
NOVEMBER 1998 2913C O H N E T A L .

Assessing the Effects of Data Selection with the DAO Physical-Space Statistical
Analysis System*

STEPHEN E. COHN, ARLINDO DA SILVA, JING GUO,1 META SIENKIEWICZ,1 AND DAVID LAMICH1

Data Assimilation Office, NASA/Goddard Space Flight Center, Greenbelt, Maryland

(Manuscript received 3 April 1997, in final form 22 December 1997)

ABSTRACT

Conventional optimal interpolation (OI) analysis systems solve the standard statistical analysis equations
approximately, by invoking a local approximation and a data selection procedure. Although solution of the
analysis equations is essentially exact in the recent generation of global spectral variational analysis systems,
these new systems also include substantial changes in error covariance modeling, making it difficult to discern
whether improvements in analysis and forecast quality are due to exact, global solution of the analysis equations,
or to changes in error covariance modeling.

The formulation and implementation of a new type of global analysis system at the Data Assimilation Office,
termed the Physical-space Statistical Analysis System (PSAS), is described in this article. Since this system
operates directly in physical space, it is capable of employing error covariance models identical to those of the
predecessor OI system, as well as more advanced models. To focus strictly on the effect of global versus local
solution of the analysis equations, a comparison between PSAS and OI analyses is carried out with both systems
using identical error covariance models and identical data. Spectral decomposition of the analysis increments
reveals that, relative to the PSAS increments, the OI increments have too little power at large horizontal scales
and excessive power at small horizontal scales. The OI increments also display an unrealistically large ratio of
divergence to vorticity. Dynamical imbalances in the OI-analyzed state can therefore be attributed in part to the
approximate local method of solution, and are not entirely due to the simple geostrophic constraint built into
the forecast error covariance model. Root-mean-square observation minus 6-h forecast errors in the zonal wind
component are substantially smaller for the PSAS system than for the OI system.

1. Introduction

Practical implementation of statistical analysis
schemes requires many simplifying assumptions and ap-
proximations for computational feasibility. In conven-
tional optimal interpolation (OI) schemes the analysis
problem is localized: a local approximation is employed
to solve the analysis equations either grid point by grid
point (e.g., Bergman 1979) or in small volumes (Lorenc
1981), and a data selection procedure is invoked to re-
duce the quantity of observations available locally to a
sufficiently small number capable of being handled by
the computational resources. The purpose of this article
is to examine the limitations of this localization of the
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analysis problem in an operational data assimilation sys-
tem.

The term optimal interpolation is generally used to
refer to a statistical analysis scheme that takes the fol-
lowing as basic simplifications: (a) isotropy: horizontal
error correlation functions are isotropic; (b) separability:
three-dimensional error correlation functions are the
product of vertical and horizontal correlation functions;
(c) geostrophy: analyses are multivariate in the wind
and mass variables, with a geostrophic-like balance con-
straint built into the wind/mass error covariance model;
(d) local approximation: the analysis at each grid point
or in each volume incorporates observational data only
in some neighborhood of that grid point or volume; (e)
data selection: only some portion of the observations in
that neighborhood is actually included in the analysis.
As of this writing, many numerical weather prediction
centers have replaced (or will soon replace) OI schemes
with global variational analysis systems that relax or
remove the local approximation and avoid data selection
altogether (Parrish and Derber 1992; Courtier et al.
1998; Rabier et al. 1998; Andersson et al. 1998). Since
these new analysis schemes are formulated directly in
spectral (spherical harmonic) space, rather than in phys-
ical space like OI schemes, they also include changes
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in error covariance modeling and imposed wind/mass
balance constraints. In the process of replacing OI
schemes by global analysis schemes, therefore, estab-
lishing the impact of each individual change on overall
data assimilation system performance is not always im-
mediate.

The Physical-space Statistical Analysis System
(PSAS) being developed at the Data Assimilation Office
(DAO) of NASA’s Goddard Space Flight Center is a
new type of global analysis system designed to replace
the OI analysis component of the Goddard Earth Ob-
serving System Data Assimilation System (GEOS DAS;
Pfaendtner et al. 1995). It differs substantially from cur-
rent global variational analysis systems in that it is for-
mulated directly in physical space, rather than in a spec-
tral space. This new system is designed specifically to
accomodate a number of incremental improvements
over the OI component of the GEOS DAS. In particular,
the initial implementation described in this article em-
ploys error covariance statistics identical to those of the
OI system, including the simple geostrophic balance
constraint relating height and wind error statistics. This
first implementation of PSAS differs from the OI system
only in the numerical method used to solve for the anal-
ysis increments: a global conjugate gradient solver in-
cludes all available observations to produce the ana-
lyzed fields. While improved error covariance models
are being developed, we can isolate and study the impact
of a global analysis scheme on the performance of the
GEOS DAS.

This article is organized as follows. The design goals
of PSAS and its numerical algorithm are described in
section 2. This section also details the relationship be-
tween PSAS and OI schemes, and between PSAS and
global spectral variational analysis schemes. In section
3, we outline the components of version 1 of the GEOS
DAS (GEOS-1 DAS), the original OI-based data assim-
ilation system developed at the DAO. Section 4 de-
scribes the design of our experiments and presents the
results of comparisons between PSAS analyses and
those of the GEOS-1 DAS. Concluding remarks appear
in section 5.

