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[1] In this study, two parsimonious statistical representations of climate variability on
interannual to multidecadal timescales are compared: the short-memory first order
autoregressive representation (AR1) and the long-memory “power law” representation.
Parameters for each statistical representation are fitted to observed surface air temperature
at each spatial point. The parameter estimates from observations are found in general to be
captured credibly in the Coupled Model Intercomparison Project 3 (CMIP3) simulations.
The power law representation provides an upper bound and the AR1 representation
provides a lower bound on persistence as measured by the lag-one autocorrelation.
Both representations fit the data equally well according to goodness-of-fit-tests. Comparing
simulations with and without external radiative forcings shows that anthropogenic
forcing has little effect on the measures of persistence considered (for detrended data).
Given that local interannual to multi decadal climate variability appears to be more
persistent than an AR1 process and less persistent than a power law process, it is concluded
that both representations are potentially useful for statistical applications. It is also
concluded that current climate simulations can well represent interannual to multidecadal
internal climate persistence in the absence of natural and anthropogenic radiative
forcing, at least to within observational uncertainty.
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1. Introduction

[2] Understanding climate persistence is one of the prin-
cipal goals of statistical climatology. This study aims to better
characterize climate persistence by comparing two parsimo-
nious statistical representations of the temporal spectral
density of climatic time series: the short-memory AR1 rep-
resentation and the long-memory power law representation.
(The term statistical representation is here used instead of
statistical model to avoid confusion with numerical climate
models.) This paper also places these two representations into
a broader statistical context.
[3] The well known AR1 representation [e.g., Hasselmann,

1976] can be written as a stochastic process Xt = fXt�1 + ɛt,
where f ∈ (0, 1) is the lag-one autocorrelation and ɛt
represents white noise innovations. The AR1 process is
short-memory with an autocovariance function that decays
exponentially with lag t, gAR1(t) � f|t|, and a spectral den-
sity as a function of frequency f

SAR1 fð Þ � 1� 2f cos 2pfð Þ þ f2
� ��1

; fj j ≤ 1=2; ð1Þ

that saturates to a constant near the origin (i.e. for | f | ≪ 1/2)
(see Appendix A and, e.g., Brockwell and Davis [1998]). The
power law representation [e.g., Beran, 1994] can be defined
with reference to a fractionally integrated autoregressive pro-
cess FAR(0, d), (1 � B)d Xt = ɛt where B is the backshift
operator satisfying BMt =Mt�1 for random variableMt, and d is
the order of fractional integration [e.g., Beran, 1994]. It is
conventional to write H = d + 1/2, where H is theso-called
“Hurst exponent” [Hurst, 1951]; it is assumed thatH∈ (1/2, 1).
This process is long-memory with an algebraically decaying
autocovariance function gPL(t) � |t|2H�2 and a spectral den-
sity that increases asymptotically with decreasing frequency
according to a power law [e.g., Taqqu, 2002]

SPL fð Þ � fj j1�2H : ð2Þ

[4] In this article, we adopt the viewpoint that estimates
of f and H provide related measures of persistence. For
AR1, the fraction of predictable variance (FPV) of Xt given
past history, i.e. Xt�1, is f

2. For FAR(0, d) the FPV is 1 �
G2(3/2 � H)/G(2 � 2H), which is monotonically increasing
in H∈ (1/2, 1) [e.g., Beran, 1994]. Thus, greater values of f
and H correspond to greater FPV in each representation.
These two measures of persistence can be combined via
the so-called FAR(1, d) stochastic process (1 � f1B)(1 �
B)d Xt = ɛt that generalizes the AR1 and power law repre-
sentations [e.g., Stephenson et al., 2000]. The FAR(1, d )
reverts to AR1 with lag-one autocorrelation f = f1 when
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d ! 0 and to the power law process FAR(0, d) with slope
�2d = 1 � 2 H when f1 ! 0. The FPV for FAR(1, d) is

1� 1� f2
1

G 1� 2dð Þ
1

G2 1� dð Þ þ
sin pdð Þ

p

X∞
k¼1

fk
1

G k þ dð Þ
G k þ 1� dð Þ

( )�1

;

