
Appendix A: The Sherman-Morrison-Woodbury formula

The Sherman-Morrison-Woodbury formula is

(P−1 + HTR−1H)−1HTR−1 = PHT(HPHT + R)−1 (3.57)

There are many ways to prove this, all involving matrix multiplications. Here is one possible proof.
Expand the left hand side:

(P−1 + HTR−1H)−1HTR−1 = (P−1 + HTR−1H)−1[R(HT)−1]−1

= [(R(HT)−1)(P−1 + HTR−1H)]−1

= [(R(HT)−1P−1 + H]−1

= [(R(HT)−1 + HP)P−1]−1

= [(R + HPHT)(HT)−1P−1]−1

= PHT(R + HPHT)−1

Appendix B: Proof of some derivative formula

Verify that
dTr(AB)

dA
= BT

Let A be n × r and B be r × n since AB is symmetric. We can write the individual matrix
elements as

(AB)ij =
r
∑

k=1

aikbkj .

Thus we can write the trace of this matrix as

Tr(AB) =
n
∑

i=1

(AB)ii =
n
∑

i=1

r
∑

k=1

aikbki.

Now we can write that

dTr(AB)

dA
=

d

dalm

[

n
∑

i=1

r
∑

k=1

aikbki

]

= bml = BT.
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Appendix C: Eigenvalues of covariance matrices

A covariance matrix is real, symmetric and positive definite. Since it is real, symmetric, its
eigenvalue decomposition may be written as

A = EDET (3.58)

where D is a diagonal matrix of eigenvalues and E is a unitary matrix of eigenvectors. That is,
ET = E−1. Now if A is positive definite, then for all vectors, x, we have that

x
TAx > 0.

We can substitute for A using (3.58):

x
TEDET

x = y
TDy > 0

where y = ET
x. Expanding this we have that

n
∑

i=1

(yi)
2λi > 0. (3.59)

But this must be true for all x and therefore for all y. The only way to ensure this is when all
eigenvalues, λi are positive. Another way to see this is to choose a particular y since (3.59) must
hold for all y. Choose y = (0,0,. . . ,0,1,0,. . . ,0), i.e. the vector with all 0 elements except for the
ith element (which is a 1). For this choice of y, (3.59) becomes

λi > 0.

This can be repeated for all i, 1 ≤ i ≤ n.
The eigenvalues of a real, symmetric, positive definite matrix are real and positive. Thus

covariance matrices have real and positive eigenvalues.
An excellent reference on eigenvalue problems is Wilkinson (1965).
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