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Abstract

The need for unified notation in atmospheric and oceanic data assimilation arises from the field’s rapid
theoretical expansion and the desire to translate it into practical applications. Self-consistent notation is
proposed that bridges sequential and variational methods, on the one hand, and operational usage, on the
other. Over various other mottoes for this risky endeavor, the authors selected: “When I use a word,”
Humpty Dumpty said, in rather a scornful voice tone, “it means just what I choose it to mean — neither

more nor less.” Lewis Carroll, 1871.

1. Introduction

Model-based assimilation of observations, or data
assimilation for short, has evolved into a major area
of academic research in dynamic meteorology and
physical oceanography, as well as of operational
numerical prediction for atmospheric and oceanic
flows (Panel, 1991). Its major sources of theoreti-
cal and practical ideas include by now the engineer-
ing (Bucy and Joseph, 1987; Gelb, 1974; Jazwinski,
1970), mathematical (Gill et al., 1981; Lions, 1971;
Marchuk, 1975) and geophysical (Bennett, 1992;
Daley, 1991; Ghil and Malanotte-Rizzoli, 1991) lit-
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eratures. The Second WMO International Sym-
posium on Assimilation of Observations in Meteo-
rology and Oceanography, held in Tokyo in March
1995, has shown substantial progress in the prac-
tical implementation of advanced data-assimilation
methods, based on both the control-theoretical and
sequential-estimation approach. These two ap-
proaches, because of their different heritage, have
sometimes used very different sets of notation, which
obscure the fact that they attempt to solve, in
complementary ways, similar problems. This has
hindered mutual understanding amongst developers
and users of data-assimilation methods, provided a
stumbling block in the operational application of
novel methods based on either approach or a com-
bination of both, and hampered further theoretical
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advances.

Notation is the language of the sciences and dif-
fering sources of notation guarantee a Tower of Ba-
bel that impedes effective communication amongst
the theoreticians and practitioners of data assimi-
lation. It also renders the literature more difficult
to master for newcomers, whether students or re-
searchers from other fields. The authors are keenly
aware that no single notation is ideal and can make
every user happy. This “modest proposal” is made
with the hope that it will catch on, and thereby help
advance data assimilation in both meteorology and
oceanography, by facilitating the mastery of past
and present methods based on either approach and
fostering the development of future, more advanced
methods, based on either combinations of these two
approaches or on entirely novel approaches.

Basic concepts and definitions appear in Section
2. Recommended, self-consistent notation follow-
ing the sequential approach is outlined in Section
3 and following the variational approach in Section
4. Methods based on various combinations of these
two approaches are under investigation and we hope
to contribute to the study and implementation of
such combined methods by suggesting unified nota-
tion. Conclusions and a summary table follow in
Section 5. An Appendix includes tentative recom-
mendations for continuous space-and-time notation,
at one of the research frontiers of the field. This
paper is restricted, by its nature and limitations of
space, to present basic concepts and notation, which
are merely illustrated by a few examples. For a
more exhaustive presentation of the rapidly increas-
ing number of assimilation methods, and their com-
plete description, we refer to the books and review
papers already cited, and to those included in this
volume or cited below.

2. Basic concepts and definitions

A discrete model for the evolution of an atmo-
spheric, oceanic, or coupled system from time ¢; to
time ¢;, is governed by an equation

X! (t41) = Mi[x" (%)), (1)

where x and M are the model’s state vector and its
corresponding dynamics operator, respectively. The
state vector x has dimension n. The dynamics M
.of the model evolution (1) in a computer simulation
or prediction is commonly nonlinear and determin-
istic (see also the Appendix), while the true geofluid
may differ from (1) by random or systematic errors.
The state vector x is obtained usually by discretiza-
tion of the full partial differential equations that we
assume govern the flow, using finite differences, fi-
nite elements or (pseudo-)spectral methods. The er-
ror covariance matrix associated with x is given by
P. The theoretically interesting case of continuous,
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rather than discrete, space and time is treated in the
Appendix.
Observations y° at time ¢, are defined by

y, = HZ[xt(tz)] + &, (2)

where H is an observation operator, and ¢ is a noise
process. The observation vector y? = y°(¢;) has di-
mension p;. A major problem of data assimilation
is that, typically, p, < n. The operator H can also
be nonlinear, like M, and both can contain explicit
time dependence — denoted here by the subscript
1 — in addition to the implicit dependence via the
state vector x! = xf(¢,). The noise process ¢ is com-
monly assumed to have zero mean and we denote its
covariance matrix by R; it consists of instrumental
and representativeness errors whose covariance ma-
trices are E and F, respectively, with R = E + F.
More generally, €, may have a nonzero, time- and
state-dependent mean, and the covariance matrices
E, F and R may all depend on ¢, or x;.