ð3Þ

which can be shown to revert to the FPV of the AR1 process
when d ! 0 (i.e. when H ! 1/2) and to the FPV of the
power law process FAR(0, d) when f1 ! 0.
[5] The AR1 and power law stochastic processes provide

distinct limiting cases of persistence and the behavior of the
spectral density for low frequencies |f| ≪ 1/2, which is con-
trolled in practice by the length of a given time series. The
AR1 representation captures the tendency for the variability
of some climatic time series to saturate in the transition from
weekly, to intraseasonal, annual, and decadal variability [e.g.,
Frankignoul and Hasselmann, 1977; Feldstein, 2000]. But the
power law representation may be more appropriate for long
instrumental and paleoclimate records, for which variability
tends to build in the transition to decadal, centennial, and
millennial timescales [e.g., Bloomfield, 1992; Pelletier, 1997;
Tsonis et al., 1999; Caballero et al., 2002; Eichner et al.,
2003; Fraedrich and Blender, 2003; Vyushin et al., 2004;
Huybers and Curry, 2006]. This study explores the use of
these two representations in the intermediate interannual-to-
multidecadal range captured by the instrumental observational
record and current climate simulations.
[6] While other higher order statistical representations

[including FAR(1, d )] are available, this study focuses on
these two distinct, parsimonious, and commonly used repre-
sentations. It evaluates their validity, and examines the ability
of climate models to reproduce observed patterns of their
parameters, and explain selected aspects of their behavior. In
particular, some understanding of internal climate persistence,
i.e. the persistence that occurs in the absence of anthropogenic
and natural radiative forcing, can be obtained by comparing
simulations with and without external radiative forcings. Only
a few studies have sought to compare these two representa-
tions on an even footing [e.g., Stephenson et al., 2000;
Percival et al., 2001; Caballero et al., 2002; Vyushin et al.,
2007; Vyushin and Kushner, 2009; Franzke, 2012] and none
have systematically compared them in climate simulations and
observations or linked them in the way presented below.
[7] Observational data and simulations used and statistical

methods employed are described in Section 2. Section 3
evaluates the ability of models to capture the observed spa-
tial distribution of f and H and the dependence of these
parameters on analysis timescale. Section 4 relates the two
measures of persistence to each other and evaluates their
validity. The study concludes with a discussion of implica-
tions of this analysis in Section 5. Appendix A outlines
mathematical concepts in the study, and Appendix B pro-
vides details of a goodness-of-fit test employed in Section 4.

2. Data and Methods

[8] The observational products used are the NCEP/NCAR
reanalysis [Kalnay et al., 1996], the ERA40 reanalysis [Uppala
et al., 2005], and the NASA GISS surface air temperature
(SAT) data set [Hansen et al., 1999] over the period September

1957 to August 2002 covered by ERA40. The climate simu-
lations used are the pre-industrial control (picntrl) and the
20th century (20c3m) simulations of 17 CMIP3 atmosphere-
ocean coupled general circulation models: CGCM3.1(T47),
CGCM3.1(T63), CSIRO-Mk3.0, CSIRO-Mk3.5, ECHAM5/
MPI-OM, GFDL-CM2.0, GFDL-CM2.1, GISS-AOM,
GISS-EH, GISS-ER, MIROC3.2(medres), MIROC3.2(hires),
MRI-CGCM2.3.2, NCAR CCSM3.0, NCAR PCM, UKMO-
HadCM3, UKMO-HadGEM1. A single realization is used
from each model; results are insensitive to choice of realiza-
tions (not shown). Both 1955–1999 and 1900–1999 20c3m
simulation segments are analyzed. Six 500 year picntrl simu-
lations of six GCMs (CGCM3.1(T47), ECHAM5/MPI-OM,
GFDL-CM2.0, GFDL-CM2.1, GISS-ER, MIROC3.2(medres))
are also analyzed. The seasonal cycle and its first three har-
monics are filtered out from all time series.
[9] The lag-one autocorrelation coefficient f is estimated

by the Yule-Walker method [von Storch and Zwiers, 1999]
in the time domain and by maximum-likelihood fitting of the
AR1 spectral density to the periodogram [Beran, 1994] in the
spectral domain. Results from the two methods are consistent
and only Yule-Walker results will be displayed, except in
Appendix B and Figure 8. These calculations use linearly
detrended data. Similarly, the Hurst exponent H is also esti-
mated by time- and spectral-domain methods: detrended
fluctuation analysis of the third order (DFA3) [Kantelhardt
et al., 2001] (with modifications introduced by Vyushin and
Kushner [2009]) in the time domain and the Gaussian
Semiparametric Estimator (GSPE) [Robinson, 1995] in the
spectral domain. Compared to the f estimates, GSPE and
DFA3 H estimates are relatively method dependent; consis-
tency requires removal of periodic components and linear
trends, and care to use equivalent frequency ranges [Vyushin
and Kushner, 2009]. DFA3 is generally preferred in this
study because it removes the effect of linear and quadratic
trends without prior detrending. But GSPE is used in
Figures 5 and 6 and Appendix B for reasons mentioned
below. In the notation used below, f̂ and Ĥ represent esti-
mates of f and H.
[10] The estimators used in this article have been imple-