2. The Physical-space Statistical Analysis System

a. Design objectives

At the time the DAO was formed, in February 1992,
plans were initiated to develop a new statistical analysis
system called the Physical-space Statistical Analysis
System. PSAS was designed to meet the following five
requirements.

1) To establish and remove the effects of data selection
in the GEOS-1 OI system. This objective requires
PSAS to be capable of using forecast and observation
error covariance models identical to those specified
in the OI system, but to solve the analysis equations
globally rather than locally.

2) To obtain proper sensitivity to all data and to all
error covariance specifications. In the OI implemen-
tation of Baker et al. (1987), for instance, introducing
geographically dependent forecast error covariances
had little impact on OI analyses. It is likely that
global solution of the analysis equations demanded
by objective 1 would reveal much more responsive-
ness, forcing one to pay careful attention to error
covariance formulations, in particular to global wind/
mass balance constraints. Recent experiments with
the PSAS system (not described here) have in fact
demonstrated strong sensitivity to these formulations
and will be described in future publications.

3) To permit assimilation of new data types that are not
state variables. A great wealth of data, mostly from
spaceborne remote-sensing devices, will become
available in coming years. Data selection would be-
come an increasingly onerous and ad hoc procedure
for these data. More importantly, many of these data,
especially if assimilated in raw form (e.g., radiances
or backscatter) rather than as retrieved products, are
neither state variables nor linearly related to state
variables. While some types of data that are not state
variables, such as total precipitable water, have been
successfully assimilated with the OI methodology
(Ledvina and Pfaendtner 1995), global formulation
of the analysis problem, in which observation op-
erators are defined explicitly, provides a natural
framework for assimilating these data types (e.g.,
Eyre et al. 1993; Derber and Wu 1998; Joiner and
da Silva 1998). The version of PSAS described in
this article incorporates linear (i.e., state-indepen-
dent) observation operators only. A version of the
PSAS algorithm for nonlinear observation operators
is described in Cohn (1997, section 5).

4) To allow maximum flexibility in forecast and ob-
servation error covariance modeling. While much
effort has been directed toward covariance modeling
in recent years, it is likely that additional efforts will
result in improved analyses. For instance, while cur-
rent global spectral variational analysis schemes rely
explicitly on an assumption that forecast errors are
horizontally isotropic, or on a slightly relaxed ver-
sion of this assumption (Courtier et al. 1998), it is
well-known (e.g., Courtier et al. 1994; Thépaut et
al. 1996; Cohn and Todling 1996) that these errors
are in fact highly anisotropic and flow dependent.
Formulation of the analysis problem directly in phys-
ical space, rather than spectral space, renders fully
anisotropic correlation modeling straightforward
(e.g., Derber and Rosati 1989; Carton and Hackert
1990). The PSAS numerical algorithm makes no as-
sumption of isotropy, although the implementation
described in this article employs the isotropic cor-
relation functions specified by the GEOS-1 OI sys-
tem. Much of the current and future development is
directed toward improved error correlation modeling
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in PSAS (Dee and Gaspari 1996; Lou et al. 1996;
Gaspari and Cohn 1998).

5) To enable flexibility for future developments in data
assimilation methodology. The PSAS system was en-
visioned from the outset to provide a computational
framework for the development of techniques for
approximate fixed-lag Kalman smoothing (Todling
et al. 1998; Cohn et al. 1994), approximate Kalman
filtering (e.g., Cohn and Todling 1996), forecast bias
estimation (Dee and da Silva 1998), and other topics
known from the estimation theory literature but not
yet implemented in operational data assimilation sys-
tems. Solution of the innovation covariance equa-
tion, a key component of the PSAS algorithm de-
scribed below, is a need common to all of these
techniques.

Because of these design features PSAS has the fol-
lowing attributes.

1) PSAS solves the analysis equations globally rather
than locally. The local approximation and data se-
lection of the GEOS-1 OI system are eliminated. In
this respect, PSAS is similar to the global spectral
variational analysis systems that have recently re-
placed OI schemes at the U.S. National Centers for
Environmental Prediction (NCEP; Parrish and Der-
ber 1992) and at the European Centre for Medium-
Range Weather Forecasts (ECMWF; Courtier et al.
1998; Rabier et al. 1998; Andersson et al. 1998).

2) PSAS is formulated directly in physical space, like
OI schemes but unlike spectral analysis schemes.

3) PSAS performs a large part of its calculations in
observation space, also unlike operational spectral
analysis schemes, which operate in state space. This
results in computational savings, since the dimension
of the observation space is currently an order of
magnitude smaller than that of the forecast model
state. The computational efficiency of the current
generation of spectral analysis schemes arises from
an assumption that horizontal forecast error covari-
ances or correlations are either isotropic or have el-
lipsoidal isolines; that is, are diagonal or block-di-
agonal in spectral space (Courtier et al. 1998), an
assumption that is not made in the PSAS algorithm.

