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ABSTRACT

The question of which statistical model best describes internal climate variability on interannual and longer

time scales is essential to the ability to predict such variables and detect periodicities and trends in them. For

over 30 yr the dominant model for background climate variability has been the autoregressive model of the

first order (AR1). However, recent research has shown that some aspects of climate variability are best

described by a ‘‘long memory’’ or ‘‘power-law’’ model. Such a model fits a temporal spectrum to a single

power-law function, which thereby accumulates more power at lower frequencies than an AR1 fit. In this

study, several power-law model estimators are applied to global temperature data from reanalysis products.

The methods employed (the detrended fluctuation analysis, Geweke–Porter-Hudak estimator, Gaussian

semiparametric estimator, and multitapered versions of the last two) agree well for pure power-law stochastic

processes. However, for the observed temperature record, the power-law fits are sensitive to the choice of

frequency range and the intrinsic filtering properties of the methods. The observational results converge once

frequency ranges are made consistent and the lowest frequencies are included, and once several climate

signals have been filtered. Two robust results emerge from the analysis: first, that the tropical circulation

features relatively large power-law exponents that connect to the zonal-mean extratropical circulation; and

second, that the subtropical lower stratosphere exhibits power-law behavior that is volcanically forced.

1. Introduction

In climate research, the principal statistical model for

representing internal variability in the absence of ex-

ternal forcings is Hasselmann’s (1976) model of a slow

damped component that represents the ocean coupled

to a fast, noisy component that represents the atmos-

phere. In time series analysis, Hasselmann’s model is

represented by the autoregressive model of the first

order (AR1), which has a two-parameter power spec-

trum of the form S(l) 5 s2
e /[1� 2f cos (2pl) 1 f2],

where s2
e and f are constants and l is the frequency,

with jlj # 1/2. In typical applications s2
e and f are es-

timated from time series or from power spectra and are

used to test for the presence of significant periodic or

externally forced signals (e.g., Ghil et al. 2002). In other

applications (e.g., Bretherton and Battisti 2000), the

model is taken as a simplified physical model to analyze

climate variability.

The AR1 model remains the default model for

background climate variability, but over the past 15 yr

evidence has accumulated that it is not the best model in

all cases. For low frequencies the AR1 spectrum satu-

rates to a value of S(l! 0) 5 s2
e /(1� f)2. However,

for many climate variables there is an absence of power

saturation in the low-frequency limit and evidence of

temporal scaling behavior, suggesting that a better fit

might be a two-parameter power spectrum model of

the form S(l) 5 b|l|122H, where b and H are positive

constants. The constant H is called the Hurst exponent,

and typically 1/2 # H , 1, with H 5 1/2 corresponding

to a white-noise or short-memory spectrum and with

H / 1 corresponding to a ‘‘1/f’’ noise spectrum. In

the time domain, the AR1 autocorrelation function

g(t) ; e2t/t decays exponentially, while the power-law

autocorrelation function g(t) ; t2H22 decays algebrai-

cally, which suggests a distinctive long-memory behavior.

Power-law behavior has been observed in globally

and hemispherically averaged surface air temperature

(Bloomfield 1992; Gil-Alana 2005), station surface air

temperature (Pelletier 1997), geopotential height at

500 hPa (Tsonis et al. 1999), temperature paleoclimate

proxies (Pelletier 1997; Huybers and Curry 2006), and
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many other studies. However, only a few of these studies

have performed quantitative tests to determine whether

the power-law model is superior to the AR1 model.

Those who have (Stephenson et al. 2000; Percival et al.

2001) find that both models demonstrate similar scores

for the goodness-of-fit tests employed. Both Stephenson

et al. (2000) and Percival et al. (2001) conclude that

century-long time series are not long enough to clearly

demonstrate the superiority of one model over the

other.

To set the stage for our analysis of the modern tem-

perature record, we apply the spectral density goodness-

of-fit test (Beran 1992; Percival et al. 2001) to several of

the temperature paleoclimate proxies used in Huybers

and Curry (2006). The spectral density test evaluates the

probability p to get a deviation from the null hypothesis

shape of the spectrum at least as extreme as the one that

was actually observed. We find that for the central U.K.

temperature (CET) time series (1659–2007 annual

means), spectrum p 5 0.67 for the power-law model

whereas p 5 0.2 for the AR1 model. The large increase

in p between the AR1 model and the power-law model

indicates a closer fit for the latter.

In Fig. 1 we plot the CET periodogram (gray noisy

curve) and the multitaper spectrum estimator (black

curve) together with the AR1 and power-law fits to the

spectrum. The methods are specified in the caption and

the power-law fit and multitaper methods will be de-

scribed in section 2. Figure 1 demonstrates that the AR1

spectrum overestimates the CET power spectrum in

high frequencies and underestimates it in low frequen-

cies, whereas the power law, which also depends only

on two parameters, similar to the AR1, does a much

better job. When we repeat the analysis for the more

recent record (corresponding to the reanalysis period of

09.1957–08.2002 analyzed in section 3), we find a similar

slope that falls within the confidence intervals in Fig. 1,

but the spectral density goodness-of-fit test no longer

distinguishes between the power-law fit and the AR1 fit.

Given this background, we now make the working as-

sumption that the atmospheric general circulation might

be well characterized by power-law behavior on inter-

annual and longer time scales.