mented in an open-source R package, PowerSpectrum,
http://tinyurl.com/4v985le that we have developed. The
package also provides estimators of trend confidence inter-
vals based on different statistical representations for the
residuals, various estimators of power and cross-spectrum
with their confidence intervals, the spectral goodness-of-fit
test, Monte-Carlo tests of the Hurst exponent estimators and
the goodness-of-fittest, etc.
[11] In the results below, f and H are estimated at indi-

vidual spatial points and the results averaged either across
observational products/models or across selected regions
defined as follows: North Atlantic (308�E–350�E, 40�N–
60�N), the North Pacific (149�E–230�E, 20�N–57�N), the
Southern Ocean (0�E–360�E, 40�S–65�S), Main Develop-
ment Region for Atlantic Hurricane formation (MDR:
299�E–332�E, 5�N–22�N), the Maritime Continent (98�E–
158�E, 5�S–5�N), Arctic (north of 65�N), and Antarctic
(south of 65�S).
[12] The study also explores the impact of analysis time-

scale on climate persistence estimates. For estimates of f,
calculations for monthly, annual, pentadal, decadal, and

VYUSHIN ET AL.: PERSISTENCE OF CLIMATE VARIABILITY D21106D21106

2 of 11



bidecadal means (denotedMM, AM, PM, DM, BDM) of SAT
are carried out. For estimates of H, calculations for timescale
ranges of 18 month–45 years (18 m–45 y), 18 m–100 y, and
5 y–45 y are carried out on MM data, and calculations for the
timescale range of 20 y–500 y are carried out on AM data.
The H analysis on the 18 m–45 y range was the focus of the
work of Vyushin and Kushner [2009] and Vyushin et al.
[2009], which analyzed power law behavior in the recent
observational record of free atmospheric air temperature.

3. Estimates of Surface Air
Temperature Persistence

3.1. AR1 Representation

[13] The spatial distribution of the lag-one autocorrelation
estimate f̂ for the observed monthly mean (MM) SAT
(Figure 1a) is well captured by the models (Figure 1b). In
particular, the models realistically simulate the contrast
between large f̂ over the oceans and small f̂ over the inner
continental areas that is expected from simple thermal inertia
considerations [Manabe and Stouffer, 1996], as well as the
observed relatively large f̂ in the tropics. Since there are
more model data sets (17) than observational data sets

available, the average f̂ maps for the models tend to be
relatively smooth.
[14] The “MM” portion of each panel in Figure 2 quanti-

fies the observational and model uncertainty in these esti-
mates in selected regions. For example, for the North
Atlantic, observational estimates range from f̂ ≈ 0.35 for
ERA40 to about f̂ ≈ 0.65 for GISS (points between the box
and whisker plots in the MM portion of Figure 2a), and
model estimates occupy a similar range with a median value
of about f̂ ≈ 0.55. The spread in model and observational
estimates exceeds the sampling uncertainty represented by
the confidence intervals plotted with the dashed lines in each
panel. For the MM data, none of the regions show obvious
model inaccuracies, i.e. the range of model estimates over-
laps the range of observational estimates. Furthermore,
comparing the picntrl (unshaded box and whisker plot in the
left column of MM portion of each panel) and 20c3m
simulations (shaded box and whisker plot, right column), the
model estimates are largely insensitive to external forcing
(noting that data has been linearly detrended prior to the f̂
calculation). In sum, to within observational uncertainty, this
measure of persistence appears to reflect basic coupled