4) PSAS is fundamentally independent of the forecast
model formulation, and hence is a portable algorithm
suitable for diverse applications. Although PSAS is
compatible with the gridpoint system of the GEOS
general circulation model, the design does not re-
strict PSAS applications to this grid. In particular,
the PSAS algorithm is suitable for global spectral
models, as well as for regional data assimilation and
for problems on irregular or stretched grids such as
oceanic data assimilation.

b. Background: The statistical analysis equations

A statistical analysis scheme attempts to obtain an
optimal estimate, or analysis, of the state of a dynamical

system by combining observations of the system with
a forecast model first guess. Let wf ∈ Rn denote the
vector representing the forecast first guess, defined on
a grid in our case, and let wt ∈ Rn denote the discrete
true state approximated by wf :

wf 5 wt 1 ef , (1)

where e f ∈ R n denotes the forecast error. A time index
is omitted in this equation and in those to follow for
notational simplicity. Let wo ∈ R p denote the vector of
p observations available at the analysis time, assumed
in this article to be related linearly to the state variables:

wo 5 Hwt 1 eo. (2)

Here H ∈ Rp 3 Rn is the observation operator, or gen-
eralized interpolation operator; eo ∈ Rp denotes the ob-
servation error, which is the sum of the measurement
error and the error of representativeness (e.g., Lorenc
1986; Cohn 1997). In the GEOS-1 DAS, the number of
model degrees of freedom is n ; 106 and the current
observing system has p ; 105.

The probabilistic assumptions common to most op-
erational analysis systems are that e f and e o are Gauss-
ian distributed with zero mean, and are not correlated
with either the state or with each other. Although these
assumptions can be relaxed in a variety of ways (cf.
Cohn 1997 and references therein), the implementation
of PSAS described in this article invokes all of them.
Efforts directed toward relaxing the assumption that e f

has zero mean (^e f & 5 0), that is, that the forecast is
unbiased, are described in Dee and da Silva (1998).

The two most common optimality criteria, arising
from minimum variance estimation and maximum like-
lihood estimation, lead to identical analysis equations
under these assumptions (e.g., Lorenc 1986; Cohn
1997). These equations also yield the best linear un-
biased estimate, or analysis, without an assumption that
the errors e f and eo are Gaussian distributed.

The minimum variance analysis wa ∈ Rn is obtained
by requiring the scalar functional ^(wa 2 wt)TS(wa 2
wt)& to be minimum for all positive definite matrices S
∈ Rn 3 Rn, and under the stated assumptions is given
by the analysis equations:

a f o fw 5 w 1 K(w 2 Hw ) (3)
f T f T 21K 5 P H (HP H 1 R) . (4)

Here the matrix K ∈ Rn 3 Rp is the gain matrix, which
ascribes appropriate weights to the observations by act-
ing on the innovation vector1 wo 2 Hw f . The gain matrix
depends on the forecast error covariance matrix:

1 Strictly speaking, the innovation vector is defined by the prop-
erties of being white in time and Gaussian with zero mean, even for
nonlinear dynamics and observation operators (cf. Frost and Kailath
1971; Daley 1992). In this article we adopt the term innovation vector
with the caveat that these properties are perhaps goals but not yet
realities for operational data assimilation systems.
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Pf [ ^(e f 2 ^e f &)(e f 2 ^e f &)T& ∈ Rn 3 Rn (5)

and on the observation error covariance matrix:

R [ ^(eo 2 ^eo&)(eo 2 ^eo&)T& ∈ Rp 3 Rp. (6)

Both are symmetric and positive semidefinite by defi-
nition; R is in fact positive definite under an assumption
that no linear combination of the observations is perfect.
Although these matrices are defined as above, in practice
they must be modeled.

c. The global PSAS solver

The PSAS algorithm solves the analysis equations
(3)–(4) in a straightforward manner. First, one p 3 p
linear system is solved for the quantity y,

(HPfHT 1 R)y 5 wo 2 Hwf , (7)

and then the analyzed state wa is obtained from the
equation

wa 5 wf 1 PfHTy. (8)

Equations (7) and (8) will be referred to as the PSAS
equations. The innovation covariance matrix:

M [ HPfHT 1 R (9)

is symmetric positive definite, making a standard pre-
conditioned conjugate gradient (CG) algorithm (Golub
and van Loan 1989) the method of choice for solving
the large linear system (7), referred to as the innovation
covariance equation. For the current observing system
( p ; n/10), setting up and solving the linear system (7)
costs about half the computational effort of PSAS, and
involves computation in observation space: M ∈ Rp 3
Rp and y ∈ Rp, requiring O (Ncgp2) operations, where
Ncg ; 10 is the number of CG iterations (the conver-
gence criterion is described later). The other half of the
computational expense is taken by step (8), which trans-
fers the solution y to the state space: PfHTy ∈ Rn, re-
quiring O (np) operations.

For typical models of Pf and R the innovation co-
variance matrix M is not sparse, although entries as-
sociated with remote pairs of observation locations are
negligibly small. To introduce some sparseness in M and
thereby to save computational effort, the sphere is di-
vided into N regions, and matrix blocks associated with
regions separated by more than 6000 km are assumed
to be zero; these blocks never enter the CG computa-
tions. The same procedure is applied to the matrix Pf

itself in (8). This is a covariance modeling assumption,
rather than a local approximation like that of OI
schemes, and is justified on the basis of observational
studies (Hollingsworth and Lönnberg 1986; Lönnberg
and Hollingsworth 1986). Although this procedure
could in principle destroy the positive-definiteness of
M, causing lack of convergence of the CG solver, this
has not been observed in the experiments reported in
section 4 using the covariance models Pf and R of the

GEOS-1 OI system. A rigorous approach based on
space-limited covariance functions (Gaspari and Cohn
1998), which are exactly zero beyond a specified dis-
tance, has already been implemented in PSAS, but for
the purposes of a clean comparison with the OI system
is not part of the implementation described in this ar-
ticle.