This study represents an attempt to systematically char-

acterize power-law behavior in the atmospheric general

circulation. However, first we must characterize power-

law estimation methods, which, in this climate applica-

tion, are surprisingly nonrobust. In section 2, we first

describe and then use Monte Carlo benchmarking to

compare a suite of power-law estimation methods. We

then apply the methods to air temperature from rean-

alysis products for the last half-century, focusing on

plots of zonal-mean cross sections of the Hurst expo-

nent H (section 3). We attribute robust features of these

FIG. 1. CET (1659–2007) power spectrum estimators and their approximations. The raw

periodogram power spectrum estimator (gray curve) and a three-sine-tapers multitaper power

spectrum estimator (black curve, section 2a). A power spectrum of the AR(1) model fitted,

using a maximum likelihood algorithm, to the CET time series (red solid curve). The power-law

fit, estimated using the GPHE method (section 2a) to the multitaper is shown (blue line). Also

included are numerical estimates for the AR1 parameter f and its standard deviation sd(f) (see

Percival and Walden 1993, section 9.8) and the Hurst exponent estimate Ĥ and its standard

deviation sd (Ĥ) (see McCoy et al. 1998). The spectral and power-law estimators are described

in section 2.
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plots to specific physical climate processes and other less

robust features to methodological artifacts. Although

no single power-law fit technique should be employed in

isolation, we identify a pair of techniques that charac-

terize the range of results that might be typically ex-

pected. In section 3, we also discuss the connection

between point statistics and zonal-mean statistics as the

starting point for a more complete physical theory of

power-law behavior in the general circulation.

2. Description and tests of power-law estimators

Many methods for estimating the Hurst exponent H

are documented in the literature and a significant

challenge in our analysis has been to reconcile the

nonrobust aspects of these methods. In this section, we

describe several of the documented methods, develop

some variants of our own, and characterize them using

Monte Carlo benchmarking. In the next section, we will

apply the methods to temperature data from reanalysis

products. The methods are summarized in Table 1. They

include time domain methods, and periodogram and

multitaper (spectral domain) methods. The Monte Carlo

benchmarking will show that all of the methods agree

reasonably well for simulated pure power-law stochastic

processes. However, when we apply the methods to ob-

served data in section 3, nonrobust results that are asso-

ciated with frequency range choices and filtering prop-

erties of the methods will emerge.

a. Spectral methods

The spectral methods find H by estimating the spec-

tral slope. These methods first calculate an estimate

Ŝ(l) from a finite-length time series of the true spectrum

S(l), and then find the best power-law fit to Ŝ(l). We

consider two choices of spectral estimators Ŝ(l): the

periodogram estimator (corresponding to the raw dis-

crete spectrum) and the multitaper estimator (Percival

and Walden 1993). For a time series X(t), t 5 1, . . . , N,

the periodogram estimator is simply the square ampli-

tude of the discrete Fourier transform divided by the

time series length

Ŝ
(p)

(lj) 5
1

N
�
N

t51
X(t)e�i2ptlj

������
������
2

, j 5 1, . . . , [N/2], (1)

where lj 5 j/N and the square brackets in this case

denote rounding toward zero. The periodogram is an

asymptotically unbiased but inconsistent spectrum es-

timator, because its variance is not a decreasing function

of N; periodograms, as illustrated by the gray curve in

Fig. 1, tend to appear noisy in spectral plots.

Multitaper spectral estimation (Thomson 1982) pro-

vides an estimated spectrum with relatively reduced

variance compared to the periodogram. It employs a set

of K orthogonal ‘‘tapers’’ hk(t), k 5 1, . . . , K that is

applied to the time series X(t). The multitaper spectral

estimate is given by

Ŝ
(mt)

(lj) 5
1

K
�
K

k51
S

(d)
k

(lj), j 5 1, . . . , [N/2], (2)

where

Ŝ
(d)

k (lj) 5 �
N

t51
hk(t)X(t)e�i2ptlj

������
������
2

, j 5 1, . . . , [N/2], (3)

is the kth direct spectral estimator. In this study we use

sine tapers (Riedel and Sidorenko 1995)

hk(t) 5

ffiffiffiffiffiffiffiffiffiffiffiffi
2

N 1 1

r
sin

kpt

N 1 1

� �
, t 5 1, . . . , N. (4)

The number of tapers K usually used in geophysical

applications ranges between 3 and 5 (e.g., Ghil et al.

2002; Huybers and Curry 2006). We choose K 5 3 be-

cause of the large number of time series analyzed.

TABLE 1. The Hurst exponent estimation methods considered in this study. HF: high frequency and LF: low frequency (m denotes

months, y denotes years).

Method HF cutoff LF cutoff Remark

DFA(t) sshort 5 18m slong 5 11y Kantelhardt et al. (2001)

DFA(a) sshort 5 18m slong 5 45y Herein

GPHE(t) lhigh 5 1/18m llow 5 1/15y (l 5 2) Robinson (1995b)

GPHE(a) lhigh 5 1/18m llow 5 1/45y (l 5 0) Hurvich et al. (1998)

MTM GPHE(t) lhigh 5 1/18m llow 5 1/15y (l 5 2) McCoy et al. (1998)

MTM GPHE(a) lhigh 5 1/18m llow 5 1/45y (l 5 0) Herein

GSPE(t) lhigh 5 1/18m llow 5 1/15y (l 5 2) Herein

GSPE(a) lhigh 5 1/18m llow 5 1/45y (l 5 0) Robinson (1995a)

MTM GSPE(t) lhigh 5 1/18m llow 5 1/15y (l 5 2) Herein

MTM GSPE(a) lhigh 5 1/18m llow 5 1/45y (l 5 0) Herein
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It can be shown that the variance of Ŝ
ðmtÞ

is a factor K

smaller than the variance of Ŝ
ðpÞ

for large N. Thus,

multitaper spectra appear smoother in spectral plots;

the smoothing effect is evident in the multitaper spec-

tral estimate shown by the black curve in Fig. 1.

