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Abstract

We study trends and temporal correlations in the monthly mean temperature data of Prague
and Melbourne derived from four state-of-the-art general circulation models that are currently
used in studies of anthropogenic e5ects on the atmosphere: GFDL-R15-a, CSIRO-Mk2, ECHAM4=
OPYC3 and HADCM3. In all models, the atmosphere is coupled to the ocean dynamics.
We apply <uctuation analysis, and detrended <uctuation analysis which can systematically over-
come nonstationarities in the data, to evaluate the models according to their ability to reproduce
the proper <uctuations and trends in the past and compare the results with the future prediction.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently it was found that temperature <uctuations measured at a given meteoro-
logical station exhibit long-range power law correlations with an exponent � close to
0.65 that is actually independent of the location of the station [1–3]. These results
have been obtained by several methods (detrended <uctuation analysis (DFA), wavelet
analysis and power spectra) for 14 meteorological stations scattered around the globe
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[1–3] and conFrmed in several other studies [4–6]. The persistence, characterized by
the autocorrelation C(s) of temperature variations separated by s days, approximately
decays as

C(s) ∼ s−� ; (1)

with roughly the same exponent �=2−2� � 0:7 for all stations considered. The range
of this universal persistence law exceeds one decade, and is possibly even longer than
the range of the temperature series considered. This implies two major consequences:
(a) conventional methods based on moving averages cannot be used to properly separate
trends from <uctuations; (b) conventional methods for the evaluation of the frequency
of extreme low or extreme high temperature are based on the hypothesis, that the
temperature <uctuations are essentially uncorrelated. The appearance of long range
correlations sheds doubt on these methods.
The aim of this paper is to test several state-of-the-art General Circulation Models

(GCM) for the power-law behavior given in Eq. (1). Among others, climate models
are being used for predicting climatic changes that are believed to occur as a result
of anthropogenic interference with the atmosphere. We study the following climate
models: GFDL-R15-a, CSIRO-Mk2, ECHAM4=OPYC3 and HADCM3. Each model
has certain unique characteristics such as the numerical methods, the type of sub-grid
scale parameterizations, the spatial resolutions, and the period of integration. However,
all are based on the same fundamental set of equations, all have common variables
such as temperature, pressure, and precipitation, all account for increasing levels of
CO2 and all are coupled to ocean dynamics. In our study we use the simple <uctuation
analysis (FA) which does not eliminate trends as well as 5 orders of DFA that can
systematically eliminate trends of up to polynomials of the 4th order. Following is a
brief description of the method.

2. Record analysis: �uctuation analysis and detrended �uctuation analysis

We consider a record Ti of mean monthly temperatures measured at a certain me-
teorological station. The index i counts the months in the record, i = 1; 2; : : : ; N . For
eliminating the periodic seasonal trends, we concentrate on the departures of the Ti,
KTi = Ti − LT i, from the mean monthly temperature LT i for each calendar month i, say
January, which has been obtained by averaging over all years in the temperature series.
A conventional way to study correlations in the sequence KTi is by the autocorrelation
function:

C(s) = 〈KTi;KTi+s〉= 1
N − s

N−s∑

i=1

KTiKTi+s : (2)

If there is no correlation in the data, then C(s) will be zero for s positive. If correlation
exists up to the point sp, then C(s) will be positive up to sp and vanish above sp. Direct
calculation of C(s) is hindered by noise which is always inherent in any data, and by
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possible non-stationary in the data [7]. Instead, we calculate C(s) indirectly from the
temperature ‘proFle’, Yn, which is obtained from the KTi as

Yn =
n∑

i=1

KTi : (3)

The proFle Yn can be considered as the position of a random walker on a linear chain
after n steps. The random walker starts at the origin and at the ith step makes a jump of
length KTi to the right if KTi is positive and to the left, if KTi is negative. According
to random walk theory, the <uctuations F2(s) of the proFle in a given time window size
s, are related to the correlation function C(s). For the relevant case (1) of long-range
power-law correlations, C(s)∼ s−�; 0¡�¡ 1; the mean-square <uctuations F2(s),
obtained by averaging over many time windows of size s (see below) increase by a
power law [8]:

F2(s) ∼ s2�; �= 1− �=2 : (4)

For uncorrelated data (as well as for correlations decaying faster than 1=s), we have
�= 1

2 .
To determine the square-<uctuations of the proFle scale with s, we Frst divide each

record of N elements into Ks = [2N=s], (indexed �) non-overlapping subsequences of
size s starting from the beginning as well as from the end of the considered temperature
series. We determine the square-<uctuations F2(s) in each segment � and obtain F2(s)
by averaging over all segments. On a log–log plot, the <uctuation function:

F(s) ≡ [F2(s)]1=2 ∼ s� (5)

is a straight line at large s values, with slope �¿ 1
2 in the case of long range correla-

tions. The various methods di5er in the way the <uctuation function is calculated.