An effective preconditioner for CG algorithms must
have two important characteristics: 1) it must be inex-
pensive to compute, and 2) it must retain the essentials
of the original matrix problem if it is to improve sub-
stantially the convergence rate of the overall CG al-
gorithm. For the statistical interpolation problem that
PSAS implements, a natural preconditioner is an OI-
like approximation, in which the problem is solved sep-
arately for each of the N regions used to partition the
data. For the current serial implementation, the globe is
divided into N 5 80 equal-area regions using an ico-
sahedral grid (Pfaendtner 1996).2 With p ; 100 000 ob-
servations, each of these regional problems has on av-
erage more than 1000 observations, which is too many
for efficient direct solution. These regional problems are
therefore solved by a preconditioned conjugate gradient
algorithm; we refer to this solver as the CG level 2
solver. As a preconditioner for CG level 2 the regional
problems are solved univariately for each data type—
that is, observations of u wind, y wind, geopotential
height, etc. are treated in isolation. However, these uni-
variate problems are still too large to be solved effi-
ciently by direct methods, and yet another iterative solv-
er is used; this is the CG level 1 algorithm. As a pre-
conditioner for CG level 1 we make use of the standard
numerical linear algebra package (Anderson et al. 1992)
to perform a direct Cholesky factorization of diagonal
blocks of the CG level 1 matrix. These diagonal blocks
are typically of size 32, and are chosen carefully to
include complete vertical profiles. The overall nested
preconditioned conjugate gradient algorithm is illus-
trated in Fig. 1. Additional details concerning this al-
gorithm can be found in da Silva and Guo (1996).

In the serial implementation of PSAS, the matrix M
is first normalized by its main diagonal, the normalized
matrix is provided to the global CG solver as an op-
erator, and matrix elements are recomputed at each CG
iteration, as needed. In the prototype parallel imple-
mentation of PSAS developed at the Jet Propulsion Lab-
oratory (Ding and Ferraro 1996), blocks of the matrix
M are precomputed and stored in memory. As a con-
vergence criterion for the global CG solver, we specify
that the residual must be reduced by one to two orders
of magnitude. Experiments with reduction of the resid-

2 In the prototype massively parallel implementation of PSAS de-
veloped at the Jet Propulsion Laboratory, the globe is divided into
256 or 512 geographically irregular regions, each having approxi-
mately the same number of observations. This is one strategy to
achieve load balance (Ding and Ferraro 1996).
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FIG. 1. PSAS nested preconditioned conjugate gradient solver. Routine cgpmain( ) contains the
main conjugate gradient driver. This routine is preconditioned by cgplevel2( ), which solves a
similar problem for each region. This routine is in turn preconditioned by cgplevel1( ), which solves
the linear system univariately. See text for details.

ual beyond two orders of magnitude produced differ-
ences in the resulting analyses much smaller than ex-
pected analysis errors. This is due to the filtering prop-
erty of the operator PfHT in (8), which attenuates small-
scale details in the linear system variable y.

d. Relationship of PSAS, OI, and spectral variational
schemes

In this section we contrast the PSAS approach to
solving the analysis equations (3)–(4) with the approach
of OI schemes and the approach of spectral variational
schemes.

1) OPTIMAL INTERPOLATION SCHEMES

Optimal interpolation schemes solve Eqs. (3)–(4) ap-
proximately, as follows. Denote by k j the jth column of
the transposed gain matrix KT defined by (4), so that kj

∈ Rp. Then (4) can be written as

(HPfHT 1 R)kj 5 (HPf ) j (10)

for j 5 1, . . . , n, where (HPf )j ∈ Rp denotes the jth
column of the matrix HPf . This equation represents n
linear systems, each of the same form as the PSAS
equation (7). Similarly, Eq. (3) can be written as n scalar
equations,

5 1 (k j)T(wo 2 Hw f )a fw wj j (11)

for j 5 1, . . . , n, where and denote the jth ele-a fw wj j

ments of wa and w f , respectively. This equation makes
it clear that the weight vector kj solved for in (10) de-
termines the correction, or analysis increment, at the jth
grid point.

Equations (10) and (11) would yield the same analysis
wa as the PSAS equations (7) and (8), but at far greater
computational expense since there are n linear systems
to be solved in (10) but only one in (7). Optimal inter-
polation schemes3 do in fact solve (10) and (11), but
with a local approximation and hence the need for data
selection. These schemes differ widely in the details of
the local approximation and the data selection algorithm
(cf. McPherson et al. 1979; Lorenc 1981; Baker et al.
1987; Pfaendtner et al. 1995), but all can be described
in a generic way as follows.