Given the spectral density estimator Ŝ(l), we find a

power-law fit to Ŝ(l) of the form f(l; b, H) 5 b|l|122H

over a frequency range llow # l # lhigh, where H is the

Hurst exponent, b is a scaling factor, and llow and lhigh

are low and high cutoff frequencies. For a recent review

of these methods, known as spectral semiparametric

estimation methods, see Moulines and Soulier (2002).

We estimate b and H by minimizing

K(b, H) 5
1

m� l
�
m

j5l11
k[Ŝ(lj), f (lj; b, H)], (5)

where k(u, y) is the so-called contrast function, which

can be thought of as a distance between functions

u and y. In the summation, l and m are indices related to

the low- and high-frequency cutoffs, llow 5 ll11 and

lhigh 5 lm.

The semiparametric power-law fits differ in their

choice of contrast function k(u, y). We here consider the

Geweke–Porter-Hudak estimator (GPHE; Geweke and

Porter-Hudak 1983), with k(u, y) 5 [log(u) 2 log(y)]2,

which corresponds to log-linear regression, and the

Gaussian semiparametric estimator (GSPE; Fox and

Taqqu 1986), with k(u, y) 5 log(u) 1 u/y, which corre-

sponds to a maximum likelihood estimator. GPHE is

the best known and simplest of the two methods; the

optimal b and H can be found in closed form along with

confidence intervals. We use GPHE to obtain the CET

power-law fit for the multitaper spectrum estimator in

Fig. 1; the confidence intervals for GPHE with multi-

tapering are found in McCoy et al. (1998).

GSPE is relatively more sophisticated and Robinson

(1995a,b) has shown it to be superior to GPHE in var-

ious ways. Its optimization is not in closed form, but it

reduces to a standard one-dimensional numerical opti-

mization procedure. Robinson (1995b) and Hurvich

et al. (1998) show that GSPE has a factor of p2/6 ’ 1.7

smaller asymptotic variance than GPHE {1/[4(m 2 l)]

versus p2/[24(m 2 l)] for large N}. This property leads to

practical advantages: in an analysis of power-law behavior

in stratospheric ozone, Vyushin et al. (2007) found that

GSPE yielded H estimates that were spatially smoother

and more robust than GPHE.

b. Time domain method: Detrended fluctuation
analysis

The detrended fluctuation analysis (DFA; Peng et al.

1993; Kantelhardt et al. 2001) time domain estimator of

H is, along with GPHE, the best known power-law fit-

ting technique and has been applied widely in the life

sciences, the earth sciences, and physics. DFA works as

follows. First, a cumulative sum time series is generated

from the original time series X(t). The cumulative sum

time series is then split into segments of size s. Each of

these segments is approximated by a least squares fit to

a polynomial of order P, with P typically chosen to be

between 1 and 5. The standard deviation of the residual

of each least squares fit is then calculated for each

segment and then averaged over all of the segments.

This quantity is denoted F(s) and is calculated for seg-

ment sizes s, where P 1 2 # s # smax. The standard

method is to take smax 5 [N/4] (Kantelhardt et al. 2001),

but we will test a variant with smax 5 N. The so-called

‘‘fluctuation function’’ F(s) characterizes the noise at

each time scale s; if the spectral density S(l) ; l122H for

small l, the fluctuation function F(s) ; sH for large s

(Taqqu et al. 1995; Heneghan and McDarby 2000).

Given this, we determine H by least squares linear

regression of log F against log s in the range sshort # s #

slong (Peng et al. 1993; Kantelhardt et al. 2001), where

sshort and slong are short and long time-scale cutoffs that

correspond to the high- and low-frequency cutoffs for

the spectral methods. For DFA3 (i.e., DFA with P 5 3)

we use a lower (high frequency) cutoff scale of sshort 5

18 months, because it is only for longer time scales F(s)

for DFA3 might be well represented by a power-law

function (Kantelhardt et al. 2001). The choice of slong

will be discussed in section 2c.

DFA is relatively straightforward to implement and

can be used to infer information about the order of a

trend of the time series. For example, a quadratic trend

is effectively filtered out by DFA with P . 2. However,

unlike the GPHE and GSPE spectral methods DFA is

numerically based and thus lacks rigorous expressions

for bias and confidence interval estimates.

c. Benchmark tests of the estimator methods

Before applying the power-law fit methods to rean-

alysis climate data we benchmark the methods using

Monte Carlo tests of time series with known power-

law behavior. These time series are generated from

autoregressive fractionally integrated moving average

(ARFIMA) models, which are linear models for power-

law stochastic processes (Beran 1994; Taqqu 2002).

