Appendix A: The Sherman-Morrison-Woodbury formula
The Sherman-Morrison-Woodbury formula is
P '+H'R'H)'H'R™! = PHT(HPHT + R)"! (3.57)

There are many ways to prove this, all involving matrix multiplications. Here is one possible proof.
Expand the left hand side:
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Appendix B: Proof of some derivative formula

Verify that
dTr(AB) _gT
dA
Let A be n x r and B be r x n since AB is symmetric. We can write the individual matrix
elements as

T
(AB)U = Z aikbkj.
k=1
Thus we can write the trace of this matrix as
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Now we can write that
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Appendix C: Eigenvalues of covariance matrices

A covariance matrix is real, symmetric and positive definite. Since it is real, symmetric, its
eigenvalue decomposition may be written as

A = EDET (3.58)

where D is a diagonal matrix of eigenvalues and E is a unitary matrix of eigenvectors. That is,
ET = E~!'. Now if A is positive definite, then for all vectors, , we have that

zT Az > 0.
We can substitute for A using (3.58):
z'EDE "z = y"Dy > 0

where y = ETa. Expanding this we have that

n

> (wi)*Ai > 0. (3.59)
i=1

But this must be true for all  and therefore for all y. The only way to ensure this is when all
eigenvalues, \; are positive. Another way to see this is to choose a particular y since (3.59) must
hold for all y. Choose y = (0,0,...,0,1,0,...,0), i.e. the vector with all 0 elements except for the
ith element (which is a 1). For this choice of y, (3.59) becomes

A > 0.

This can be repeated for all 7, 1 < ¢ < n.

The eigenvalues of a real, symmetric, positive definite matrix are real and positive. Thus
covariance matrices have real and positive eigenvalues.

An excellent reference on eigenvalue problems is Wilkinson (1965).
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