Figure 1. (a) The spatial distribution of the lag-one autocorrelation estimate f̂ for the observed monthly
mean 1957–2002 SAT. The map represents the average of f̂ of the available observational data sets at
each spatial point. Note that the GISS SAT is only spatially complete northward of 50�S and so is not
included in the average southward of this latitude. (b) As in Figure 1a, for the 1950–1999 20c3m simula-
tions of CMIP3 (17 models); all models are included in the average at all points. (c) As in Figure 1a, for
the annual mean (AM) SAT. (d) As in Figure 1b, for the AM SAT.
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ocean-atmosphere dynamics that current generation climate
models are capable of simulating realistically.
[15] This conclusion generally carries over to the observed

f̂ for AM data (Figures 1c and 1d, “AM” portion of
Figures 2a–2e). Not surprisingly, the f̂ for AM data is
generally smaller than for MM data; this is captured in the
simulations (Figures 1c and 1d). The impact of the choice of
aggregation timescale (e.g. monthly mean versus annual
mean) on measures of persistence like f will be discussed
more fully in Section 4.2. In the tropical Pacific the observed
and simulated f̂ displays west to east gradients of opposite
sign depending on whether f is estimated from MM or AM
data. The change in gradient with averaging timescale
reflects, in part, the dominance of ENSO variability in eastern
tropical Pacific in the 5 y–7 y band (see also Section 3.2).
[16] The observations include regions of relatively small

and large f̂ compared to the models, but some of this dif-
ference reflects differences in the number of data sets going
into each panel. As for f̂ for the MM data, the simulated

range for the AM data of the 20c3m simulations for indi-
vidual regions overlaps the observations, except perhaps in
the North Atlantic f̂ (Figure 2a) where the simulations might
be biased high compared to the observations. Another region
of discrepancy between the models and observations is a
region of anticorrelation from one year to the next over
northern Siberia that is suggested in Figure 1c and that is
present in all the observational products but either absent or
has a somewhat different location in the models (not shown).
This feature might be related to forcing of Eurasian tem-
perature by the quasi-biennial oscillation (QBO) of the
tropical stratosphere [Thompson et al., 2002], which is not
captured in the CMIP3 models. While the extratropical AM
f̂ is generally insensitive to external forcing, radiative
forcing in the 20c3m appears to boost persistence in the
Maritime Continent relative to the picntrl.
[17] Generally, f̂ drops for longer aggregation timescales

(transition from MM to BDM in Figure 2). Except over the
Southern Ocean, most of the models show insignificant or
negative lag-one autocorrelations for PM or BDM,

Figure 2. (a) The North Atlantic spatial average of the lag-one autocorrelation estimates f̂ for monthly,
annual, pentadal, and bidecadal mean SAT (MM, AM, PM, BDM). Individual points represent observa-
tions, unshaded box and whisker symbols represent picntrl simulations, and shaded box and whisker sym-
bols represent 20c3m simulations. The time periods represented are 1957–2002 for observed MM and AM
observations, 1955–1999 for 20c3m MM and AM, arbitrary 45 y segments for picntrl MM and AM,
1900–1999 for 20c3m PM, arbitrary 100 y segments for picntrl PM, and available 500 y segments for
picntrl BDM. CMIP3 models used are listed in Section 2. The horizontal dashed lines demonstrate
approximate �2s confidence intervals for f̂ = 0 [Vyushin, 2009]. The region boundaries are described
in Section 2. (b–e) As in Figure 2a for the North Pacific, Southern Ocean, MDR, and Maritime Continent
region. The averaged f̂ for the GISS SAT is not estimated for the Southern Ocean due to its poor coverage.
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suggesting a saturation of coupled ocean-atmosphere vari-
ability at low frequencies in unforced control runs. The
realism of this behavior cannot be assessed within the scope
of this study; it is expected that cryospheric and biospheric
processes not represented in the CMIP3 models might
influence persistence on these longer timescales.

3.2. Power Law Representation

[18] Figure 3 displays estimates of the Hurst exponent, Ĥ ,
for the same collections of data sets used to produce f̂ in
Figure 1. The CMIP3 models credibly represent the contrast
in 18 m–45 y Ĥ between land and ocean, including the
observed peaks in the northern extratropical oceans and the
decrease from west to east in the tropical Pacific and Atlantic
(Figures 3a and 3b, “18 m–45 y” portion of Figures 4a–4c).
The model 18 m–45 y Ĥ is generally biased low over the
tropical oceans and parts of the Southern Hemisphere
(Figures 3a, 3b, 4d, and 4e). The Ĥ values obtained from the
climate model simulations are insensitive to increasing the
low frequency cutoff of the timescale range from 45 y to
100 y (compare the 18 m–45 y to the 18 m–100 y portions of
Figure 4). This makes sense because an increase in the low-
frequency cutoff from 45 y to 100 y leads to the addition of
only one DFA or periodogram data point at timescales longer