By convention, an ARFIMA(0, d, 0) time series has a

Hurst exponent H 5 d 1 0.5 [i.e., the power spectrum

S(l) ; l22d]. To mimic our climate data analysis, we

take the ARFIMA time series to represent monthly-

mean records and estimate the Hurst exponent for fre-

quencies lower than lhigh 5 1/(18 months). We choose

lhigh 5 18 months for consistency with DFA3.
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As mentioned earlier, we have found that inconsistent

choices of frequency range lead to nonrobust estimates

of H in climate data. This is a practical issue encoun-

tered when dealing with time series that are not pure

power-law stochastic processes with uniform behavior

across all time scales. Many of the standard applications

of power-law estimates build in these inconsistent

ranges, for various reasons. For example, standard

practice for DFA is to use slong 5 [N/4], for periodogram

spectral methods to use llow 5 1/N, and for the multi-

tapered methods to use llow ’ K/N (see Table 1 for

references to each of these ‘‘conventional’’ methods).

To test for the effect of these choices, we benchmark

‘‘all frequency’’ [denoted ‘‘(a)’’] and ‘‘trimmed’’ [de-

noted ‘‘(t)’’] versions of the methods. The all-frequency

methods set the low-frequency (long time scale) cutoff

as low as possible. The trimmed methods cut off some of

the lowest frequencies. Table 1 lists two versions of the

methods we use, and in connection with the table we

note the following:

d The multitapered methods conventionally trim the

lowest frequencies and the periodogram methods

conventionally use all frequencies. We here test trim-

med and all-frequency versions of all of the spectral

methods.
d For DFA3, DFA3(t) with smax 5 slong 5 [N/4] is the

conventional method (Kantelhardt et al. 2001). We

here test a version DFA3(a), whose time-scale range

is consistent with the all-frequency spectral methods.

DFA3(a) uses smax 5 slong 5 N.

We first test for the convergence of the magnitude of

the estimators’ bias hjĤ �Hji as a function of time se-

ries length N, where Ĥ is the estimated value of the

ARFIMA time series. Figures 2a,b plot hjĤ �Hji
for the trimmed and all-frequency versions of the fol-

lowing five methods: DFA3, GPHE, multitapered

(MTM) GPHE, GSPE, and MTM GSPE. Here the

angled brackets represent the ensemble mean over

10 000 realizations of the ARFIMA model, for H 5 0.8

and 270 # N # 900. We see that the DFA3(t) estimator

converges most slowly among the trimmed estimators,

the periodogram spectral methods converge most

quickly among the all-frequency estimators, and neither

DFA3 nor the periodogram methods are sensitive to the

trimming. The convergence rate of the multitaper

spectral methods falls between the periodogram and

DFA3 methods for the all-frequency estimators. The

increase in bias from tapering for the all-frequency cases

is expected from general statistical principles: heavier

smoothing, that is, reduction of the variance from ta-

pering, leads to an increase in the bias (von Storch and

Zwiers 1999). The effect of including the additional low-

frequency points degrades the convergence of the

multitaper methods (Fig. 2b). This degradation is not

surprising because the tapering impacts low frequencies

most strongly. The impact of trimming on the spectral

methods is consistent with theory (Hurvich et al. 1998;

McCoy et al. 1998), but to our knowledge the robustness

of DFA3 to changing from slong 5 [N/4] to slong 5 N has

not been reported before.

Next, we test how the estimators’ bias depend on H

for N 5 540, which corresponds to the length of the

monthly reanalysis time series analyzed in section 3. In

Figs. 3a,b we plot the bias hĤ �Hi over 10 000 re-

alizations. All of the methods provide accurate esti-

mates of H within the estimators’ standard deviation

(see Fig. 4). DFA3 exhibits the largest bias among the

FIG. 2. Absolute bias of the Hurst exponent estimators as a function of time series length N. Synthetic

time series were simulated by ARFIMA(0, 0.3, 0), that is, the true Hurst exponent was set to 0.8. Time

series length N 5 540 (solid triangle) corresponds to the length of the monthly-mean ERA-40 data. The

results for (a) the trimmed ‘‘(t)’’ version of the methods, and (b) the all-frequency ‘‘(a)’’ version of the

methods. See Table 1 and section 2 for a description of the methods.

2894 J O U R N A L O F C L I M A T E VOLUME 22



trimmed estimators. This bias increases in magnitude

with increasing H and is robust to the trimming. The

periodogram methods have the smallest bias, which is

also robust to the trimming. The bias of the trimmed

multitaper methods is comparable to that of the perio-

dogram methods (Fig. 3a). However, the bias increases

for the all-frequency multitaper methods, indicating again

that the multitaper H estimate degrades when all fre-

quencies are included (Fig. 3b).

Figure 4 shows the relative robustness of the different

methods as measured by the estimator standard devia-

tion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(Ĥ � hĤi)2i

q
averaged across values of H from

0.5 to 1.1. In this figure we also include the large N

asymptotic estimates for periodogram GPHE and GSPE;

FIG. 3. Bias of the Hurst exponent estimators as a function of the true Hurst exponent. Time

series length was fixed to 540, which corresponds to the length of the monthly-mean ERA-40

data. The rest of the description is similar to Fig. 2.

FIG. 4. Standard deviation of Ĥ averaged for each method in Table 1 over the H values shown in Fig. 3.
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these estimates are independent of H. DFA3 exhibits

the least spread and is not sensitive to the trimming.

