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Abstract

We study two aspects of the detrended .uctuation analysis (DFA) method, namely the scal-
ing behavior of the leading terms of the best-0t polynomials and the detection of trends. We
show analytically and numerically that the standard deviation of the leading terms of the best-0t
polynomials used in DFA displays scaling behavior. Furthermore, we demonstrate that the dis-
tribution of these terms can be used to reveal the presence of trends in the data. We also argue
that this distribution can be used as a sensitive tool for identifying weak trends. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Long-range correlations in time series are frequently studied by means of the de-
trended .uctuation analysis (DFA). The basic method was introduced by Peng et al. [1]
to study long-range correlations in DNA sequences and has been successfully applied
to a variety of systems ranging from DNA [2–4], heart rate dynamics [5–8], human
gait [9,10], neuron spikes [11] to atmospheric temperature [12–15] and stock market
variability [16,17].
Recently, attempts have been made to understand the e@ect of trends present in the

data through the DFA method [18,19]. Here, we present an alternative method. Instead
of analyzing the .uctuations around the best polynomial 0ts for a certain time window
of length s, we analyze the best 0ts themselves. We show that both correlations and
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trends can be identi0ed through the histogram of the coeFcients of the polynomial
terms used in the DFA method. In fact, while the mean value of the histogram of
the slopes indicates the presence of trends, the standard deviation of the histogram
exhibits scaling behavior and provides information about long-range correlations. We
also propose an analytical approach for these results.
This paper is organized as follows. In Section 2 we present the methodology used for

trend analysis. Section 3 is devoted to results and discussions and 0nally we conclude
in Section 4.

2. Methodology

In order to explain our approach, we brie.y review some of the steps comprising
the DFA algorithm. Consider a typical time window s such as s�N , where N is the
length of the time series. As in conventional DFA, instead of analyzing the raw time
series {ui} the pro0le Y (l)=

∑l
i=1 ui is studied. We use a DFA algorithm where the

pro0le is divided into r=N − s+1 overlapping intervals of size s and the local trend
for each interval 	 is calculated via a least-square 0t of the data. Then, the detrended
pro0le is de0ned for intervals of duration s, as the di@erence between the pro0le and
the 0ts

Z	(l)=Y	(l)− p(k)
	 (l) ; (1)

where p(k)
	 (l) is the best-0t polynomial of order k to Y	(l) in the 	th interval. Di@erent

orders k of DFA (DFA1, DFA2, etc.) only di@er in the order of the polynomial used in
the 0tting procedure. Since the detrending of the time series is done by the subtraction
of the 0ts from the pro0le, di@erent orders di@er in their capability of eliminating
trends in the data. In fact, DFAk removes polynomial trends of order k in the pro0le
and hence (k − 1)th order in the time series.
The DFA method has been designed to reveal the scaling behavior of the

detrended pro0le, Z	. For a given window size s, we compute the root mean square
.uctuation

F(s)=

√√√√ 1
rs

r∑
	=1

s∑
l=1

Z2
	 (l) :

The above computation should be repeated for windows of di@erent lengths to estab-
lish a relationship between F(s) and s. In the presence of long-range correlations the
.uctuation function increases according to the following power law

F(s) ∼ s� ;
where � is the .uctuation exponent. In the alternative approach developed here, we
focus on the analysis of the coeFcients of the polynomial terms and study two aspects:
(i) the histogram of the values of the coeFcients (direct method) since they contain
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information about the trends, and (ii) the scaling behavior of the standard deviation of
the coeFcients (scaling approach). We describe the approach for DFA1 and DFA2.
In the conventional DFA1 introduced by Peng et al. [1], a 0rst-order polynomial is

used for each segment, i.e.,

p(1)
	 (l)= a(1)1; 	l+ a

(1)
0; 	 ; (2)

where a(1)1; 	 and a(1)0; 	 are the 0tting coeFcients corresponding to the 	th interval. Since

there are r time windows of length s, DFA1 will provide r pairs (a(1)1; 	; a
(1)
0; 	) of values,

each of them corresponding to a particular time window. Then, it is straightforward to
generate histograms using a(1)1; 	 or a(1)0; 	. For DFA2, we use a second-order polynomial
in the 0tting procedure

p(2)
	 (l)= a(2)2; 	l

2 + a(2)1; 	l+ a
(2)
0; 	 ; (3)

where a(2)2; 	, a
(2)
1; 	, and a

(2)
0; 	 are the 0tting coeFcients. So, histograms can be generated in

the same way using the values of a(2)2; 	, a
(2)
1; 	, and a

(2)
0; 	 corresponding to each segment 	.