than 45 y. This suggests that Ĥ on the interannual to

multidecadal scale may be robustly estimated with just a few
decades of data.
[19] The Ĥ values for the simulations shown here are

largely consistent with previous modeling results [Fraedrich
and Blender, 2003; Blender and Fraedrich, 2003; Blender
et al., 2006; Rybski et al., 2008], to within model and anal-
ysis differences. The Ĥ field is quite robust to the presence of
external radiative forcing (in Figure 4 compare the picntrl
to the 20c3m results for the 18 m–45 y, 18 m–100 y, and 5 y–
45 y ranges). DFA3 removes up to second order trends in the
data and thus linear and quadratic trends do not directly affect
Ĥ in these figures. Consequently, external radiative forcing,
whether anthropogenic or natural, does not appear to signif-
icantly affect this measure of climate persistence. The cal-
culated Ĥ of Huybers and Curry [2006] over the tropical
oceans for the NCEP/NCAR reanalysis for the 2 month to
30 year timescale range is relatively large compared to those
presented here, because of the relatively high high-frequency
cutoff used in that work (comparison not shown).
[20] For the 20 y–500 y range (Figure 4), the CMIP3

models simulate values of Ĥ in the extratropical oceans that
are marginally significantly greater than 0.5, indicating that
the models are capable of capturing some buildup of variance
in the low frequency limit. Again, the realism of this behavior

Figure 3. The spatial distribution of the Hurst exponent estimate Ĥ for the observed MM 1957–2002
SAT (a) and for the 1950–1999 20c3m simulations of the 17 CMIP3 models (b) calculated for the
18 m–45 y range. (c and d) As in Figures 3a and 3b but for the Ĥ estimated using the 5 y–45 y range.
As in Figure 1, the maps represent the average over the available observations or the models. Values of
Ĥ > 1 are an artifact of inclusion of high-frequencies into the estimation range.
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at the multicentennial scale is difficult to assess within the
scope of this study.
[21] As a whole, the CMIP3 models capture many of the

important features of the two independently calculated
measures of persistence, f̂ and Ĥ , in the interannual to
multidecadal range, particularly over the extratropical ocean
basins. Furthermore, these features appear to be related to
internal climate variability rather than external radiative
forcing, because they are robust to the presence of external
radiative forcing once the data has been detrended. Volcanic
forcing increases H in tropical stratospheric air temperature
[Vyushin et al., 2009], but the natural radiative forcings
present in the CMIP3 models apparently do not strongly
affect SAT.
[22] For the Ĥ values in the tropics, model spread is pro-

nounced and the models tend to disagree with observations.
The Ĥ values are sensitive to analysis timescale in this region
because of interannual ENSO-related variability, which in the
CMIP3 models is simulated on timescales shorter than
observed [see Randall et al., 2007, p. 624]. Thus, incon-
sistencies between the CMIP3 models and observations are
expected here for power law fits that include interannual
timescales. Tropics are also a region where, on decadal scales,
observational products systematically disagree [e.g., Vyushin
et al., 2009]. This suggests that less confidence should be

placed in observed estimates, and indeed our dynamical
understanding, of tropical persistence on decadal timescales.

4. Comparison of the Two Representations

4.1. Relationship Between the Two Representations

[23] The spatial distribution of the f̂ for AM data
(Figure 1) and the 18 m–45 y Ĥ (Figure 3) share some
qualitative features, including larger values in the extra-
tropical oceans, larger values over oceans than land, and
relatively large values in the western tropical ocean basins.
This similarity suggests that the two fields represent similar
information on persistence on the interannual to multi-
decadal scale. Scattering f̂ for the AM data against 18 m–
45 y Ĥ (Figure 5) brings out a compact relationship between
the two persistence measures, such that regions of high Ĥ
correspond to regions of high f̂ . Color coding highlights
regions of interest identified in Section 2. The largest degree
of persistence identified by both measures is found in the
North Atlantic, followed by the North Pacific (see Section 2
for the definition of area boundaries). The Maritime Conti-
nent, the Main Development Region for Atlantic Hurricane
formation, and the Southern Ocean have intermediate values.
The points from the Arctic span a wide range, whereas most