Instead of involving all p observations in the solution
of Eqs. (10) and (11) for each j, some much smaller
number of observations q K p nearby the jth grid lo-
cation is selected for the analysis at that location, and
in general a different subset of observations, q 5 q( j),
is selected for different locations j. Thus wo, H, and R
become lower-dimensional and are made to depend on
the gridpoint index j: wo 5 ∈ Rq, H 5 Hj ∈ Rq 3owj

3 It should be noted that not all implementations of OI compute
the weights kj explicitly (cf. Daley 1991, section 4.2).
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Rn, and R 5 Rj ∈ Rq 3 Rq. [This is a slight abuse of
notation; for these quantities the subscript j simply de-
notes dependence on the gridpoint index, whereas oth-
erwise it denotes a column of a matrix or an element
of a vector.] Thus in OI schemes the analysis Eqs. (10)
and (11) can be written as

(HjPf 1 Rj)kj 5 (HjPf )j
THj (12)

and

5 1 (k j)T( 2 Hjw f )a f ow w wj j j (13)

for j 5 1, . . . , n, where now kj ∈ Rq. Although there
are still n systems to solve in (12), each is now only q
3 q (this is the local approximation), and q is made
small enough that a direct method such as the standard
Cholesky algorithm can be used to solve them. In ad-
dition, for volume OI methods (Lorenc 1981; Pfaendtner
et al. 1995), the matrix Mj 5 HjPf 1 Rj in (12) isTHj

fixed for a given volume, so that the Cholesky decom-
position can be reused for each grid point in that volume,
reducing computational effort.

2) SPECTRAL VARIATIONAL SCHEMES

Variational analysis schemes are based on the max-
imum likelihood optimality criterion which, under the
probabilistic assumptions noted above Eq. (3), is iden-
tical to the minimum variance criterion, and hence leads
to a formulation of the analysis problem that is alge-
braically equivalent to that of PSAS. The actual equa-
tions solved by these schemes, however, are different
from those of PSAS.

The maximum likelihood criterion seeks to maximize
the a posteriori (conditional) probability density
p(w t|wf , wo), which under the stated assumptions is the
Gaussian density

p(w t|wf , wo) 5 c exp[2J̃(w t)], (14)

where

c 5 (2p)2n/2|R|21/2|Pf |21/2|HPfHT 1 R|1/2, (15)

the symbol | · | denoting the matrix determinant, and
where

1
t t f T f 21 t fJ̃(w ) 5 (w 2 w ) (P ) (w 2 w )

2

1
t o T 21 t o1 (Hw 2 w ) R (Hw 2 w )

2

1
o f T f T 21 o f2 (w 2 Hw ) (HP H 1 R) (w 2 Hw ) ;

2
(16)

compare Jazwinski (1970, section 7.2), Lorenc (1986),
Cohn (1997, section 4). Since the constant c is inde-
pendent of w t, as is the final term in (16), and since
exp(2J̃) is a monotonically decreasing function of J̃,

maximizing the density (14) with respect to w t is equiv-
alent to minimizing with respect to w the functional

1
f T f 21 fJ(w) 5 (w 2 w ) (P ) (w 2 w )

2

1
o T 21 o1 (Hw 2 w ) R (Hw 2 w ). (17)

2

Since this functional is a positive definite quadratic form
in w, it has a unique minimum. This minimum is denoted
by wa, the analysis vector. Variational analysis schemes
are so called because they take minimization of (17),
or of a similar functional, as the starting point.

Details of the minimization procedure differ between
the two operational implementations to date, namely the
3D-Var (three-dimensional variational) system of
ECMWF (Courtier et al. 1998; Rabier et al. 1998; An-
dersson et al. 1998), which became operational in early
1996, and the spectral statistical interpolation (SSI) sys-
tem of NCEP (Parrish and Derber 1992; hereafter re-
ferred to as PD92), which became operational in early
1992. Here we follow PD92. Setting

]J(w)
5 0 (18))]w aw5w

gives the equation
f 21 T 21 a f T 21 o f[(P ) 1 H R H](w 2 w ) 5 H R (w 2 Hw ).

(19)

Now let B be any matrix such that

BBT 5 Pf (20)

(this decomposition, carried out spectrally, is discussed
later), and define the vector z ∈ Rn such that

z 5 B21(wa 2 wf ). (21)

Algebraic manipulation of (19) leads to the equation

(I 1 BTHTR21HB)z 5 BTHTR21(wo 2 Hw f ), (22)

which along with (21) written in the form

wa 5 wf 1 Bz, (23)

compose the analysis equations of PD92. These can be
compared directly with the PSAS analysis equations (7)
and (8). Observe that (22) is an equation solved in state
space—that is, z ∈ Rn—whereas the matrix problem (7)
of PSAS is solved in the lower-dimensional observation
space Rp. Solving (22) involves additionally the solution
of observation-space systems of the form Ru 5 v.

To establish the equivalence of the analysis equations
of PD92 with those of PSAS when presented with the
same data wo, w f , and the same matrices Pf , R and H,
note from the Sherman–Morrison–Woodbury formula
(e.g., Golub and van Loan 1989) that

T T 21 21 T T f T 21(I 1 B H R HB) 5 I 2 B H (HP H 1 R) HB,
(24)

so that (22) can be written as
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T T f T 21 T T 21 o fBz 5 B[I 2 B H (HP H 1 R) HB]B H R (w 2 Hw )
f T f T 21 f T 21 o f5 P H [I 2 (HP H 1 R) HP H ]R (w 2 Hw )
f T f T 21 o f5 P H (HP H 1 R) (w 2 Hw )
f T5 P H y, (25)

where y was defined by the PSAS equation (7). This
result, along with (8) and (23), establishes the formal
algebraic equivalence between the SSI scheme of PD92
and the PSAS scheme (see also Lorenc 1986; Courtier
1997). The differences, therefore, are in the solution
algorithm and, perhaps more importantly, in the co-
variance modeling. The matrix Pf is modeled directly
in physical space in PSAS, whereas in variational
schemes such as SSI it is modeled spectrally.