However, all of the spectral methods have smaller var-

iance when all frequencies are included. Among the

spectral methods the periodogram GSPE(a) exhibits

the least spread. The decrease of the Ĥ variance gained

from multitapering is outweighed by the increased

variance from the necessary trimming. The experi-

mental standard deviations are consistently greater than

the asymptotic ones for the time series length of 540, but

the asymptotic results provide useful constraints in

many applications.

Thus, all of the methods provide valid approaches to

power-law fitting of pure power-law stochastic processes,

but each method has the following distinct characteristics:

d DFA3 is robust (has the smallest variance), but has

relatively large biases.
d GSPE is more complicated than GPHE, but produces

more robust estimates than GPHE and less biased

estimates than DFA3.
d The standard trimmed MTM [MTM GPHE(t),

MTM GSPE(t)] are less robust than the correspond-

ing standard all-frequency periodogram methods

[GPHE(a), GSPE(a)].

3. Power-law fits for reanalyzed air temperature
data

a. Results for unfiltered data

Having benchmarked the H estimation methods we

now apply them to the monthly-mean 40-yr European

Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40) air temperature for 09.1957–08.

2002. The annual cycle and three of its harmonics are

removed from the temperature. The estimates of the

Hurst exponent Ĥ are then carried out identically to the

benchmark tests in section 2d. We calculate Ĥ at each

longitude, latitude, and pressure, and take the zonal mean

of the result to obtain a zonal cross section that char-

acterizes the power-law behavior of the global atmos-

phere. We plot the resulting zonal-mean Ĥ in Figs. 5a–d

for DFA3(t), DFA3(a), periodogram GPHE(a), and pe-

riodogram GSPE(a) (see Table 1 for parameter settings

for these methods). By including these various methods

FIG. 5. Zonal-mean Ĥ of ERA-40 air temperature for (a) DFA3(t), (b) DFA3(a), (c) GPHE(a), and (d)

GSPE(a). Values below 0.4 are shown in white.
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and being clear about parameter settings we aim to rec-

oncile existing results for the value of H for air temper-

ature, because different studies use different methods

and different frequency ranges (see, e.g., Pelletier 1997;

Eichner et al. 2003; Fraedrich and Blender 2003; Huybers

and Curry 2006).

Figure 5 shows that, apart from a common maximum

H in the tropical troposphere, there are clear contrasts

between DFA3(t) and DFA3(a), and also between

DFA3 and the two spectral methods. The differences

generally lie well outside the range of biases found in

the benchmark tests, and one of our main aims is to pin

down the source of these differences. DFA3(t) and

DFA3(a) show a similar decrease of H from the tropics

to the extratropics, but the values of H are generally

lower in DFA3(a) than in DFA3(t). This is particularly

true in the tropical lower stratosphere, where the

methods disagree most strongly (section 3c). The spec-

tral methods produce noisier plots, as might be expected

by their generally larger variance (section 2c). They

display pronounced maxima in the Southern Hemi-

sphere that are not found in the DFA3 plots, and we will

show that they are largely tied to linear trends in the

data, some of which might arise from data inhomoge-

neities (section 3c). They also show strong minima and

even blue-noise (positive spectral slope) behavior in the

tropical stratosphere; these features are also discussed

below.

b. Effect of multitapering and frequency range

We reported in section 2 that multitaper-based GPHE

and GSPE have somewhat similar biases and standard

deviations to the periodogram-based GPHE and GSPE.

The difference between the MTM GSPE(a) and the

periodogram GSPE(a) for linearly detrended data is

shown in Fig. 6a. When all of the frequencies are in-

cluded, the differences between the methods range from

about 20.15 to about 0.1. The asymptotic limit of the

GSPE Hurst exponent estimate standard deviation

(one sigma) for this frequency range is 1/2
ffiffiffiffiffi
30
p

’ 0.1,

where 30 is the number of frequencies used. Therefore,

the differences for the first case are statistically signifi-

cant only for a few locations and the MTM GSPE plot of

Ĥ is visually similar to Fig. 5d (not shown). However,

we recall that MTM GSPE(a) has a larger bias than

MTM GSPE(t) (section 2c). Thus, standard practice

would suggest that we should compare MTM GSPE(t)

and GSPE(a). Figure 6b plots the difference of Ĥ for

MTM GSPE(t) and GSPE(a). The total area where the

two methods disagree has increased relative to Fig. 6a.

The difference between MTM GSPE(t) and GSPE(t) is

even larger (see Fig. 6c), especially in the observation-

sparse regions, such as the Southern Hemisphere strato-

sphere, which points to the different sensitivities to data

inhomogeneities (section 3c) in periodogram- and MTM-

based methods. Given this, it is clear that differences

introduced by standard multitapering methods reflect

not only the effect of multitapering itself but also (a) the

selection of the frequency range for the power-law fit, (b)

the effect of data inhomogeneities, and (c) the increased

variance of H resulting from trimming.

