property 
that it rescales the ensemble of pertur-
bations without changing the original 
shape of the perturbations. Thus, the 
scheme allows for preserving pos-
sible non-Gaussian structures in the 
ensemble during the update. We also 
note that the symmetric square root 
scheme from (75) is unbiased and thus 
preserves the mean [44]. 

In Figure 7(b) the updated analy-
sis from the symmetric square root 
scheme from (76), which includes 
an additional mean-preserving 
random rotation, is plotted using 
the green circles. It is clear that the 
ensemble of updated perturbations 
now has a Gaussian shape, and the 
non- Gaussian shape of the forecast 
ensemble perturbations is lost. The 
random rotation completely destroys 
any prior structure in the ensemble 
by randomly redistributing the variability among all of 
the ensemble members. Thus, the random rotation acts 
as a complete resampling from a Gaussian distribution, 
while preserving the ensemble mean and variance. 

Figure 7(b) also shows the updated analysis from the 
standard EnKF scheme from (62), where the measure-
ments are randomly perturbed to represent their uncer-
tainty. The standard EnKF analysis becomes similar to 
the symmetric square root analysis with random rotation. 
As with the symmetric square root analysis, most of the 
non-Gaussian shape of the forecast ensemble is lost. How-
ever, only the increment in the standard EnKF analysis is 

Gaussian, and some of the non-Gaussian properties of the 
forecast ensemble is retained, as indicated by the two out-
liers that represent the tail of the distribution seen in the 
forecast ensemble. 

It is also interesting to consider the standard EnKF 
scheme when used without perturbation of measurements. 
It is then clear from (28) that the variance is reduced twice by 
the additional multiplication with I 2 KeM  resulting from 
CPP

e  in (28) being identical to zero when the measurements 
are not treated as stochastic variables. Figure 7(a) shows that 
the EnKF scheme without perturbation of  measurements 
preserves the shape of the forecast  distribution in the same 
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way as the symmetric square root scheme, although the 
variance is too low. Thus, the perturbation of measure-
ments in EnKF both increases the ensemble variance to the 
“correct” value, and introduces additional randomization. 
The randomization is different from the one observed in 
(76) since only the increments are randomized in the EnKF 
scheme with perturbation of measurements. 

It is currently not clear which of the analysis schemes, 
that is, the standard EnKF (62), the symmetric square root 
(75), or the symmetric square root with random rotation 
(76), is best in practice. Probably the choice of analysis 
scheme depends on the dynamical model and possibly also 
on the measurement density and ensemble size used. For a 
linear dynamical model, the forecast distribution is Gauss-
ian, and the random rotation is not needed. Thus, we then 
expect the symmetric square root (75) to be the best choice. 
On the other hand, for a strongly nonlinear dynamical 
model where non-Gaussian effects are dominant in the pre-
dicted ensemble, the symmetric square root with a  random 
rotation (76) or EnKF with perturbed measurements (62) 
may work better. Both of these schemes introduce Gaussi-
anity into the analysis update, while a Gaussian forecast 
ensemble may lead to more consistent analysis updates. 

The random rotation might be considered as a re-
 sampling from a Gaussian distribution at each analysis 
update. Note again that the random rotation in the square 
root filter, contrary to the measurement perturbation used 
in EnKF, completely eliminates all previous non-Gaussian 
structures that may be contained in the forecast ensemble. 

SPURIOUS CORRELATIONS, 
LOCALIZATION, AND INFLATION
Since EnKF is a Monte Carlo method, making this method 
affordable for large systems requires the use of a sufficient-
ly small ensemble of model realizations. Around 100 real-
izations in the ensemble is typical in applications, and in 
many cases we see only marginal improvements when the 
ensemble size is further increased, which is explained by 
the slow convergence, proportional to "N , of Monte Carlo 
methods, together with the fact that a large part of the vari-
ability in the state and parameters often is well represented 
by an ensemble of 100 model realizations. On the other 
hand, even O (100) model realizations become extremely 
computationally demanding in many applications, which 
is an incentive for using as few realizations as possible. In 
the following we discuss the problems caused by using a 
finite ensemble size and present some remedies that can 
reduce the impact of sampling errors. 

Spurious Correlations
The use of a finite ensemble size to approximate the error 
covariance matrix introduces sampling errors that are seen 
as spurious correlations over long spatial distances or be-
tween variables known to be uncorrelated. A result of these 
sampling errors is that the updated ensemble variance is 
underestimated. On the other hand, the consistency of the 
updated variance improves when a larger ensemble is used. 
A spurious correlation between a predicted measurement 
and a variable leads to a small nonphysical update of the 
variable in each ensemble member, and thus an associated 
variance reduction. This problem is present in all EnKF 
 applications and can lead to filter divergence. 