In general, subscripts are used to: i) denote the
discrete-time index, as in Egs. (1, 2) above; ii) refer
to the corresponding space-related indices, on a reg-
ular or irregular grid or for spectral coefficients; and
iii) indicate (in parentheses) the vector (e.g., state or
observation) with respect to which an error covari-
ance matrix is defined (see Section 3 for an exam-
ple). Superscripts, on the other hand, are used to:
i) describe mathematical operations, such as (-)7,
()%, (-)7%, and (-)’ for transpose, inverse, general-
ized inverse, and linearization, respectively; and ii)
refer to the nature of vectors or matrices in the data-
assimilation process, such as (-)2, (-)®, (\)f, and (-)°
for analysis, background (often called “first guess,”
but see Remarks 3.1.4, 4.1.3 and 4.1.4 below), fore-
cast, and observation. Upper- and lower-case char-
acters in superscripts indicate (i) (some) mathemat-
ical operations and (ii) the type of the variable, re-
spectively. Furthermore, (-)’ may be dropped when
the original operator is linear.

3. Sequential methods

As mentioned already in Section 1, we can-
not cover here all the methods inspired by the
sequential-estimation approach to data assimilation.
Two methods, the extended Kalman filter (EKF:
Gelb, 1974; Ghil and Malanotte-Rizzoli, 1991) and
so-called optimal interpolation (OI: Daley, 1991)
have been selected, on the theoretical and opera-
tional side, to illustrate the suggested notation. As
more advanced methods develop, we hope that this
notation is flexible enough to grow with the meth-
ods.

3.1 Extended Kalman filter (EKF)

The discretized dynamics of the true geofluid x*® is
assumed to differ from that of the numerical model
(1) by stochastic perturbations
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x"(tig1) = My[x* (t;)] + n(t:), (3)

where 77 is a noise process with zero mean and covari-
ance matrix Q; the perturbations can be thought of
as representing subgrid-scale processes not resolved
by the model (1). The same comments about the
possible state- and time-dependence of Q; and of a
nonzero mean for n, apply as for R, and e,.

The EKF consists of a forecast step

x'(t;) = Mi_1[x*(ti—1)], (4a)
Pi(t;) = M,_1P*(t;_1)ML |, + Q(t;—1),  (4b)

followed by an update step — traditionally called
“analysis” step in numerical weather forecasting —
in which the observation available at time ¢; is
blended with the previous information, carried for-
ward by the forecast step (4a,b).

xa(ti) = Xf(tz') + Kidz, (5a)
P2(t;) = (I — K;H;)Pi(ty). (5b)

Here we introduced the linearizations M = M’ and
H = H’, while

d; = y7 — Hi[x'(t;)] (5¢)

defines the observational residual (in the older me-
teorological literature) or innovation vector (in the
engineering and some of the more recent data assim-
ilation literature). The Kalman gain K; is provided
by

K; = P{(t)HI [H;P! (t,) HT + R, L. (6)
Remarks:

1. Observations are processed whenever available,
and then discarded. If no observations are avail-
able at time t;, H; = 0 = K, and the analysis
step is omitted.

2. When the observation operator H or the model
M are linear, H = H or M = M, one may use
operator (italics) or matrix (bold) notation, as
the context dictates. Otherwise, the lineariza-
tion may be about the instantaneous trajectory
x*f(t;) (in the true EKF) or about other states
X; approximating it, such as a steady state or
a state updated less frequently than every time
step (in various simplified versions of the EKF).

3. In practice, various simplifications are intro-
duced to describe P (e.g., Section 3.2 here), in
order to overcome — at least in part — the
computational burden involved in the matrix
calculations of Egs. (4, 5).