In the SSI scheme, as well as in the 3D-Var scheme
of ECMWF, the forecast wf , and hence the true state wt

and the analysis wa, consists of spectral coefficients
rather than gridpoint values as in the GEOS system.
Thus the observation operator H in (22) consists of a
transformation to physical space followed by interpo-
lation to observation locations [see Eq. (2)], which, as
reported in PD92, composes most of the computational
effort in solving (22). The spectral forecast error co-
variance matrix Pf , still defined by (5), is assumed to
be diagonal. This renders the decomposition (20) trivial,
but is an explicit assumption of horizontal isotropy. In
particular, the wind forecast error variances of PD92 are
independent of horizontal location. The ECMWF 3D-
Var system assumes isotropy for horizontal correlations
rather than covariances, thereby allowing spatial vari-
ability in the forecast error variances (Courtier et al.
1998).

The linear system (22) of PD92 is solved by a stan-
dard CG algorithm without preconditioning; this is
equivalent computationally to solving (19) by a pre-
conditioned CG algorithm with the (diagonal) matrix Pf

as the preconditioner, as is done in the ECMWF 3D-
Var system (Courtier et al. 1998). The eigenvalues m of
the matrix of the linear system (22) have the form

m 5 1 1 l(M̃), (26)

where

M̃ [ BTHT R21HB, (27)

and l(M̃) denotes an eigenvalue of the matrix M̃. The
matrix M̃ is symmetric positive semidefinite, and has at
least n 2 p zero eigenvalues, assuming p , n. Thus the
condition number s of the matrix of (22), which controls
the convergence rate of the CG algorithm (cf. Golub
and van Loan 1989), is

s 5 1 1 lmax(M̃). (28)

Accurate observational data (reflected by small diagonal

entries of R) generally increase the largest eigenvalue
lmax(M̃) according to (27), and therefore increase the
condition number s and generally reduce the conver-
gence rate of the CG iterations. It can be shown that,
were the PSAS equation (7) to be preconditioned by the
matrix R rather than by the strategy described in the
preceding subsection, its condition number would also
be given by (28); compare Courtier (1997).

3. GEOS-1 DAS: An OI-based data assimilation
system

Version 1 of the Goddard Earth Observing System
Data Assimilation System (GEOS-1 DAS) has two main
components: a gridpoint atmospheric general circulation
model and an OI analysis system. These two compo-
nents are described briefly below. Data quality control
routines are described in Pfaendtner et al. (1995). Anal-
ysis increments are assimilated into the model using the
Incremental Analysis Updates (IAU) technique of
Bloom et al. (1996); IAU effectively removes the need
for initialization.

a. The GEOS-1 general circulation model

A detailed documentation of this model can be found
in Takacs et al. (1995). The main characteristics of this
primitive equation model are the following:

R Resolution: 28 lat 3 2.58 long, 20 sigma levels.
R Spatial discretization: Potential enstrophy- and en-

ergy-conserving horizontal differencing scheme on a
C-grid (Sadourny 1975); vertical discretization of Ar-
akawa and Suarez (1983).

R Time stepping: Matsuno during assimilation mode;
leapfrog with Asselin–Robert time filter (Asselin
1972) in pure forecast mode.

R Convection: Relaxed Arakawa–Schubert (Moorthi
and Suarez 1992); large-scale convection (Sud and
Molod 1988).

R Radiation: Longwave and shortwave parameteriza-
tions (see Takacs et al. 1995 for details).

R Turbulence: Second-order closure model of Helfand
and Labraga (1988); Monin–Obukhov similarity the-
ory for the surface layer.

R Boundary conditions: Observed monthly mean sea
surface temperature (NCEP); soil moisture computed
off-line based on a simple bucket model (Schemm et
al. 1992).
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TABLE 1. Five synoptically interesting cases used in this study. For
all cases the synoptic time is 1200 UTC.

Case Date Description

1
2
3
4
5

08/28/85
10/15/87
12/01/87
12/15/87
01/30/89

Tropical easterly waves
Explosive cyclogenesis (Europe)
Cyclogenesis (south Australia)
Explosive cyclogenesis (United States)
Cold surge (United States)

b. The GEOS-1 OI analysis system

An early version of this system was described by
Baker et al. (1987); the GEOS-1 version is documented
in Pfaendtner et al. (1995). The main features of this
system include the following:

R Resolution: 28 lat 3 2.58 long, 14 upper-air pressure
levels (20, 30, 50, 70, 100, 150, 200, 250, 300, 400,
500, 700, 850, and 1000 hPa). The transformation
between the analysis coordinate (pressure), on which
the forecast error statistics are prescribed, and the
model coordinate (sigma) is described in Pfaendtner
et al. (1995), as is the transformation between analysis
variables (geopotential height, wind, water vapor mix-
ing ratio, sea level pressure) and model variables (po-
tential temperature, wind, specific humidity, surface
pressure).

R Forecast error statistics: Multivariate in geopotential
height and winds, univariate in moisture. The height
forecast error correlation function is separable, with
a damped cosine function for the isotropic horizontal
correlation. The wind/height and wind/wind error cor-
relation functions are derived from the height error
correlation function under the geostrophic assump-
tion, with full coupling in the extratropics and the
coupling coefficient approaching zero at the equator.
Forecast error variances for height, moisture, and sea
level pressure are obtained from analysis error vari-
ances calculated approximately at the previous anal-
ysis time, through a growth term depending on lati-
tude, pressure level, and saturation value.

