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DFA3 vs GSPE

Several H estimation methods are available (Vyushin and Kushner , 2009) and we test here

whether some of our key results are method dependent. In the original Figs. 1 and 2 we used

the DFA3 time domain H estimator. Vyushin and Kushner (2009) have shown that DFA3

and other spectral domain methods yield consistent estimates of H provided a consistent

frequency range has been chosen and known climate signals have been filtered out. DFA3

effectively filters out linear and quadratic trends in the data, which helps us to focus on

internal climate variability. The distribution of the DFA3 Ĥ seems to be Gaussian (Rybski

and Bunde, 2009) with standard deviation ≈ 0.075 for the case of the time scale range of

18 to 540 time units (Vyushin and Kushner , 2009; Weron, 2002). Overall, DFA3 provides

more robust estimates than other available methods, but for the results reported here, we

have found consistent results using the spectral domain Gaussian semiparametric estimator.

Supplementary Figs. 1 and 2 apply Gaussian Semiparametric Estimator (GSPE, Robin-

son, 1995) to the same data sets as in the original Figs. 1 and 2. GSPE is a maximum-

likelihood spectral domain estimator of H . The GSPE Ĥ is known to be relatively sensitive

to the presence of linear and nonlinear trends and to high-frequency spectral peaks compared

to DFA3 (Vyushin and Kushner , 2009). Because of the known sensitivity to trends we have

filtered out linear trend before calculating the GSPE Ĥ.

In supplementary Fig. 1 the overall distribution of the GSPE Ĥ is similar to, but noisier

than, the DFA3 Ĥ in the original Fig. 1. However, significant differences remain. For

example, Southern Hemisphere stratospheric values of Ĥ are larger for GSPE than for DFA3
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(a) NCEP/NCAR (LTR+QBO)
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(d) AM2.1 Hist SST (LTR)
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(b) ERA40 (LTR+QBO)
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(e) AM2.1 climo SST+Volc (LTR)
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(c) AM2.1 Hist SST + AllForc (LTR)
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(f) WCRP CMIP3 (LTR)
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Figure 1: Ĥ distribution estimated by GSPE for zonal-mean temperature for (a) the

NCEP/NCAR reanalysis, (b) the ERA40 reanalysis, (c) the GFDL AM2.1 HistSST+AllForc

simulation, (d) the GFDL AM2.1 HistSST simulation, (e) the GFDL AM2.1 Vol simulation,

(f) the CMIP3 simulations. Panel (f) represents a multiple model average. As stated in the

text, QBO filtering has been applied to the reanalysis temperatures in Figs. 1a-b. Values of

Ĥ less than 0.4 are shown in white.

in the reanalyses due to nonlinear trends from ozone depletion and data inhomogeneities. In

addition, the differences in the tropical troposphere arise from ENSO related variability that

boosts the high frequencies and is known to reduce the GSPE Ĥ relative to the DFA3 Ĥ

(Vyushin and Kushner , 2009). In the CMIP3 simulations this discrepancy is present when

we analyze 45 year long time series, but is reduced when we analyze 100 year long time

series.

We also have to bear in mind GSPE’s sensitivity to high frequency spectral peaks when

we try to reproduce the results of Fig. 2, which illustrates the sensitivity of Ĥ to tropical SST

variability. The impact on the GSPE Ĥ of TropSST (Smith et al., 2008) filtering (not shown)
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(a) NCEP/NCAR ( − LPTropSST)
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(b) ERA40 ( − LPTropSST)
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(c) AM2.1 HistSST+AllForc(−LPTropSST)
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(d) NCEP/NCAR ( − LPTropSST)
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(e) ERA40 ( − LPTropSST)
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(f) AM2.1 HistSST+AllForc(−LPTropSST)
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Figure 2: Ĥ without LPTropSST filtering minus Ĥ with LPTropSST filtering, which repre-

sents the signature of the tropical SSTs in the Ĥ field. First row - DFA3 estimates, second

row - GSPE estimates.

looks quite different from that for the DFA3 Ĥ, which is shown in the original Figs. 2d-f. This

difference arises because the high frequency component of the TropSST signal dominates the

GSPE Ĥ response while the low frequency component of the TropSST signal dominates the

DFA3 Ĥ response. But we can put the two methods on a more even footing by focusing on

the decadal component of the Tropical SST variability, which is the timescale of interest in

this study. To do so, we construct a 3 year low-pass filtered tropically averaged SST signal

(“LPTropSST”) and compute the response to LPTropSST filtering in DFA3 Ĥand GSPE Ĥ

in supplementary Fig. 2. The first raw of this figure is similar to the original Fig. 2, showing

that the DFA3 Ĥ response is robust to the low-pass filtering. The first and the second raw

of the supplementary Fig. 2 are also remarkably similar, indicating that the tropical SST

effect is in good agreement in the two methods.