2.1. Fluctuation analysis

In the simplest type of analysis (where trends are not going to be eliminated), we
obtain the <uctuation functions from the values of the proFle at both end points of the
�th segment:

F2
� (s) = [Y�s − Y(�−1)s]2 (6)

and average F2
� (s) over the Ks subsequences

F2(s) = (1=Ks)
Ks∑

�= 1

F2
� (s) : (7)

Here, F2(s) can be viewed as the mean square displacement of the random walker on
a chain, after s steps. We obtain Fick’s di5usion law F2(s)∼ s for uncorrelated KTi
values.
We note that this <uctuation analysis corresponds to the R=S method introduced by

Hurst (for a review, see e.g. [9]). Since both methods do not eliminate trends, they
do not give a clear picture when used alone. In many cases they cannot distinguish
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between trends and long-range correlations when applied to a time record without
supplementary calculations.

2.2. Detrended <uctuation analysis

There are di5erent orders of DFA that are distinguished by the way the trends in the
data are eliminated. In the lowest order (DFA1) we determine, for each subsequence �,
the best linear Ft of the proFle, and identify the <uctuations by the standard deviation
F2
� (s) of the proFle from this straight line. This way, we eliminate the in<uence of

possible linear trends on scales larger than the segment sizes. Note that linear trends in
the proFle correspond to patch-like trends in the original record. DFA1 was originally
proposed by Peng et al. [10–12] for analyzing correlations in DNA sequences and has
recently been applied to the study of heartbeat dynamics [13].
DFA1 can be generalized straightforwardly to eliminate higher order trends: In sec-

ond order DFA (DFA2) one calculates the standard deviations F2
� (s) of the proFle from

best quadratic Fts of the proFle, in this way eliminating the in<uence of possible linear
trends on scales larger than the segment considered. In general, in the nth-order DFA
technique, we calculate the deviations of the proFle from the best nth-order polynomial
Ft and can eliminate this way the in<uence of the possible (n − 1)th-order trends on
scales larger than the segment size.
It is essential in the DFA-analysis that the results of several orders of DFA (e.g.

DFA1–DFA5) are compared with each other. The results are only reliable when dif-
ferent orders yield the same type of behavior. When compared with FA one can gain
additional insight into possible nonstationarities in the data.

3. Analysis of temperature records

Figs. 1a and 3a, represent the results of FA and DFA of the monthly mean tempera-
tures Ti for the cities of Prague (1775–1992) and Melbourne (1859–1994), respectively.
In the log–log plots, all curves are (except for small s-values) approximately straight
lines, with slopes �=0:65. A natural crossover exists (above the DFA-crossover) which
can be best estimated from FA and DFA1. Above the crossover, long-range persistence
exists as expressed by the power-law decay of the correlation function with an expo-
nent � � 0:7. At large time scales there is a slight increase of the FA-function for
Prague(which clearly indicates a weak trend) which can be interpreted as the e5ect of
the warming of Prague due to urban development.
As shown earlier [1–3] these results are typical for many weather stations. Since the

exponent does not depend on the location of the meteorological station and its local
environment, the power law behavior can serve as an ideal test for climate models
where regional details cannot be resolved and therefore regional phenomena like urban
warming cannot be accounted for. The power law behavior seems to be a global
phenomenon and therefore should also appear in simulated data of the GCM.
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3.1. Analysis of simulated temperature records

Next we consider the analysis of simulated data that were obtained from four GCMs
by the interpolation of the four grid points closest to Prague and Melbourne. The
models evaluated are:
1. GFDL-R15-a. This is the latest version of a coupled atmosphere-ocean model

(AOGCM) that has been developed over many years at the Geophysical Fluid Dynam-
ics Laboratory in Princeton [14,15]. The atmospheric sub-model is a spectral model
with a horizontal truncation of rhomboidal 15 (R15), a transform grid longitude–latitude
spacing of 7:5◦ × 4:5◦, and nine vertical levels. The ocean sub-model is a grid point
model with a latitude–longitude grid spacing of 4:5◦ × 3:75◦ and 12 vertical layers.
To reduce model drift, <ux corrections are applied to the heat and water <uxes at
the surface. In the control run, the CO2 concentration is kept Fxed at the 1958 value
while for the climate change run all greenhouse gases are represented by equivalent
CO2 concentrations which increase at a rate of roughly 1 percent per year according
to the IPCC IS92a scenario [16]. This model forecasts an increase of the global mean
temperature by 2:2◦C at year 2057 [17].