R Surface analysis: Decoupled from the upper-air anal-
ysis. Sea level pressure and surface wind statistics are
coupled through a frictional-wind balance. The sea
level pressure analysis is used to translate satellite-
derived thicknesses into heights and also to provide
1000-hPa pseudoheights for the upper-air analysis.

R Data sources: All conventional meteorological data
including rawinsondes, dropwinsondes, rocketsondes,
aircraft winds, satellite-tracked winds, and thicknesses
from TIROS-N Operational Vertical Sounder (TOVS)
soundings.

R Analysis frequency: Four times per day, using obser-
vations within a 6-h window centered at the synoptic
times. The innovation vector is calculated from a sin-
gle forecast valid at the synoptic time.

R Local approximation/data selection: Volume method
of Lorenc (1981), with approximately 12 000 over-
lapping volumes. The horizontal extent of each vol-
ume depends on latitude. In the vertical, each volume
consists of two adjacent pressure levels. Data are se-
lected from these two levels and also one level above
(except for the 20–30-hPa analysis) and one level be-
low (except for the 850–1000-hPa analysis). At most
75 observations are selected from within a 1600-km
radius of the center of each volume.

4. Comparison of the global PSAS solver with the
local OI solver

To isolate the effects of localization of the analysis
problem in the GEOS-1 OI system, in the initial im-
plementation of PSAS the forecast and observation error
covariance statistics are specified in exactly the same
way as in the OI system. In this configuration, PSAS
differs from OI only in the numerical method used to
solve for the analysis increments wa 2 w f : the global
conjugate gradient solver includes all available obser-
vations to produce the analyzed field. Here we report
results of a set of static analysis experiments and of a
1-month assimilation experiment comparing PSAS anal-
yses with those of the OI system. Identical quality-con-
trolled observational data are used in each comparison.

a. Static analysis experiments

For the static analysis experiments, we rely on the
database prepared through the GEOS-1 reanalysis pro-
ject described in Schubert et al. (1993). This data bank
provides not only the analysis increments produced by
the OI-based assimilation system, but also the innova-
tion vectors used by the OI system (before data selection
and after quality control), which are used for the rhs of
(7) in the present study. A number of synoptically in-
teresting events were identified by R. Atlas and J. C.
Jusem (1996, personal communication) for the purpose
of these experiments. The five cases selected are sum-
marized in Table 1. For each case, a single PSAS anal-
ysis is carried out at 1200 UTC and results are compared
with the corresponding OI analyses.

For this comparison we chose to include only data
on the same vertical levels as in the OI system, thus
focusing on horizontal aspects of localization in the OI
system. Thus for the 500-hPa analyses compared here,
only data from 850 hPa to 400 hPa are included. For
the 200-hPa analyses, only data from 300 hPa to 150
hPa are used. The OI system selects data from these
levels, whereas the PSAS solver uses all data on these
levels.

Midtropospheric (500 hPa) height analysis incre-
ments for case 1 are shown in Fig. 2. The same large-
scale features are present in both panels, with the OI
analysis increments (bottom panel) showing the typical
boxiness effect associated with the local approximation.
Results for all five cases are summarized in Fig. 3, which
depicts the five-case average power spectra of 500-hPa
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FIG. 2. Height analysis increments at 500 hPa for 1200 UTC 28 August 1985 (case 1) produced with PSAS
(top panel) and GEOS-1 OI (bottom panel). Contour interval: 10 m.

geopotential height analysis increments obtained with
the PSAS (solid line) and OI (dashed line) systems.
There is little difference between the spectra for wave-
numbers in the range 5–15. For higher wavenumbers,
however, the OI analysis increments have considerably
more power than the PSAS increments, apparently at
the expense of a loss of power for wavenumbers less
than about 5, where the OI increments have significantly
less power than the PSAS increments (note the loga-

rithmic scale in Fig. 3). The relatively flat spectral slope
of the OI increments, manifested in the boxiness of Fig.
2, is a shortcoming due to the local manner in which
the OI increments are calculated. Notice that the PSAS
increments also show signs of saturation at around
wavenumber 70. However, there is a negligible amount
of power at these wavenumbers.

The effect of localization on the wind field is pre-
sented in Figs. 4–5 in terms of the five-case average
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FIG. 3. Power spectra as a function of spherical harmonic total
wavenumber for PSAS (solid line) and OI (dashed line) analysis
increments of geopotential height at 500 hPa (five-case average, see
Table 1). Bars indicate the range of the spectra among the five cases.
Units: m2.

FIG. 4. As in Fig. 3 but for 500-hPa relative vorticity.
Units: 10215 s22.