Figure 4. (a) The North Atlantic spatial average of Ĥ for 18 m–45 y, 18 m–100 y, 5 y–45 y, and 20 y–
500 y timescale ranges. The horizontal dashed lines demonstrate the �2s confidence intervals for the Ĥ =
1/2 [Vyushin, 2009]; confidence intervals for Ĥ > 1/2 are similar. Data sources, region boundaries, and
plotting conventions are as in Figure 2. (b–e) As in Figure 4a for the North Pacific, Southern Ocean,
MDR, and Maritime Continent region.
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Figure 5. (a) Scatterplot of f̂ for AM data against GSPE-estimated 18 m–45 y Ĥ for SAT. The dots are
color coded as follows: cyan: North Atlantic (NA); violet: North Pacific (NP); yellow: MDR; green:
Southern Ocean (SO); orange: Maritime Continent (MC); maroon: Arctic (ARC); navy: Antarctica
(ANT); black: the rest. The analogous figure with DFA3 estimates of H looks similar, but is more noisy
(not shown). (b) As in Figure 5a, but for ensemble mean 1955–1999 20c3m CMIP3 simulations.

Figure 6. As Figure 5 but for (a) ERA40 (1957–2002) and (b) 20c3m 1955–1999 NCAR CCSM 3.0.
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of the grid points from Antarctica demonstrate low values of
f̂ and Ĥ for the models and intermediate values [Franzke,
2010] for the observations. Similar compact relationships
are found in the decadal-centennial band when decadal SAT
f̂ is scattered against 20 y–500 y Ĥ (not shown).
[24] The relationship between the different persistence

measures is more compact for the model ensemble (Figure 5b)
than for the observations (Figure 5a) at least in part because of
an averaging effect. Scatterplots for an individual observa-
tional product and a representative simulation (Figure 6)
illustrate a similar spread, because each relates to a single
observed or simulated climate realizations.

4.2. Relative Validity of the Two Representations

[25] Two tests are used to evaluate the relative validity of
the AR1 and power law representations. The first test exploits

the distinctive behavior of the AR1 and power law statistical
representations under temporal aggregation as is done when,
for example, creating an annual mean (AM) time series based
on January to December averages of a monthly mean (MM)
time series. Define the temporally aggregated time series

X Tð Þ
j ¼ 1

T

XT
t¼1

XtþT j�1ð Þ; j ¼ 1; 2;…;N=T ; T ≥ 1; ð4Þ

where Xt, t = 1, 2, …, N is the original time series. In this
notation, X1

(12) would be the first value of an AM time series
aggregated from the MM time series {X1, …, X12, X13, …}.
For AR1 processes the temporally aggregated process has
lag-one autocorrelation

AR1 : f Tð Þ ¼
f 1� fT
� �2

T 1� f2
� �� 2f 1� fT

� � ; 0 ≤ f ≤ 1: ð5Þ

Figure 7. (a) Scatterplot of f̂ for AM data against f̂ for MM data for ensemble mean observed data.
The blue line is equation (6) for the power law representation; the red curve is equation (5) for the
AR1 representation. (b and c) As in Figure 7a for 17 20c3m simulations, for 6 picntrl 500 y simulations.
(d) As in Figure 7c, for decadal mean (DM) and AM data (note different axis scales). The following per-
centage of the points is located between the red and blue curves: 66% (Figure 7a), 73% (Figure 7b), 85%
(Figure 7c), and 83% (Figure 7d). Region color coding is as in Figure 5.
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In (5), f(T) = 0 when f = 0, f(T) ! 1 as f! 1�, and f(T) < f
for 0 < f < 1. The shape of f(T) as a function of f is shown by
the red curves in Figure 7. A similar equation has been
derived by Kushnir et al. [2006] for monthly versus daily
persistence of the North Atlantic Oscillation (NAO).
[26] By contrast, temporal aggregation asymptotically has

no impact on a power law stochastic process. More pre-
cisely, for a second order self-similar process, toward which
a power law stochastic process, including FAR(1, d)
described in Section 1, converges in distribution on long
timescales [Cox, 1984; Taqqu, 2002]