The following example, which is based on the linear ad-
vection case from Figure 2, illustrates the variance reduc-
tion resulting from spurious correlations. We use the form 
(62) for the EnKF analysis scheme with the update matrix 
X  defined from (63). 

An additional ensemble B [ R
nrand3N  is generated, 

where each row contains random samples from a Gaussian 
distribution with mean equal to zero and variance equal to 
one, and the entries in different rows are sampled indepen-
dently. Thus, B  is the ensemble matrix for a state vector of 
independent variables with zero mean and unit variance. 
At analysis times we compute the updates 

 aAa

Bab  

5 aAf

Bfb  

X . (77) 

The predicted ensemble Af  is the result of the ensemble 
integration using the advection model, while Bf  does not 
evolve according to any dynamical equation and at an up-
date time equals Ba at the previous update time. 

Since the correlations between B  and the predicted 
measurement perturbations S  become zero in the limit of 
an infinite ensemble size, it follows that 

 lim
NS`

 
BST

N 2 1
5 0.  (78) 

However, due to the finite ensemble size, (78) can-
not be exactly satisfied, and Ba  experiences a small 
update and associated reduction of variance through 
the update in (77). 

As in the advection example, we compute the matrix X  
based on the four measurements, and then apply it to B  ac-
cording to (77) at every analysis time. The value nrand 5 100 
is found to be sufficient to obtain a consistent result that is 
independent of the random sampling of B . 

To a large extent, EnKF overcomes two problems associated 

with the traditional KF. 
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The variance reduction resulting from the spurious 
correlations is illustrated in Figure 8, which shows the 
decrease of the average variance of the random ensem-
ble B , resulting from EnKF with 100 and 250 realiza-
tions, and from the symmetric square root scheme using 
100 realizations. 

EnKF with 100 realizations is repeated five more times 
using different random seeds to verify that the result 
is independent of the seed. A nearly linear decrease of 
variance is obtained during the first 50 updates, while 
for the final 12 updates the decrease is lower. The reason 
for the lower error variance reduction in the final part of 
the experiment is that the information assimilated at one 
measurement location propagates to the next measure-
ment location during 50 updates. Thus, after 50 updates 
the ensemble variance is lower at the measurement loca-
tions, and the relative weight on the data compared to the 
prediction is decreased. EnKF with 250 realizations ex-
periences a significantly lower impact from spurious cor-
relations, as expected. 

The square root scheme is slightly less influenced 
by the spurious correlations, and an explanation can be 
that the measurement perturbations in the EnKF update 
increases the strength of the update of individual real-
izations and thus amplifies the impact of the spurious 
correlations. 

In many dynamical systems, the variance decrease 
caused by spurious correlations may be masked by strong 
dynamical instabilities. The impact of the spurious correla-
tions may then be less significant. On the other hand, in 
parameter-estimation problems, the spurious correlations 
clearly lead to an underestimate of the ensemble variance 
of the parameters. 

Localization
We now discuss the use of localization to reduce spurious 
correlations [48]. Two classes of localization methods are 
currently used, covariance localization and local updating. 

In [48] the ensemble covariance matrix is multiplied 
with a specified correlation matrix through a Schur product 
(entry-wise multiplication). The specified correlation func-
tions are defined with local support and thus effectively 
truncate the long-range spurious correlations produced by 
the limited ensemble size. Covariance localization is used 
in [11], [12], [49], and [50]. 

We can assume that only measurements located within 
a certain distance from a gridpoint impact the analysis in 
that gridpoint. This assumption allows for an algorithm 
where the analysis is computed gridpoint by gridpoint, 
and only a subset of observations, located near the current 
gridpoint, is used in each local analysis. This approach is 
used in [51], [52], and [37] and is also the approach used in 
the local EnKF in [53]. In addition to reducing the impact of 
long-range spurious correlations, the localization methods 
make it simpler to handle large data sets where the number 

of measurements is much greater than the number of en-
semble realizations. 

Another reason for computing the local analysis is the 
fact that EnKF is computed in a space spanned by the en-
semble members. This subspace may be rather small com-
pared to the total dimension of the model state. Computing 
the analysis gridpoint by gridpoint implies that, for each 
gridpoint, a small model state is solved for in a relatively 
large ensemble space. The analysis then results from a dif-
ferent combination of ensemble members for each grid-
point, and the analysis scheme is allowed to reach solutions 
not originally represented by the ensemble. In many appli-
cations the local analysis scheme significantly reduces the 
impact of a limited ensemble size and allows for the use of 
EnKF with high-dimensional model systems. 