The 0tting coeFcients a(1)1; 	 and a(1)0; 	 for DFA1 and a(2)2; 	, a
(2)
1; 	, and a

(2)
0; 	 for DFA2, etc.,

can be best analyzed by forming histograms. It can be analytically proved (not given
here) that the histogram curves generated from correlated random Gaussian noise are
also Gaussian.
Next, we show how these histograms for a particular time window s can be useful to

detect trends. Also, we will investigate how the standard deviation � of the histogram
varies for di@erent time windows, i.e., the scaling behavior of histograms.

3. Results and discussion

3.1. Direct method

To demonstrate our approach we generated a series of Gaussian distributed correlated
data xi (of length N =100 K) with .uctuation exponent �=0:7, zero mean and unit
standard deviation by means of the Prakash et al. algorithm [20,21]. In addition, using
this time series, we generated a new one by adding a trend as follows:

ui= xi + Ai ; (4)

where A is a constant.
Since the aim of DFA method is to remove trends (see Eqs. (2) and (3)), histograms

obtained from time series where trends are absent should have a mean value equal to
zero. However, for 0nite time series the histograms will usually exhibit a mean value
di@erent from zero. Then, a criterion is necessary to decide whether or not a trend is
present in the data, i.e., we need to estimate the lower detection limit for our method.
This can be accomplished by calculating the mean m of the slopes over R�1 di@erent
realizations (of length N of a pure noise with the same .uctuation exponent �) and the
standard deviation � among the mean values. The number of realizations R should be
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Table 1
Values of the standard deviation � among the means of the histograms
calculated for several values of N and �a

N=� 0.3 0.5 0.7

10 K 2:9× 10−4 5× 10−4 8× 10−4

100 K 2:7× 10−5 4:4× 10−5 7:8× 10−5

1000 K 3:5× 10−6 6:2× 10−6 1:1× 10−5

aThe values correspond to s=32.

increased until convergence is obtained in the value of �. Now, we propose a criterion
for the existence of a trend just by checking whether or not the mean value of the
slopes lies within the interval [ − �;+�]. Consequently, if the mean value lies well
outside this interval, we can con0dently say that the data contain a trend. For this
purpose, we evaluated for three di@erent values of N and three di@erent values of
� the testing intervals to apply the criterion for the existence of trends. The results
are shown in Table 1. We have checked that � does not change signi0cantly when
increasing R, so the values reported can be considered as asymptotic values.
Figs. 1(a) and (b) show histograms obtained using DFA1 for A=0 and time win-

dows of length s=32 and 512, respectively. We observe that the mean values of
the histograms (see Figs. 1(a) and (b)) are within the range de0ned in Table 1 in-
dicating the absence of trends. Figs. 1(c) and (d) show similar plots obtained for
A=0:25 × 10−5. It is now possible to see that the mean values (see Figs. 1(c) and
(d)) of the histograms are well outside the range de0ned in the same table. This is the
signature of the presence of a trend. It can be shown that for a linear trend (Ai) the
mean value of the slopes is given by

〈a(1)1; 	〉=AN=2 ; (5)

which is independent of the analyzing time window s. The values shown in Figs. 1(c)
and (d) are in accordance to Eq. (5) within the numerical error.
Earlier works on the detection of trends using DFA [18,19] have focused on the

analysis of the position of the crossover of the DFA curves. Hu et al. [19] have shown
that for correlated noise with exponent � containing a linear trend, the position sz of
the crossover in the curve generated by DFA1 is given by

sz ∼ A1=(�−2) : (6)

Requesting in Eq. (6) that the position of the crossover sz lies beyond the longest
analyzing time window in DFA (normally N=4), it is possible to estimate the weakest
linear trend (lower bound) that DFA1 can identify

A¿
(
N
4

)�−2

≡ Amin : (7)

To illustrate the sensitivity of our method, we compare Amin to the minimum trend
Alow that the present method can detect. In fact, Alow can be calculated by requesting
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Fig. 1. Histograms of the leading slopes obtained from DFA1. Panels (a) and (c) represent results for a time
window 32, and (b) and (d) are for a time window 512. While (a) and (b) consider the data (correlated
noise) without any trend, (c) and (d) consider the data with a linear trend of A=0:25× 10−5.
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that 〈a(1)1; 	〉= �, so we obtain

Alow =
2�
N
: (8)

It should be noticed that for the cases considered in Table 1, the values of Alow are at
least 2 orders of magnitude smaller than the values of Amin.

In order to provide a criterion for the existence of trends in a real situation, the
simulation suggested above should be performed using arti0cial data of the same length,
distribution, and .uctuation exponent as those of the real data.