FIG. 5. As in Fig. 3 but for 500-hPa divergence. Units: 10215 s22.

power spectra of relative vorticity and divergence anal-
ysis increments. The OI relative vorticity analysis in-
crements show less power than the PSAS increments
up to about wavenumber 45 (Fig. 4). At higher wave-
numbers the OI increments again show much more pow-
er than the PSAS increments. For the divergence field
(Fig. 5), both the OI and PSAS increments show a rather
flat spectrum for wavenumbers greater than about 20.
For wavenumbers beyond 20 the OI increments have
one to two orders of magnitude more power than the
PSAS increments. Thus the ratio of divergence to vor-
ticity for the OI increments is much larger than for the
PSAS increments. This unrealistically large amount of
divergence in the OI increments contributes to an un-
balanced analyzed state contaminated by gravity waves.
Therefore the imbalances found in GEOS-1 OI analyses
(Bloom et al. 1996), although ameliorated by the IAU
procedure, are due not only to the crude geostrophic
balance used to relate wind forecast error statistics to
height forecast error statistics: a great deal of spurious
divergence is due to the local nature of the OI calcu-
lations. In addition, there is little correspondence be-
tween the spatial patterns of OI and PSAS velocity po-
tential analysis increments, even at large scales, as can
be seen in Fig. 6.

In the power spectra of water vapor mixing ratio anal-
ysis increments for OI and PSAS (not shown), the OI
increments again have more noise, reflected by exces-
sive power in higher wavenumbers. Although similar to
the power spectra of geopotential height analysis incre-
ments, the discrepancy between OI and PSAS is not as
accentuated in this case. This result is consistent with
the shorter horizontal correlation length assigned to the
water vapor mixing ratio forecast error covariance func-
tion. The tighter function for water vapor mixing ratio

is more amenable to the local approximation of the OI
system.

b. Assimilation experiment

For this experiment, a version of the GEOS DAS was
configured using a 46-level version of the GEOS-1 gen-
eral circulation model, and PSAS with the error statistics
of the GEOS-1 OI system. For computational efficiency
in the PSAS solver, TOVS satellite retrievals within a
radius of 300 km were averaged to produce super-ob-
servations, following Lorenc (1981).

Figure 7 depicts the time-mean bias and standard de-
viation (Stdv) of radiosonde observation minus 6-h fore-
cast residuals (innovations) for the last 10 days of 1-
month (February 1992) assimilations with PSAS and
with the GEOS-1 OI system. For geopotential height
(left panel), PSAS shows a slight increase over OI in
the bias in the troposphere, but a decrease above 100
hPa; standard deviations are practically the same for
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FIG. 6. Velocity potential analysis increments at 200 hPa for 1200 UTC 28 August 1985 (case 1) produced with
PSAS (top panel) and GEOS-1 OI (bottom panel). Normalization is by the factor (2V sin458 g21), where V is
the earth’s rotation rate and g is the gravity constant. Contour interval: 2 m.

both systems. For the zonal component of the wind
(right panel), PSAS shows a slight improvement in the
bias, and a substantial improvement in the standard de-
viation below 200 hPa and above 40 hPa. Statistics for
water vapor mixing ratio (not shown) are nearly iden-
tical for both systems. These results are consistent with
the analysis increment characteristics displayed in Figs.
3–5. Whereas the noise introduced by the local nature
of OI is filtered effectively by the IAU procedure

(Bloom et al. 1996), the dynamical imbalance associated
with the spurious OI analysis increments of divergence
have a deleterious effect on the 6-h wind forecast.

5. Concluding remarks

We have described the mathematical formulation and
algorithmic design of the Physical-space Statistical
Analysis System. This formulation has been contrasted
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FIG. 7. Time-mean bias and standard deviation of radiosonde observation minus 6-h forecast
residuals for geopotential height (left panel, units: m) and for the zonal wind component (right
panel, units: m s21).

with that of optimal interpolation (OI) schemes and of
spectral variational analysis schemes. It has been shown
to be algebraically equivalent to spectral variational
schemes for linear observation operators, when pre-
sented with the same data and the same error covariance
models. Like spectral variational schemes, PSAS cir-
cumvents the need for data selection, an ad hoc pro-
cedure required in OI schemes, by solving the analysis
problem globally rather than locally. This is accom-
plished in the PSAS algorithm by employing a global
conjugate gradient solver, preconditioned by a series of
smaller OI-like problems.

Because of its formulation directly in physical space,
the PSAS algorithm allows for flexible specification of
error covariance models, such as flow-dependent, fully
anisotropic ones, whereas current spectral variational
schemes make an explicit assumption of isotropy or
weak anisotropy. The only covariance modeling as-
sumption made in the PSAS algorithm is that forecast
and observation error covariances are exactly zero be-
yond 6000 km, an approximation supported by obser-
vational studies. While the initial implementation of
PSAS described in this article purposely employs the
separable, isotropic covariance models of the GEOS-1
OI system, and is therefore not yet a stand-alone analysis
system, work is currently in progress to exploit the flex-
ibility of PSAS to incorporate much more general co-
variance models.

By implementing PSAS with covariance models iden-
tical to those of the GEOS-1 OI system, we have been

able to examine in isolation the effects of global versus
local solution of the analysis problem in an operational
data assimilation system. Results show that, relative to
the PSAS analysis increments, the OI analysis incre-
ments of geopotential height have excessive power in
small scales, apparently at the expense of too little pow-
er in large scales. The OI increments also display an
unrealistically large ratio of divergence to vorticity, re-
sulting in an unbalanced analyzed state. Time-mean ra-
diosonde minus 6-h forecast statistics are comparable
for the two systems in terms of bias, whereas the PSAS
system shows a significant reduction in the standard
deviation of the zonal wind component throughout the
troposphere and in much of the stratosphere.
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