The degree of approximation introduced by the local 
analysis depends on the range of influence defined for 
the observations. In the limit that this range becomes 
sufficiently large to include all of the data, the solution 
for all the gridpoints becomes identical to the standard 
global analysis. The range parameter must be tuned 
and should be large enough to include the information 
from measurements that contribute significantly but 
small enough to eliminate the spurious impact of re-
mote measurements. 

The local analysis algorithm goes as follows. We first 
construct the input matrices to the global EnKF, that is, 
the measured ensemble perturbations S , the innovations 
Dr , and either the measurement perturbations E  or the 
measurement error covariance matrix CPP . We then loop 
through the model grid, and, for each gridpoint, for ex-
ample, ( i, j)  for a two-dimensional model, we extract the 
rows from these matrices corresponding to measurements 

FIGURE 8 Variance reduction of a random ensemble due to spuri-
ous correlations, as a function of analysis updates. The ensemble 
Kalman fi lter (EnKF) with 100 realizations is compared with EnKF 
with 250 realizations as well as the square root scheme using 100 
realizations. EnKF with 100 realizations is repeated using different 
seeds to ensure that the results are consistent.
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that are used in the current update, and then compute the 
matrix X(i,j)  that defines the update for gridpoint ( i, j) . 

The analysis at gridpoint ( i, j)  becomes 

 A(i,j)
a 5 A(i,j)X(i,j)  (79)

 5 A(i,j)X 1 A(i,j) (X(i,j) 2 X ) ,  (80)

where X  is the global solution, while X(i,j)  becomes the so-
lution for a local analysis corresponding to gridpoint ( i, j)  
where only the nearest measurements are used in the anal-
ysis. Thus, it is possible to compute the global analysis first 
and then add the corrections from the local analysis if these 
effects are significant. 

The quality of the EnKF analysis is connected to the en-
semble size used. We expect that to achieve the same qual-
ity of the result, a larger ensemble is needed for the global 
analysis than the local analysis. In the global analysis, a 
large ensemble is needed to properly explore the state space 
and to provide a consistent result that is as good as the local 
analysis. Note also that the use of a local analysis scheme 
is likely to introduce nondynamical modes, although the 
amplitudes of these modes are small if a large enough in-
fluence radius is used when selecting measurements. We 
also refer to the discussions on localization and filtering of 
long-range correlations by [54]. 

In adaptive localization methods, the assimilation sys-
tem itself is used to determine the localization strategy. 
Such algorithms are useful since the dynamical covari-
ance functions change in space and time, and the spuri-
ous correlations depend on the ensemble size. Thus, every 
 assimilation problem and ensemble size requires a separate 
tuning of the localization parameters. 

The hierarchical approach in [55] uses several small en-
sembles to explore the need for using localization in the 
analysis. This approach uses a Monte Carlo method based 
on splitting the ensemble into several small ensembles to 
assess the sampling errors and the spurious correlations. 
This method is a statistically consistent approach to the 
problem. However, the localization is optimized for a small 
ensemble and may become suboptimal when used with the 
full ensemble including all realizations. 

An alternative localization method in [56] is based on 
the online computation of a flow-dependent moderation 
function that is used to damp long-range and spurious cor-
relations. This method is named SENCORP for “smoothed 
ensemble correlations raised to a power.” The idea is that the 
moderation functions can be generated from a smoothed 
covariance function, which, when raised to a power, damps 
small correlations. 

In [57] a local analysis method handles measurements 
that are integral parameters of the model state. The idea 
is that the covariance matrix of the predicted measure-
ments is computed globally using the full model state, 
while the updates are computed locally gridpoint by grid-
point, and only the measurements that have  significant 

correlations with the model variables in the local grid-
point are assimilated. 

Thus, while traditional localization methods are distance 
based, [55]–[57] discuss adaptive localization methods 
where the assimilation system determines whether correla-
tions are significant or spurious, and whether a particular 
measurement shall be used in the update of a particular 
model variable. The further development of adaptive local-
ization methods is important for many applications where 
distance-based methods are less suitable, an example being 
the use of measurements that are integral functions of the 
model state as in [57]. 

Finally, it is not clear how the local analysis scheme 
is best implemented in EnKS. One approach is to define 
the local analysis to use only measurements in a certain 
space-time domain, taking into account the propagation of 
information in the model together with the time scales of 
the model. In [58] EnKS is used with a high-dimensional 
atmospheric circulation model. The impact of spurious cor-
relations related to the lag time in a lagged EnKS is studied, 
and it is pointed out that the lagged implementation facili-
tates localization in time. 