4. In operational practice one may imagine the use
of an innovation vector d; in which xf(¢,) of Eq.
(5¢) is replaced by another “background state”
xP, obtained for instance by averaging over an
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ensemble of forecasts, which also produces an
approximation of Pf by PP (Evensen, 1994). In
the work of Gandin (1963), who introduced the
OI methodology to dynamic meteorology, x°
was a climatological state. Rutherford (1972)
proposed x° = x!, as numerical forecasts had
become by then better background fields for
objective analysis than climatology. This led,
however, to the currently common confusion
between forecast, first-guess and background
fields.

3.2 Optimal interpolation (OI)

OI was, until recently, the most widespread
scheme in operational use for weather prediction
(Lorenc, 1986; Thiébaux and Pedder, 1987) and is
coming into growing use in oceanographic data as-
similation (Carton and Hackert, 1989; Derber and
Rosati, 1989). It is a particular suboptimal filter,
in which the EKF’s error covariance matrix Pf is
replaced by an approximation, B; this can be ex-
pressed as a product of variances, placed in a diag-
onal matrix D, and of correlations, placed in a ma-
trix C with unit diagonal (see Ghil and Malanotte-
Rizzoli, 1991, and references there):

B = DY/2CDY/2, R ¢

In order to get some of the benefits of the EKF,
a simplified prediction scheme for the error vari-
ances only is introduced, while C is kept constant
in time:

X (tip1) = M[x3(t.)], (8a)
D'(ti41) = N[D*(t;)); (8b)

various simple schemes N have been implemented
to compute Df. The analysis step is then

x*(t;) = xf(t,-) + K?Idi, (9a)
B*(t;) = (I - K'H;)B(t;)

x(I-K9H)" + KO'R,(KPHT, (9b)
D*(t;) = diag[B*(t;)]. (9¢)

The suboptimal gain K9! is provided by replacing
Pf with Bf in Eq. (6), i.e.,

KP' = Bi(t)H [H,Bf(t,)H + R,)™:.  (10)

The particular form of statistical interpolation
(Daley, 1991) commonly referred to as OI is usually
reserved for practical implementations which further
approximate Egs. (7)—(10). Two salient features of
OI, as implemented at major numerical weather pre-
diction centers in the early 1980s, are: i) A local
approximation in Eq. (9a), by either selecting only
a few observations near each grid point that is up-
dated (e.g., McPherson et al., 1979) or by decompos-
ing the domain into regular, small subdomains and
neglecting the “influence” of observations outside
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each subdomain (e.g., Lorenc, 1981). ii) A result-
ing approximation in Egs. (9b, 10) by using direct
evaluation of a correlation model C at the selected
observation locations to yield H;Bf(¢;)HT .

Remarks:

1. Many suboptimal filters are currently being de-
veloped, attempting to improve upon OI at a
lesser computational cost than the EKF (e.g.,
Todling and Cohn, 1994). We recommend to
follow the usage of Eq. (10) in designating the
particular suboptimal gain matrix involved by
a capital Roman superscript.

2. OI may easily be extended to interpolation of
fields over space and time (“four-dimensional
OI”). The resulting analysis vector may be in-
terpreted as the minimizer of an expected error
covariance, or as the minimizer of a quadratic
objective function (see below). Thus it must
also satisfy Euler-Lagrange equations. Bennett
et al. (1997) solve such equations using repre-
senters, which are shown to be related to the
forecast error covariances Bf; in fact the repre-
senter matrix is just HBTHT.

4. Variational methods

The two methods selected here for illustrating
the notation are the adjoint method for the time-
dependent strong-constraint problem (known widely
as “4D-Var”) and a recent, “incremental” version
thereof. 4D-Var is, in some sense, the theoretical
counterpart of the EKF within the family of control-
theoretically inspired methods. Incremental 4D-Var
represents a particular attempt at its operational
implementation.