Power law : f Tð Þ ¼ f; 0 ≤ f ≤ 1; ð6Þ
where f is the lag-one autocorrelation of this process. The
one-to-one blue lines in Figure 7 represent this relationship.
[27] When observed lag-one autocorrelation coefficients

from MM data are scattered against those from AM data
(Figure 7a), about two thirds of the points fall between the
power law (6) and AR1 (5) curves. Thus, observed persis-
tence is generally greater than would be expected from AR1
and less than would be expected from a pure power law
process. Kushnir et al. [2006] obtained a similar result for an
NAO index on subannual timescales, and Vyushin et al.
[2010] found that the interannual variability in strato-
spheric ozone in many regions behaves similarly. The same
general behavior is captured in the 45 y 20c3m simulation
segments (Figure 7b), with a more compact distribution

arising from the ensemble averaging effect described. The
scatterplot relationship is similar for 45 y picntrl segments
(not shown), suggesting that external forcing plays only a
minor role here. The results are also similar for the subset
of 6 climate models with 500-year-long picntrl simulations
(Figure 7c). Finally, the relationship between f̂ for DM data
and f̂ for AM data (Figure 7d) is similar, although the
overall magnitude of the correlations is reduced.
[28] In all four panels of Figure 7 most of the points lie

below the blue line and above the red line (the exact percen-
tages of the points located between the two curves are given in
the figure caption). This, and the robustness of the relation-
ships to the presence or absence of external radiative forcing,
suggests that the AR1 representation provides a lower bound
and the power law representation an upper bound for climate
persistence on interannual to multidecadal timescales.
[29] Using a spectral goodness-of-fit test [Milhoj, 1981;

Beran, 1992], it is found that neither representation provides
a better fit to the observed and simulated spectral density
(Appendix B and Figure 8). A key point made in the Appendix
is that the goodness-of-fit test must be applied to consistent
time ranges, or misleading results can follow.
[30] Thus, neither the temporal aggregation analysis

(Figure 7) nor the spectral goodness-of-fit test (see Appendix B
and Figure 8) provides objective evidence that favors either
the AR1 or power law representation over the interannual to
multidecadal timescale range. Instead, persistence of climate

Figure 8. (a) The spectral goodness-of-fit test p-value for the power law fit minus the p-value for the
AR1 fit for linearly detrended AM SAT in the 2 y–45 y range, for the observational products. Positive
values indicate a better fit for the power law representation. (b) As in Figure 8a, but for the 20c3m CMIP3
simulations. (c) As in Figure 8a, but for MM SAT in the 18 m–45 y range. (d) As in Figure 8b, but for MM
SAT in the 18 m–45 y range.
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variability, which is well characterized as internal climate
variability, falls between the two statistical representations;
neither representation provides a complete description.

5. Conclusions

[31] This article has set out to better characterize climate
variability by comparing two representations of its temporal
statistics that exhibit contrasting behavior at low frequen-
cies. The analysis has focused on the interannual to multi-
decadal scale that is expected to be reasonably well captured
by current generation climate models. Two measures of per-
sistence arising from these representations, the lag-one auto-
correlation f and the spectral slope parameter, or the Hurst
exponent, H, are generally credibly represented in climate
models and are relatively insensitive to the presence of exter-
nal radiative forcing for detrended data. Less confidence can
be placed in observations andmodels for tropical data. Climate
persistence appears to lie between short-memory (AR1) and
long-memory (power law) processes, and the data does not
suggest that one representation is superior.
[32] It might be argued that the two representations focused

on here are too simple. We justify the exclusive focus on
these two representations because (1) they are equivalently
parsimonious, in the sense that each involves a single shape
parameter and single parameter measuring overall power
over the frequency band analyzed; and (2) they are exten-
sively used in several applications in statistical climatology
[e.g.,Trenberth et al., 2007;WorldMeteorological Organization,
2007; Caballero et al., 2002; Vyushin et al., 2007, 2010;
Franzke, 2012] and (3) they can be unified within the gener-
alized FAR(1, d) class of models that include both short and
long memory behavior as demonstrated in the Introduction,
and through the fraction of predictable variance at the one
time increment lead. The fact that both provide related infor-
mation does not imply, however, that they are equivalent in
all respects.
[33] A key difference between a power law stochastic

process and an autoregressive process of any finite order is
that the spectral density of the former increases without
bound as a power law near the origin (i.e. for | f | ≪ 1/2),
whereas the spectral density of the latter saturates to a con-
stant near the origin. Because the lowest frequency captured
is controlled ultimately by the length of a given time series,
for many applications, e.g. trend detection, it is necessary to
make an assumption about spectral behavior near the origin.
Autoregressive and power law stochastic processes provide
two extreme cases of such assumption.
[34] Bloomfield and Nychka [1992] compared estimated