At this point we are in a position to reduce the number

of methods we consider. Together with the results of the

Monte Carlo testing and additional testing with the

GSPE method, we conclude that multitapering adds an

unnecessary complication to the Hurst exponent spec-

tral estimation procedure. Multitapering might produce

graphically smoother spectral plots (as in Fig. 1), but it

FIG. 6. (a) Zonal mean of Ĥ for MTM GSPE(a) minus that for GSPE(a). (b) Zonal mean of Ĥ for MTM GSPE(t)

minus that for GSPE(a). (c) Zonal mean of Ĥ for MTM GSPE(t) minus that for GSPE(t). All Ĥ were estimated for

linearly detrended (LTR filtered, in the notation of section 3c) ERA-40 air temperature.
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does not provide obviously improved H estimates. We

have also found that the all-frequency estimates work

equally well for both DFA3 and the periodogram

spectral methods. Finally, we find the GSPE method to

be similar to, but moderately more robust than, the

GPHE method. We thus proceed to focus mainly on the

DFA3(a) and GSPE(a) methods, and we try to explain

the robust and nonrobust aspects of their Ĥ portraits.

c. Effects of filtering and choice of reanalysis product

We now show that many of the differences between the

spectral and time domain methods (e.g., between Figs. 5b

and 5d) can be attributed to specific physical processes

and methodological artifacts. We consider the effects

of detrending, the quasi-biennial oscillation (QBO),

ENSO, and volcanic aerosol forcing. The filters we use

are as follows:

d LTR: We remove a simple linear trend from the data.
d QBO: We remove a QBO signal consisting of the

equatorial zonally averaged zonal winds at 30 and

50 hPa (see information online at http://www.cpc.

ncep.noaa.gov/data/indices/). We use winds at both

30 and 50 hPa, because they are about 908 out of phase,

which allows for a better representation of the QBO

signal.
d ENSO: We remove an ENSO signal consisting of

the Niño-3.4 index lagged by 4 months. We choose

4-months lag because it maximizes correlations be-

tween the Niño-3.4 index and tropical troposphere air

temperature (Yulaeva and Wallace 1994; Trenberth

and Smith 2006).
d VOL: We remove the effect of volcanic aerosols by

regressing air temperature on meridionally and time-

dependent historical reconstructions of volcanic aer-

osols optical depth (Ammann et al. 2003).

All of the signals described above are modulated by

the seasonal cycle in our filtering procedure (e.g.,

Vyushin et al. 2007). We also have carried out addi-

tional calculations involving solar and Atlantic multi-

decadal variability signals, but these did not show sig-

nificant effects on H estimates. The impact of removing

each signal on Ĥ is plotted in Fig. 7. For all rows in Fig. 7

the left column corresponds to DFA3(a) and the right

column to GSPE(a).

The first row of Fig. 7 (Figs. 7a,b) shows the effect of

the linear detrending (filtering LTR) on Ĥ. Specifically,

Ĥ with LTR filtering is subtracted from Ĥ with no fil-

tering. As expected, detrending has little effect on the

DFA3-based estimate, because this method effectively

filters out polynomial trends up to the second order.

However, the effect is significant for GSPE, especially

in the Northern Hemisphere lower stratosphere and

Southern Hemisphere troposphere. The presence of the

linear trend increases Ĥ by 0.1–0.25 for the spectral

methods, because a linear trend increases power at low

frequencies and therefore steepens the spectral slope. It

is well known that climate trends in reanalysis products

often reflect data inhomogeneities (Dell’Aquila et al.

2007; Bromwich and Fogt 2004; Marshall 2002; Randel

and Wu 1999; Randel et al. 2000). We do not aim to

evaluate the realism of these trends; instead, we want to

point out the relative sensitivities of the H estimation

methods to detrending.

The second row of Fig. 7 (Figs. 7c,d) shows the impact

of removing the QBO. Specifically, Ĥ with LTR 1

QBO filtering was subtracted from Ĥ with LTR filter-

ing. For DFA3(a) and GSPE(a), removing the QBO

reduces Ĥ in the tropical and subtropical lower strato-

sphere, but the impact is much greater for GSPE(a) than

for DFA3(a). Thus, the presence of a quasi-periodic sig-

nal appears to significantly impact the spectral method.

In contrast to the linear trend case, the QBO boosts fre-

quencies near the high-frequency cutoff of 18 months

and shallows the spectral slope. Thus, the presence of the

QBO reduces Ĥ.

In another analysis, we have found that for the trim-

med DFA, DFA3(t), which is the standard method in

the literature, the effect of filtering the QBO was to

significantly increase Ĥ in the lower stratosphere (not

shown), opposite to what is seen in Figs. 7c,d. This effect

can be attributed to the spreading of the QBO signal by

the DFA smoothing (e.g., Jánosi and Müller 2005;

Markovi�c and Koch 2005). The effect is seen in the

difference between the DFA3(t) and DFA3(a) plots in

Figs. 5a,b. This again illustrates how sensitive the H

estimation methods are to the frequency range choice.

Figures 7e,f show the impact of removing the ENSO

signal. The location of the difference is in the tropical

troposphere and the sense of the impact is similar to the

QBO case. ENSO represents a high- (interannual) fre-

quency signal that is significantly correlated with trop-

ical temperatures, and so the ENSO and QBO effects

on Ĥ are analogous. Again, the impact on Ĥ for

DFA3(a) is minimal, but it is more significant for the

standard-practice DFA3(t) (not shown).

Unlike for the other filtered signals, the impact of the

volcanic signal on Ĥ is similar for both DFA3 and GSPE

(Figs. 7g,h). Volcanic forcing appears to increase Ĥ in

the tropical and subtropical lower stratosphere. In cli-

mate simulations with and without volcanic forcings, we

have been able to reproduce this volcanic signature in Ĥ

(Vyushin et al. 2009, manuscript submitted to Geophys.