3.2. Scaling analysis

It is clear that the histogram width (i.e., the standard deviation of the slopes) de-
creases when increasing s (see Fig. 1). We will restrict ourselves, without loss of
generality, to the study of histograms generated using the leading slopes. Fig. 2 shows
log–log plots of � of the leading slopes versus s. In the case of pure noise (Fig. 2
(a)), � displays a power law behavior for DFA1-5. The values of the exponents ob-
tained are also shown in the 0gure. It is possible to obtain by means of simple scaling
arguments the behavior of �. Consider the standard deviation of the leading slopes �(k)s
corresponding to order k of DFA and window size s. As discussed above, the DFA
method involves a 0tting of the pro0le Y using a polynomial of order k. The leading
slope can be estimated through the following relation:

dkY (l)
dlk

∼ a(k)k;	 : (9)

For pure noise in the absence of trends, the scaling behavior of the .uctuations of the
pro0le is given by the following expression [22]:

�s(Y ) ∼ s� : (10)

Then, from Eqs. (9) and (10) we obtain

�(k)s ∼ s−(k−�) = s−�k ; (11a)

where

�k =(k − �) : (11b)

A more rigorous proof of this scaling relation for DFA1 is given in the appendix. The
values of the exponents corresponding to DFA1-5 (see Fig. 2(a)) are in a good agree-
ment with the scaling behavior predicted by Eq. (11a). Fig. 2(b) shows the scaling
analysis performed using noise containing a weak linear trend. Since DFA of order k
removes polynomial trends up to the order (k − 1), deviations from the scaling form
predicted by Eq. (11a) could only be observed in �(1)s . However, such a weak trend
is not strong enough to cause a signi0cant change in �(1)s . Noise containing a stronger
trend is analyzed in Fig. 2(c). In this case, the scaling behavior of �(1)s displays a
crossover at sz revealing the presence of the trend. Due to the scale used in Fig. 2 the
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Fig. 2. Plots of the standard deviation of the leading slopes � versus the time window s. From top to bottom,
results correspond to DFA1-5. (a) Correlated noise with �=0:7 without any trend, (b) noise with linear
trend of A=0:25× 10−5 and (c) A=2× 10−5.

position of the crossover sz in the �(1)s curve is not clearly observed. In fact, within the
short-time regime s¡ sz, the scaling behavior predicted by Eq. (11a) holds because the
noise dominates over the trend [18]. However, since the trend controls the system for
s¿ sz, the value of the asymptotic slope (�1 = 0:13) di@ers from the value given by
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Eq. (11a) (�1 = 0:30). We expect that for the � curves, the behavior of the position
of the crossover sz displays similar features to that found in the analysis of DFA
method [19].

4. Conclusions

In this paper, we have proposed a new method for the detection of trends based
on DFA. In addition, we have found that the analysis of the slopes of the best-0t
polynomials provides a new way of estimation of the .uctuation exponent. These results
might be useful for forecasting some aspects of the dynamics of systems such as trends
in the atmosphere, tendencies in stock markets, patchiness in DNA sequences, etc.
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Appendix

For DFA1, the slope a(1)1; 	 for 	th window of size s is given by

a(1)1; 	=6
2
∑	+s−1

i=	 iYi − (2	+ s− 1)
∑	+s−1

i=	 Yi
s(s2 − 1)

: (A.1)

Since the mean of a(1)1; 	 is equal to zero for a pure noise, �2s [a
(1)
1; 	] =M [(a(1)1; 	)

2]. Then,

M [(a(1)1; 	)
2] =

36
s2(s2 − 1)2

M



[
2
	+s−1∑
i=	

iYi − (2	+ s− 1)
	+s−1∑
i=	

Yi

]2


=
36

s2(s2 − 1)2


4M



(
	+s−1∑
i=	

iYi

)2

− 4M [2	+ s− 1]M

[
	+s−1∑
i=	

iYi
	+s−1∑
i=	

Yi

]

+M [(2	+ s− 1)2]M



(
	+s−1∑
i=	

Yi

)2

 : (A.2)

Assuming that Yi is a fractional Brownian motion with zero mean, variance M [Y 2
i ] = i

2�

and covariance M [YiYj] = 1
2 (i

2� + j2� − |i − j|2�) [22], we evaluate separately the
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following expressions:

M



(
	+s−1∑
i=	

iYi

)2 
 (2�2 + 5�+ 1)s2�+4

4(�+ 1)(�+ 2)(2�+ 1)
;

M

[
	+s−1∑
i=	

Yi
	+s−1∑
i=	

iYi

]

 (3�+ 1)s2�+3

4(2�+ 1)(2�+ 2)
;

M

[
	+s−1∑
i=	

Yi

]

 s2�+2

2�+ 2
;

M [2	+ s− 1]=N + 2s− 1 ;

M [(2	+ s− 1)2]= 4
3N

2 + 14
3 Ns− 8

3N + 13
3 s

2 − 4
3 s+ 1 :

Substituting all this expressions in Eq. (A.2) we obtain

M [(a(1)1; 	)
2] 
 6

20�2 + 53�+ 20
(�+ 1)(�+ 2)(2�+ 1)

s2(�−1) : (A.3)

Therefore

�s[a
(1)
1; 	] ∼ s−(1−�) : (A.4)
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