4.1 Four-dimensional variational assimilation (4D-
Var)
4D-Var minimizes the objective function J that
measures the weighted sum of squares of distances
JP to the background state x° and J° to the obser-
vations y° distributed over a time interval [to, 5],

Tlx(to)] = 3 (ko) — ()] " Bg "px(to) — x° (t0)]
+5 3= YR (v~ ¥9), (11)
1=0

where we are using the notation y, = H,[x(t;)]. Here
B~! is an a priori weight matrix, with B meant
to approximate the error-covariance matrix of xP,
and the minimization of (11) is done with respect to
the initial state x(¢9). The formulation (11) reflects
the imposition of a strong constraint (Sasaki, 1970).
Alternative formulations that only impose a weak
constraint and their connection to various smoothers
derived from sequential-estimation results are given
by Bennett (1992) and by Ménard and Daley (1996).
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Efficient methods for performing the minimiza-
tion of J require its partial derivatives with respect
to the elements of x(tg), given by

T
oy | = Ba o)~ ()

+ Z M(tit1,to) "Hi R (y. — %),

(12a)
=0
where
i—1
M(ti,t0)" = [ M(t)41,t,)" (12b)
7=0
and M(t;41,¢t;) = M;. This follows from
aJ 17 aJ 1"
—— | =M, t)" | =] 13
[8xﬁ+j (tsst (132)
aJ1T 101"
=H’ . 13
[3&'] H [3)’@] (13b)

M(tit1,t:)T is usually called the adjoint model,
and H the adjoint observation operator; to be pre-
cise, both are adjoints of the suitably linearized
dynamics and observation operator, respectively.
When using partial derivatives with respect to el-
ements of a discretized representation, as above, the
adjoint is identical to the transpose. We recommend
using the (-)T notation in such cases; the (-)* no-
tation is recommended for adjoints of (partial dif-
ferential) operators acting on continuous fields (see
Appendix) or when the gradient is defined with re-
spect to an inner product using a positive-definite
weight matrix distinct from the identity.

Remarks:

1. All vectors are considered to be column vec-
tors unless transposed, while the derivative of
a scalar J with respect to a (column) vector x
is a row vector, thus requiring the transpose on
the left-hand side of Eq. (12a). For function —
rather than vector — spaces (see Appendix),
adjoint operators act on the dual space of that
which contains the state functions.

2. 4D-Var reduces to three-dimensional varia-
tional assimilation (3D-Var) if the time dimen-
sion is taken out. A number of operational
weather forecast centers are considering a re-
placement of OI by 3D-Var.

3. The notation x®, as mentioned already in Re-

mark 4 of Section 3.1, is different from x* or
x! since it is meant, in general, to be the best
estimate of the current state x(t) prior to us-
ing the observations at time t. In 3D-Var, xP
will commonly be the result of a short-range
forecast — hence the similarity to “sequential”
methods — while in 4D-Var it may be the result

of a previous 4D-Var assimilation.
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4. The variational algorithm (11)-(13) requires an
initial vector for the minimization of (11), i.e.,
a first guess x& of the result. If the minimiza-
tion problem (11) has a unique minimum then
its solution does not depend on the first guess
x&. A very general sufficient condition for the
objective function J(x) to have a unique min-
imum is that it be strictly convex. The only
case for which this condition is easy to verify,
when the dimension n of x is large, is that of
J being quadratic, which implies that the dy-
namics and observations are linear. Otherwise
the linearization (12a,b) will always depend on
the background vector xP about which it is car-
ried out. Most current implementations use
x8& = x” and some use the terms “background”
and “(first) guess” interchangeably. We shall
see in the next (sub)section that the distinction
does become useful.

4.2 Incremental 4D-Var

We introduce the increment 6x(to) = x(to) —
x8(to); within the tangent linear approximation, 4D-
Var is equivalent to first order to its incremental
formulation:

T16x(to)] = 5{(8x(t0) — B (t0) — xE(t0)])”
xBj {6x(to) — X" (t0) — X5(t0)]}

1 T
+5 ;[Hzéx(tl) d;]

xR HH;6x(t:) — dil, (14)

with 6x(t,) = Ml(t;,40)6x(to) and d; = y? —
H;[x8(t;)]. The linearization M’ is carried out about
the forecast (1) started from x85(tg). The analysis
is then obtained by adding the analysis increments
6x*(to) to the background,

x*(to) = x5(to) + 6x*(to),

where 6x*(to) is obtained by minimizing (14).