Res. Lett.), and Vyushin et al. (2004) have reported a

similar boost of surface temperature Ĥ from volcanic

forcing in climate of the twentieth-century simulations.
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The fact that volcanic forcing leads to power-law be-

havior points to an ambiguity in how to interpret power-

law spectra as indicators of long-memory processes. In

this case the long-memory process is the geophysical one

of volcanism, which leads to intermittent pulses of

shortwave forcing, rather than a process internal to the

atmospheric general circulation.

We have accounted for the various effects of trends,

QBO, ENSO, and volcanoes, and we can now compare

the spectral and time domain methods again. Figures 8a,b

show Ĥ for DFA3(a) and GSPE(a) with all of the LTR,

QBO, ENSO, and VOL signals removed. Outside of the

Southern Hemisphere stratosphere, the plots are simi-

lar, with the GSPE providing somewhat larger Ĥ. An

overall larger value of Ĥ is expected for GSPE based on

the Monte Carlo testing (Fig. 3b). Compared to the

corresponding plots in Figs. 5b,d, the methods have

converged considerably. Both methods show relatively

large Ĥ in the tropical troposphere, the subtropical

lower stratosphere, the tropical stratosphere above 20

hPa, and the extratropical Southern Hemisphere.

The Southern Hemisphere stratosphere, where GSPE(a)

and DFA3(a) continue to disagree in Figs. 8a,b, is a

highly problematic area for this kind of analysis because

FIG. 7. Impact on zonal-mean Ĥ of filtering different climate signals. (left) Difference plots for

DFA3(a) and (right) difference plots for GSPE(a). (a),(b) Zonal-mean Ĥ for the unfiltered time series

minus that for Ĥ with LTR filtering. (c),(d) Zonal-mean Ĥ for LTR filtering minus that for Ĥ with LTR 1

QBO filtering. (e),(f) Same as in (c) and (d), but for ENSO instead of QBO filtering. (g),(h) Same as in (c)

and (d), but for VOL instead of QBO filtering.
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of inhomogeneities in the reanalyzed data (Randel

and Wu 1999; Marshall 2002). For example, a red spot in

Ĥ structure at 608S, 300 hPais caused by an obvious

jump in temperature related to the assimilation of the

Vertical Temperature Profile Radiometer data (e.g.,

Bromwich and Fogt 2004; Dell’Aquila et al. 2007). To

test the robustness of the H estimates for ERA-40, we

calculate Ĥ using the National Centers for Environmen-

tal Prediction–National Center for Atmospheric Re-

search (NCEP–NCAR) reanalysis air temperature with

the same filtering applied. Figures 8c,d show that the

main features of the Ĥ portraits found in the ERA-40

data remain robust for the NCEP–NCAR data. How-

ever, in the data-poor Southern Hemisphere polar

stratosphere, the four panels disagree significantly. It

is known that the Southern Hemisphere stratosphere

record has nonlinear temperature trends (Vyushin et al.

2007) related to photochemical ozone loss, and that

these cannot have been filtered out by LTR in GSPE;

however, this does not explain why GSPE(a) gives dif-

ferent results for between NCEP–NCAR and ERA-40.

We thus do not expect to find a robust estimate of H in

this region from reanalyzed data.

d. Ĥ of zonal-mean temperature

Figures 5–8 represent the zonal average of Ĥ values

calculated at each point. However, energy and mo-

mentum conservation constraints, along with the theory

of eddy mean flow interactions in the atmospheric

general circulation (e.g., Lorenz 1967; Schneider 2006),

suggest that Ĥ values of the zonal-mean circulation

might also be dynamically interesting. With this very

general motivation, we show Ĥ for the zonally averaged

ERA-40 air temperature in Fig. 9, which, analogously

to Fig. 8, has had all of the (LTR, QBO, ENSO, and

VOL) signals removed. We include both DFA3(a) and

GSPE(a) estimates in Figs. 9a,b, and plot the difference

fields (Ĥ for the zonal-mean temperature minus the

zonal mean of Ĥ for the temperature at each point) in

Figs. 9c,d.

We see in Fig. 9 that the zonal-mean temperature

statistics exhibit considerably more power-law behavior

in the extratropics than the point temperature statistics.

For example, the regions with Ĥ . 0.8 are confined

between 158S and 108N in Fig. 8a, but are between 408S

and 208N in Fig. 9a. For GSPE this difference is even

FIG. 8. Zonal-mean Ĥ with LTR 1 QBO 1 ENSO 1 VOL filtering for (a) DFA3(a) and ERA-40

data, (b) GSPE(a) and ERA-40 data, (c) DFA3(a) and NCEP–NCAR data, and (d) GSPE(a) and

NCEP–NCAR data.
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more pronounced. The boost provided by taking the

zonal mean first, which is shown in Figs. 9c,d, is re-

markably robust between the two H estimate methods.

There is a possibility that some of the boost seen in

Figs. 9c,d comes about because of an aggregation effect

that arises when independent power-law time series are

averaged. In particular, when independent power-law

time series are averaged, the H of the mean is greater

than the mean H of the individual time series (Granger

1980). Although the temperature time series are spa-

tially correlated, this aggregation effect might still op-

erate on sufficiently large scales. We test for the ag-

gregation effect by the following Monte Carlo test: we

create a set of independent synthetic temperature time

series with values of H equal to the estimated H at each

spatial point in the ERA-40 grid represented in Fig. 8b.