Infl ation
A covariance inflation procedure [59] can be used to coun-
teract the variance reduction observed due to the impact 
of spurious correlations as well as other effects leading to 
underestimation of the ensemble variance. The impact of 
ensemble size on noise in distant covariances is examined 
in [49], while the impact of using an “inflation factor” as 
discussed in [59] is evaluated. The inflation factor is used 
to replace the forecast ensemble according to 

 cj 5 r(cj 2  c ) 1  c,  (81) 

with r  slightly greater than one (typically 1.01). The in-
flation procedure is also used in [60], where the EnKF is 
examined in an application with the Lorenz attractor, and 
results are compared with those obtained from different 
versions of the singular evolutive extended Kalman (SEEK) 
filter and a particle filter. In [60], ensembles with very few 
members are used, which favors methods like the SEEK 
where the “ensemble” of empirical orthogonal functions 
(EOFs) is selected to best represent the model attractor. 

Several approaches adaptively estimate an optimal infla-
tion parameter. In [61] the covariance inflation is estimated 
based on the sequence of innovation statistics, while in [62] 
a method is presented that is based on augmenting the in-
flation parameter to the model state where it is updated as 
a parameter in the EnKF analysis computations. Online es-
timation of the inflation parameter is also studied in [63] 
together with the simultaneous estimation of observation 
errors. It is found that the estimation of inflation alone does 
not work appropriately without accurate observation error 
statistics, and vice versa. 
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Clearly, the inflation parameter becomes a tuning pa-
rameter, and optimally it is best estimated adaptively. The 
need for inflation depends on the use of a local versus glob-
al analysis scheme, and the use of a local scheme can to a 
large extent reduce the need for an additional inflation. 

Here we describe an alternative approach for estimating 
the inflation coefficient. In the spurious correlation example, 
as presented in Figure 8, an independent ensemble is used to 
quantify the variance reduction due to spurious correlations. 
A simple algorithm for correcting the analyzed ensemble 
perturbations in each analysis step goes as follows. 

At each analysis time we generate the additional ensem-
ble matrix Bf  with random normally distributed numbers, 
such that the mean in each row is exactly zero, and the vari-
ance is exactly equal to one. We thus sample the matrix ran-
domly from N(0, 1) . Then, for each row, first subtract any 
nonzero mean, then compute the standard deviation and 
scale all entries by it. Then, compute the analysis update 
according to (77). For each row in Ba, compute the standard 
deviation. The inflation factor r  is then defined as one over 
the average of the standard deviations from each row in Ba. 
The accuracy of the estimated inflation factor depends on 
the number of realizations used as well as the number of 
rows in B . It is expected that with a low number of realiza-
tions additional rows in B  might compensate for the sam-
pling errors when computing the inflation factor. 

This algorithm provides a good first approximation of 
the inflation factor needed to counteract variance reduc-
tion due to long-range spurious correlations resulting from 
sample noise. The estimated inflation factor depends on the 
number of realizations used, the number of measurements, 
and the strength of the update determined by the innova-
tion vector and both the predicted and measurement error 
covariance matrices. A question remains, as to whether the 
inflation is best applied equally for the whole model state, 
including at the measurement locations. 

CONCLUSIONS
This article provides a fundamental theoretical basis for 
understanding EnKF and serves as a useful text for future 
users. Data assimilation and parameter-estimation prob-
lems are explained, and the concept of joint parameter 
and state estimation, which can be solved using ensemble 
methods, is presented. KF and EKF are briefly discussed 
before introducing and deriving EnKF. Similarities and 
differences between KF and EnKF are pointed out. The 
benefits of using EnKF with high-dimensional and highly 
nonlinear dynamical models are illustrated by examples. 
EnKF and EnKS are also derived from Bayes theorem, us-
ing a probabilistic approach. The derivation is based on 
the assumption that measurement errors are independent 
in time and the model represents a Markov process, which 
allows for Bayes theorem to be written in a recursive form, 
where measurements are processed sequentially in time. 
The practical implementation of the analysis scheme is 

 discussed, and it is shown that it can be computed efficient-
ly in the space spanned by the ensemble realizations. The 
square root scheme is discussed as an alternative method 
that avoids the perturbation of measurements. However, 
the square root scheme has other pitfalls, and it is recom-
mended to use the symmetric square root with or with-
out a random rotation. The random rotation introduces a 
stochastic component to the update, and the quality of the 
scheme may then not improve compared to the original 
stochastic EnKF scheme with perturbed measurements. 
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