To reduce the computational cost of the mini-
mization, a linear simplification operator S is intro-
duced to act on the initial states x°(¢y) and x&(to).
It can be a projection operator [see, for instance
Ghil (1989) and references there] — such as spectral
truncation to large-scale or other selected modes,
in which case 82 = S — or some averaging op-
erator for a finite-difference model. In any case,
we define éw = Séx and S is meant to be rank-
deficient, in order to reduce the dimension of the
(approximate) minimization problem to be solved,
so that one needs to define an appropriate general-
ized inverse, denoted by S~I. Simplified dynamics
L is introduced to approximate SMS™!, as well as
a simplified observation operator G, approximating
HS-I. Both are obtained through linearization in
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the vicinity of the trajectory x2(¢;). The simplified
minimization problem becomes

Tlow(to)] = 5{8w(to) ~ S[x"(t0) — x5 (t0)]}"
XB (to) (6w to) — SEE" (t0) — x5 (t0)]}

1 e T
+5 ;[Giéw(t,) —dy]

xR; G 6w(t;) — di,
(15)

with 6w (t;) = L(t;, t0)éw (to) and B (w) approximat-
ing SB(x)S™. Here L(t;,%0) = I'_{L; and the anal-
ysis is obtained through

x(to) = xE(to) + S™T6w> (o). (16)
Remarks:

1. When an ambiguity may arise from the use of
different spaces for the model or observation
states (e.g., temperatures vs. radiances in the
atmosphere, sound arrival times vs. densities in
the ocean, fewer observations p; than grid vari-
ables n, or the use of preconditioning or simpli-
fication transformations), a subscript may be
added to the matrices P or B. To distinguish
this from discrete-time and -space indices, it
is recommended to enclose these subscripts in
parentheses, e.g.,

B(w) (ti) = SB(x) (ti)ST. (17)

2. The well-known duality that holds, for lin-
ear dynamics and observations, between the
Kalman filter and an optimal control problem
(Kalman, 1960; Ghil and Malanotte-Rizzoli,
1991) can be used to combine incremental 4D-
Var with the EKF for another promising sub-
optimal filter.

3. The minimization is not performed in practice
in the éw space: a change of variables is intro-
duced to improve the conditioning of the mini-
mization problem. Given the change of variable
éw = Uv and its appropriately defined gener-
alized inverse v = U~ 1w, the minimization is
performed in the v space (Courtier et al., 1994).

5. Conclusions

A consistent set of symbols has been introduced
for advanced assimilation methods, based on both
the sequential and variational approach. The du-
ality of the approaches demands and also facilitates
the use of unified notation, such as the matrix B that
is used as an approximation to the correct error-
covariance matrix P in sequential methods, while
B! is used as an a priori set of weights in varia-
tional ones.
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Table I. Notations by type

1. Vectors (bold lower-case Roman)

Vol. 75, No. 1B

| Symbol [ Definition

] Remarks

|

d

innovation vector

D91; h in B92;  in GM91

X

state vector

Any appropriate notation can be used to
represent specific variables: B92, C94,
L86; s in D91; w*Ft in GM91

éx

incremental state vector

bu in C94

observations

any appropriate notation can be used to
represent specific variables: L86; d; f, in
D91, y in C94; w° in GM91

«

estimated observation values,
calculated from the state vector
x

L86

model error (“system noise”)

q in B92; € in D91; b* in GM91

observational error

B92, C94, D91; b° in GM91

state vector in simplified 4D-Var

glglols

incremental state vector in sim-
plified 4D-Var

preconditioned state variable

2. Operator (upper-case Italic)

I Symbol 'LDeﬁnition

l Remarks I

H

observation operator

C94, D91, GM91; K in L86; £ in B92

cost (penalty) function

C94, GM91; I in D91; 7 in B92

model operator

C94, D91; £ in BY2; N in GM91

J
M
N

scheme to advance variances in
(0}

S

simplification operator

3. Matrix (bold upper-case Roman)

[ Symbol “ Definition I Remarks
B approximate error covariance C94, D91, L.86; S in GM91
C time-independent correlation D91, GM91
matrix in OI
D empirical forecast-error variance
in OI
E covariance of instrumental obser- | O in L86
vation errors
F covariance of representativeness L86
errors in the observations
G simplified observation operator
H' =H || linearized observation operator C94
I identity matrix
K gain matrix B92, C94, D91, GM91
L symplified model operator
M’ =M || linearized dynamics operator R in C94, ¥ in GM91
P forecast-error covariance D91, GM91, c in B92
Q model-error covariance B92, D91, GM91
R observational error covariance GM91; w in B92; O in C94, D91
S'=S8 simplification matrix
U preconditioning matrix
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4. Superscripts”®