An open source R package that includes various spectrum and the Hurst exponent estima-
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tors as well as both AR1-based and power-law-based trend detection algorithms is available.

Effect of volcanic eruptions

We return to the volcanic signature of Ĥ in the lower stratosphere. It has been shown

theoretically that a sum of stochastic amplitude shocks decaying by a power law has a power

law spectrum (Parke, 1999). But the volcanically induced warming of the stratosphere

decays exponentially in time (Robock , 2000) and so we cannot expect power-law behavior in

temperature except over a limited range of frequencies.

A simple model to capture the behavior is

dT

dt
= −

1

τ
T + V (t) (1)

where T is temperature, τ is a relaxation time scale and V (t) is the volcanic forcing

(Stenchikov et al., 2006) (expressed as aerosol optical depth). Supplementary Fig. 3a shows

one-year running mean air temperature anomalies in the tropical lower stratosphere obtained

from the GFDL AM2.1 Vol simulation (see the original Fig. 1e), Fig. 3b the solutions to

(1) for various values of τ , and Fig. 3c the power spectra for the time series in Fig. 3b. As

the relaxation time scale gets larger the power spectra saturate at lower frequencies, which

would give rise to larger estimates of H . These power spectra demonstrate a combination

of power-law behavior between 6 months and 4-10 years and a flat spectrum at the lowest

frequencies. When we repeat the same calculation for the volcanic forcing record of the past

130 years the saturation occurs at lower frequency (not shown).

The DFA3 Ĥ for the solutions to (1) are labelled with colors corresponding to the spectra

in Fig. 3c. The Ĥ values are so large because our simple model does not include regular

weather noise, which boosts spectral power in high-frequencies and thus decreases the Ĥ .

To support this we have plotted the power spectrum of the solution to (1) for τ = 1 with the

weather noise superimposed on it. We employed the time series of air temperature monthly

mean anomalies at the equator at 70hPa obtained from the Climo simulation of GFDL AM2.1

that was forced with climatological SSTs and with time-independent radiative forcings. The
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Figure 3: (a) Air temperature anomalies at (Equator, 70hPa) from the AM2.1 Vol simulation.

The smooth red curve is a one year running average. The timing and the names of the major

volcanic eruptions are shown above the time axis. (b) Solutions to equation (1) for τ = 1

year (red curve), 3 (orange), 5 (green), and 10 years (blue). (c) Multitapered power spectra

of these solutions and their DFA3 Hurst exponent estimates. (d) The power spectrum of

the solution for τ = 1 with the weather noise superimposed on it. The best fit power-law

curve (line in log-log coordinates) is shown in brown. Panels (c-d) are plotted in log-log

coordinates.
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Hurst exponent estimate of this time series, obtained using the DFA3 method, is 0.97, which

agrees well with the values in the lower tropical stratosphere in the original Fig. 1e.

List of possible origins of power-law spectral behavior

We provide a list of some proposed physical processes that generate power-law spectral (1/f

noise) behavior and that might be relevant to interannual to decadal scale climate variability:

aggregation of multiple scales (Granger , 1980; Caballero et al., 2002), in particular in self-

organized criticality type models (Rios and Zhang , 1999; Maslov et al., 1999); stochastically

forced diffusion equation (Pelletier , 2002; Fraedrich et al., 2004); nonlinear stochastic differ-

ential equations (Naidenov and Kozhevnikova, 2000; Kaulakys et al., 2006); a sum of slowly

decaying intermittent shocks (Cox , 1984; Parke, 1999; Mandelbrot , 2003); point processes

(Davidsen and Schuster , 2002; Kaulakys et al., 2005); chaotic Hamiltonian dynamics (Geisel

et al., 1987; Zaslavsky , 2002); intermittent nonlinear maps (Barenco and Arrowsmith, 2004;

Miyaguchi and Aizawa, 2007), etc.

GCMs details

The 17 CMIP3 models used in our study are CGCM3.1(T47), CGCM3.1(T63), CSIRO-

Mk3.0, CSIRO-Mk3.5, ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, GISS-AOM,

GISS-EH, GISS-ER, MIROC3.2(medres), MIROC3.2(hires), MRI-CGCM2.3.2, NCAR

CCSM3.0, NCAR PCM, UKMO-HadCM3, UKMO-HadGEM1. We have chosen the most

established models among all available CMIP3 models. We used one 20C3M run from each

model. The details of the models have been documented previously (Santer et al., 2005;

Stenchikov et al., 2006) and can also be found on the CMIP3 web-site.
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