linear trend confidence intervals based on white noise, AR1,
AR2, AR8, and power law representations for globally
averaged annual mean surface air temperature anomalies time
series. They showed that the estimates based on the AR8 and
power law representations are close to each other, about four
times greater than the white noise based confidence interval,
and approximately 70% greater than the AR1 and AR2 esti-
mates. Vyushin et al. [2007] have found that the uncertainty
of the long-term total ozone trend in Northern Hemisphere
middle and high latitudes attributable to the anthropogenic
chlorine estimated using a power law representation is about
50% greater than the corresponding AR1 estimate. Based on
the results of this article we expect analogous differences in

temperature trend confidence interval to arise in persistent
regions such as extratropical ocean basins.

Appendix A: Spectral Representation Theorem

[35] This Appendix outlines some of the statistical con-
cepts used in this analysis. For any real-valued discrete sta-
tionary process, Xt, with zero mean there exists an orthogonal
process ZX( f ), defined on the interval [�1/2, 1/2], such that

Xt ¼
Z 1=2

�1=2
exp i2pftð ÞdZX fð Þ: ðA1Þ

The orthogonal process, ZX( f ), has orthogonal increments
dZX( f ). That is, if [ f, f + df ] and [ f ′, f ′ + df ′] are noninter-
secting subintervals of [�1/2, 1/2] then the increments satisfy

cov dZX fð Þ; dZX f ′
� �� � ¼ E dZ∗

X f ′
� �

dZX fð Þ� � ¼ 0; ðA2Þ

where E{Z} is the expectation operator applied to the random
variable Z, and

E dZX fð Þj j2
n o

¼ dS Ið Þ
X fð Þ; ðA3Þ

where SX
(I )( f ) is a bounded nondecreasing function called the

integrated spectrum. In the case SX
(I )( f ) is differentiable

everywhere on [�1/2, 1/2] and such that

dS Ið Þ
X fð Þ ¼ SX fð Þdf ; ðA4Þ

where SX( f ) is called the spectral density function, we have
the following spectral representation of the autocovariance
function gX(t) of Xt

gX tð Þ ¼ E XtXtþtf g ¼
Z 1=2

�1=2
exp i2pf tð ÞSX fð Þdf : ðA5Þ

This expression relates persistence captured by the auto-
covariance function to the statistics of variability across
timescales captured by the spectral density. The variance of
the discrete stationary process Xt can be represented as

s2
X ¼ gX 0ð Þ ¼

Z 1=2

�1=2
SX fð Þdf : ðA6Þ

Thus spectral density provides a spectral decomposition of
the total variability of a discrete stationary process.

Appendix B: Goodness of Fit Test

[36] A spectral goodness-of-fit test [Milhoj, 1981; Beran,
1992] is applied to the AR1 and power law fits of linearly
detrended observed and simulated data. In this application,
spectral domain fits (maximum likelihood estimation for
AR1, GSPE for power law, as described in Section 2) are
used instead of time domain fits. GSPE for the power law fit
has the added advantage of using all available frequencies,
while DFA3 has a short timescale cutoff of 18 time units
[Kantelhardt et al., 2001; Vyushin and Kushner, 2009].
Figures 8a and 8b show the difference of p values for the
2 y–45 y fit for observed and simulated AM data, after an
ensemble mean has been taking across all available data. For
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observations and simulations this difference is small, except
for observed temperature in northern Siberia, where the
power law representation better fits the data. The latter fea-
ture is perhaps related to the anomalous behavior for the
AR1 fit to AM data in this region (Section 3.1). Thus, for the
most part, the two representations demonstrate similar per-
formance. A similar conclusion is reached for other time-
scale ranges and integrations, including the 10 y–100 y
range for AM data in the 500 year picntrl integrations (not
shown).
[37] This conclusion might not hold if inconsistent time-

scales are used. For example, fitting AR1 to MM data in the
2 m–45 y range and power law in the 18 m–45 y range yields
a better fit for the power law representation over most of the
extratropical oceans and a worse fit for the power law rep-
resentation in the tropics, especially for observations
(Figures 8c and 8d). These differences in performance reflect
the inconsistent high frequency cutoff in the two fits. This
example is relevant because these are typical timescale ran-
ges chosen for the representations in standard practice.
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