K. Ide, P. Courtier, M. Ghil and A.C. Lorenc

187

[ Symbol [ Definition | Remarks |
(-)-1 inverse
(-)-1 generalized inverse to be defined unambiguously (e.g., B92)
()T transpose
) adjoint used only when not equivalent to the
transpose
(O || indicates the specific suboptimal
scheme used to approximate the
EKF GMo91
) linearized (operator)
)? analysis C94, GM91; ()T in B92; (-)* in D91
()P background C94, (-)p) in DIL.
)F forecast C94, GM91; (-)f in D91
(-)® (first) guess in iteration C94
(-)° observed GM91; d in B92; (-)p in D91; y in C94;
y° in L86. (see also Table I.1.)
()* true GMB91; (-); in C94 and L86; (-)r in DI1.

* upper-case Roman for mathematical operations, or specific assimilation schemes (if necessary); lower-case

Roman for the nature of vectors or matrices

5. Subscripts

Usage: 1.

covariance matrix.

to describe discrete-time index;

2. to denote the corresponding space-related indices on a finite-difference
grid or for spectral coeflicients; and

3. (in parenthesis) to refer to the corresponding vector when used for a

Table 1 lists the symbols defined in this article.
Among many earlier works that have made impor-
tant contributions to the field of data assimilation,
only a handful are referenced here to show other con-
ventions in wide use prior to this article. B92, C94,
D91, GM91, and L86 are abbreviations for Bennett
(1992), Courtier et al. (1994), Daley (1991), Ghil
and Malanotte-Rizzoli (1991), and Lorenc (1986),
respectively, listed in alphabetical order; bold let-
tering for a reference indicates that it uses the same
notation as recommended here.

Acknowledgments

We would like to thank the 205 participants at the
International Symposium for highlighting the need
for unified notation. The data-assimilation work of
MG and KI is supported by NASA grant NAG5-
713 and ONR grant N00014-93-1-0673. The Ap-
pendix was written in response to comments from
A.F. Bennett. We also benefited greatly from com-
ments by R.M. Errico, C. Wunsch and two anony-
mous referees. Carole Edis at ECMWF and Kristin
Hartman at UCLA typed the manuscript. This is
publication no. 4858 of UCLA’s Institute of Geo-
physics and Planetary Physics.

Appendix

Notation for distributed—parameter
systems

The evolution of atmospheric and oceanic flows is
governed by systems of partial differential, rather
than ordinary difference equations: PDEs rather
than OAEs. In practice, of course, the nonlinear-
ity of these PDEs precludes their analytic solution,
except in a few simple cases, and discretization — in
both space (P — O) and time (D — A) — is neces-
sary to obtain and study solutions. Still, the PDEs
are used in various theoretical investigations of the
flow evolution. To the extent that data assimilation
is in a phase of rapid theoretical development, at
least minimal guidance on notation at these fron-
tiers might do some good and certainly little harm.

In the engineering literature, finite-dimensional
systems, in discrete (OAEs) or continuous (ODEs)
time, are referred to as lumped-parameter systems,
while infinite-dimensional ones (PDEs) are referred
to as distributed-parameter systems. In the math-
ematical and geophysical literature, the term “pa-
rameter” is reserved usually for a constant in the
equations, rather than a dependent variable, so one
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talks about field estimation, rather than vector es-
timation: the instantaneous state of the system is
described by a (set of) field(s) — i.e., by a func-
tion(s) of one or more independent space variables
— rather than by a vector.

On the whole, continuous dependence on time
tends to simplify notation, as well as the analysis
of such theoretical issues as observability, control-
lability and stability for sequential estimation. The
counterpart of Egs. (1,2) in the main text, for a time-
continuous finite-dimensional system (ODEs) is:

xf = M(x, 1),
yo(t) = H(x',t) + ¢,

(A1)
(A.2)

where () = d( )/dt, M and H are nonlinear oper-
ators in continuous time, and the interpretation of
X, y, and € is accordingly different.