Therefore, we simulate 144 3 73 3 18 mutually uncor-

related time series using the ARFIMA(0, d, 0) model.

The zonal-mean Ĥ of this dataset is, by construction,

the same as that seen in Fig. 8b. We note that we do not

include spatial correlations in order to focus on the ag-

gregation effect. We then estimate Ĥ of the zonal aver-

ages of these synthetic time series. The obtained spatial

patterns (not shown) are noisier than Figs. 8a,b but are

numerically close to it. Thus, for mutually uncorrelated

time series the statistical aggregation effect is negligible.

This suggests that the boost in H from using the zonal-

mean temperature is of dynamical origin and stems from

systematic zonal correlations of the eddy fields.

The boost in Figs. 9c,d is relatively small in the

tropics, consistent with the idea of Sobel et al. (2002)

that point temperatures in the tropics are well corre-

lated with the zonal-mean tropical temperature field.

The enhanced values of H in midlatitudes, at the sur-

face, and in the lower stratosphere suggest that the long-

memory behavior in the tropics is coupled to the mid-

latitudes via the eddy-driven zonal-mean overturning

circulation (Held and Schneider 1999). In particular, it

might be that interdecadal variability in the tropics

drives long-memory behavior in the extratropics via

FIG. 9. Ĥ of the zonal-mean temperature for ERA-40 data for (a) DFA3(a) and (b) GSPE(a). H of the

zonal-mean temperature minus zonal mean of Ĥ for point temperatures, for (c) DFA3(a) and (d)

GSPE(a).
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extratropical teleconnection dynamics. These ideas

clearly warrant further study.

4. Conclusions

Under the working assumption that the atmospheric

general circulation exhibits power-law behavior, we

have estimated the Hurst exponent H for the global

atmosphere using several statistical methods. Monte

Carlo benchmarking with pure power-law time series

reveals no obvious discrepancies between the methods,

but when we apply these methods to observed climate

data we find a striking degree of inconsistency among

the results. We summarize our current understanding of

the methods as follows:

d DFA3 results are insensitive to trends and can be

made insensitive to high-frequency periodicities, pro-

vided trimming is not applied and all time scales are

used, that is, provided slong is set to N.
d Multitapered and periodogram spectral methods can

be made consistent with one another provided that

consistent frequency ranges are used and the lowest

frequencies are included. Because the two methods

yield consistent H estimates (Fig. 6a), there is no

obvious advantage to using multitapering in H esti-

mation, at least in this application.
d The DFA3 and the spectral methods Ĥ results are

quite inconsistent unless filtering is applied, consistent

frequency ranges are chosen, and the lowest fre-

quencies are included. The spectral methods are

sensitive to periodicities and trends, and DFA3 ap-

pears to be more robust in this regard.

Given our current understanding, we recommend the

use of either DFA3(a) and GSPE(a), or alternatively

DFA3(a) and GPHE(a), and tests to filter well-known

climate signals, such as the QBO, ENSO, and external

climate forcings, to provide a representative picture of

power-law behavior in climate time series. Another is-

sue that has arisen is the different sensitivities the

methods exhibit to data inhomogeneities (e.g., temper-

ature jumps induced by instrumentation changes). A

proper examination of this issue is beyond the scope of

our study, but previous work suggests that DFA3 is also

more robust in the presence of such inhomogeneities

(Berton 2004; Chen et al. 2002; Hu et al. 2001).

Using DFA3(a) and GSPE(a), we have found several

robust high H regions in the atmospheric general cir-

culation. In particular, we have found that point tem-

perature statistics exhibit robust power-law behavior in

the tropics that decreases with latitude. A connection

between the tropics and extratropics becomes evident

when Ĥ is calculated for the zonal-mean temperature.

We are just beginning to analyze this behavior, which is

connected to interannual-to-decadal coupled ocean–

atmosphere variability generated in the tropics once

ENSO effects are filtered out.

These results may have practical implications for

analysis of tropical tropospheric temperature trends

(e.g., Santer et al. 2005; Randel and Wu 2006; Thorne

et al. 2007). These trends are highly nonrobust: satellite

measurements, radiosondes, and climate model simu-

lations all provide different values for these trends.

However, if tropical temperatures exhibit power-law

behavior, confidence intervals on these trends would

very likely be underestimated using AR1-based noise

models. The calculation of confidence intervals ac-

cording to a power-law model for the residuals as car-

ried out in Smith (1993) and Vyushin et al. (2007) would

lead to a significant increase of the trends confidence

intervals. Thus, at least some of the apparent discrep-

ancies could be accounted for by properly representing

long-range temporal correlations in the tropical at-

mosphere.

Another robust result, found both for DFA3(a) and

GSPE(a), is that volcanic forcing increases Ĥ in the

lower tropical and subtropical stratosphere. Volcanic

forcing has also been found to have an effect on H at the

surface (Vyushin et al. 2004), and it still remains to

reconcile the surface and stratospheric H signatures.

Furthermore, because the volcanic forcing record can

be imprinted in the deep oceanic circulation (Delworth

et al. 2005; Gleckler et al. 2006), this result suggests that

some of the long-memory behavior seen in the coupled

ocean–atmosphere system might be attributed to a vol-

canic forcing effect.
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