The real geofluid is assumed, in the sequential ap-
proach, to evolve according to a stochastic differen-
tial equation:

dxt = M(x", t)dt + dn’; (A.3)

here n is a Wiener process (Brownian motion) with
independent, normally distributed increments, hav-
ing mean zero and covariance matrix Q = E[nnT].
The expectation operator E is recommended over
the bracket or overbar notation, E[bT] = (ab™) =

ab”, for greater legibility and to emphasize the in-
tegral character of this operator (with respect to a
suitably defined probability measure). The covari-
ance matrices of x and € are still denoted by P and
R, for simplicity.

Since the observations y°® do occur, typically, at
discrete times, the EKF forecast step between two
arbitrarily spaced observation times is

xf = M(x, 1),
Pf — MfPf + (Pf)TMf + Q,

(A.4a)
(A.4b)

with M(t) = M'(t) (e.g., Ide and Ghil, 1997a,b;
Jazwinski, 1970). The linearization in the EKF it-
self is about xf(¢), and various suboptimal filters
with linearization about xP(¢) may be considered.
Since it is unlikely that both time-continuous and
time-discrete versions of the EKF will be used in
the same paper, it seems advisable to minimize the
number of distinct types of font used. For those
interested in the theoretical developments, the dis-
tinction between M(¢;41,t;) in Section 4.2 and M(t)
here should be obvious.

When observations do occur, at t = t;, say, an
analysis step is performed:

x*(t;) = x'(t;) + K;{y§ — H[x'(t;)]},

P(t;) = (I - K;H;)P(¢;). (A.5)

Here H; = M’ and the gain matrix K; is given by
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K, = Pi(t;))H] [H;P'(t;)H] +R,]"".  (A6)
The details, as usual, are in the references, but the
parallelism between Egs. (A.1)—(A.6) here and (1)—
(6) in Section 3 is helpful. Some care needs to be
exercised, however, in the reinterpretation of the
symbols, since stochastic processes in continuous
time, especially nonlinear ones, differ in many re-
spects from those in discrete time (e.g., Miller et al.,
1994, and references there). To the extent that no
such subtleties arise in the time-continuous strong-
constraint variational approach, the counterpart of
Eqgs. (11)—(13) is left as an exercise to the interested
reader [Hint: Keep B and M(t), replace summa-
tion by integration and (-)T by (-)*].

Continuous dependence on space is important to
keep in mind when analyzing in depth issues of in-
terpolation and subgrid-scale variability (Bennett,
1992). Unfortunately, substantial mathematical dif-
ficulties arise even in linear (Curtain and Pritchard,
1978) or deterministic (Lions, 1971) systems of
PDEs. Considerable attention goes to the appro-
priate function spaces in which the fields of interest
lie, and the duals of these function spaces on which
the adjoint operators that arise in minimization are
defined.

Staying on the purely formal level, like much of
the distributed-parameter literature in engineering,
one can rewrite Egs. (A.1)—(A.6) for a field u(r,t),
where u now designates the dependent variables
- such as velocity, geopotential, temperature and
so on — and r the independent space variables.
The model dynamics M becomes a nonlinear par-
tial differential operator, M = M[8g, u(r,t),r, 1],
where Of denotes partial derivatives with respect
to the components of r up to a certain order,
o] < m. The observation operator H[u(r,t),r, ]
maps typically an infinite-dimensional into a finite-
dimensional space (Wahba, 1990):

vi(r,t) = Hi[(u(r, t),r,t] + w(r,t). (A7)

Here v is used to denote the observed field(s). Ob-
servations occur at discrete locations ry; alterna-
tively, the observations can be, or include, a finite
number of integrals over the domain, at certain ra-
diative wavelengths (in the atmosphere) or sound
frequencies (in the ocean). In the latter case, the
label k refers to the radiative or sound channels in
which the observation is made.

The covariance matrices P and Q of Egs. (1)-
(6) and (A.1)-(A.6) become symmetric (or self-
adjoint), positive-definite operators. Their spectral,
eigenvalue-eigenfunction decomposition is given by
the infinite-dimensional version of the Karhunen-
Loéve theorem (e.g., Loeve, 1978).

The objective function J[x(¢)] in Section 4.1 be-
comes a functional J[u(r,tp)] and its minimization
involves the adjoint PDE for a given linearization
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of M(u,x,t) (Lions, 1971; Marchuk, 1975). The
combined complexities of nonlinearity and stochas-
tic perturbations are challenging but the motivation
for addressing them in the PDE setting is strongly
enhanced by the promises of increased resolution in
both models and observations.
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