2. CSIRO-Mk2. The CSIRO-Mk2 model is a coupled AOGCM developed at
Australia’s Commonwealth ScientiFc and Industrial Research Organisation. The atmo-
spheric sub-model is a spectral model with R21 truncation, a transform grid longitude–
latitude spacing of 5:6◦ × 3:2◦, and nine vertical layers. The ocean sub-model is a grid
point model that uses the same horizontal grid as the atmosphere and has 21 vertical
levels. Flux correction is applied to the heat, fresh water, and momentum <uxes at
the surface. All greenhouse gases are combined into an equivalent CO2 concentration
which follows observations from 1880 to 1989 and are then projected into the future
according to the IS92a scenario [18,19]. This model forecasts an increase of the global
mean temperature by 3:3◦C during the next century [17].
3. ECHAM4=OPYC3. The coupled AOGCM ECHAM4=OPYC3 was developed

as a cooperative e5ort between the Max-Planck-Institut fQur Meteorologie (MPI) and
Deutsches Klimarechenzentrum (DKRZ) in Hamburg. The atmospheric model was
derived from the European Centre for Medium Range Weather Forecasts (ECMWF)
model. It is a spectral model with triangular truncation T42, a longitude–latitude
transform grid with a spacing of 2:8◦, and 19 vertical levels. The ocean model (OPYC3)
is a grid point model with 11 isopycnal layers run on the same grid as the atmosphere.
Flux correction is applied to the heat, fresh water, and momentum <uxes at the surface
[20–22]. Historic greenhouse gas concentrations are used from 1860–1989 and from
1990 onward they are projected according to the IS92a scenario. This model forecasts
an increase of the global mean temperature by 3:0◦C during the next century [17].
4. HADCM3. The HADCM3 model is the latest version of the coupled AOGCM

developed at the Hadley Centre [23]. Unlike the other models described above, here
the atmospheric model is a grid point model with a longitude–latitude grid spacing
of 3:75◦ × 2:5◦ with 19 vertical levels. The ocean model has a horizontal resolution
of 1:25◦ in both latitude and longitude and 20 vertical levels. No <ux correction is
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Fig. 1. FA- and DFA- of (a) the monthly mean temperature record of Prague and (b) simulated interpolated
monthly mean temperature records at the geographical position of Prague, for three general circulation
models: (b) CSIRO-Mk2, (c) ECHAM4=OPYC3, and (d) HADCM3. The four panels show the <uctuation
functions obtained by FA, DFA1, DFA2, DFA3, DFA4, and DFA5 (from top to bottom) for the 4 sets of
data. The scale of the <uctuations is arbitrary. The two straight lines at the bottom represent slopes 0.65
(upper line) and 0.5 (lower line).

applied at the surface. Historic greenhouse gas concentrations are used during the period
1860–1989. From 1990 onward they are increased according to the IS95a scenario (a
slightly modiFed version of IS92a). This model forecasts an increase of the global
mean temperature by 3:2◦C during the next century [17].
For each model, we extracted the temperature records (mean monthly data) of the

4 grid points closest to Prague and Melbourne, from the model results obtained from
the IPCC Data Distribution Centre web site [17]. The data were bilinearly interpolated
to the locations of Prague and Melbourne.
Figs. 1 and 3 (b–d) show the results obtained from the segments of the ECHAM4=

OPYC3, CSIRO-Mk2 and HADCM3 simulations, that end up the same year as the real
record for Prague and Melbourne, respectively. The available data of GFDL-R15-a for
the past cover only 40 yr, and therefore we do not present it here.
We are interested in the way the models can reproduce the actual data in terms of

trends and long-range correlations. Of course, we cannot expect the models to reproduce
local trends like urban warming or short-term correlation structures. But the long-range
correlations as discussed in the previous section show characteristic universal features
that are actually independent of the local environment around a station. Thus we can
expect that successful models with good prognostic features will be able to reproduce
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Fig. 2. FA- and DFA-analysis of the simulated interpolated monthly mean temperature records of the
geographical position of Prague, for four general circulation models: (a) GFDL-R15-a, (b) CSIRO-Mk2,
(c) ECHAM4=OPYC3, and (d) HADCM3. While Fig. 1 considered only data in the past, Fig. 2 considers
the whole set of data up to about year 2100 (past and future).

them. Next, we present the results for Prague and Melbourne comparing the real records
to the model records.
(a) Prague: The FA and DFA <uctuation functions for the real temperature record

of Prague have approximately the same slope of � = 0:65 in the double logarithmic
plot (shown as straight line in Fig. 1a). At large time scales there is a slight in-
crease in the slope of the FA—function (which clearly indicates a weak trend). In
contrast, the FA—results (shown by “∗ ”) for the ECHAM4=OPYC3 (Fig. 1c) and
HADCM3 (Fig. 1d) data show a stronger trend beyond 100 months represented by a
larger slope. For CSIRO-Mk2 (Fig. 1b) the FA—results are not so conclusive due to
the considerable scatter at large scales. Thus, it seems that two of the three models
overestimate the trends of the past. Regarding scaling, the DFA curves (shown by
“o”) in the CSIRO-Mk2 (Fig. 1b) model show good straight line behavior in a double
logarithmic presentation and yield an exponent close to the real data. In contrast, the
ECHAM4=OPYC3 (Fig. 1c) and HADCM3 (Fig. 1d) models show a crossover in the
<uctuation function at about 30 months with a slope close to the real data below the
crossover and a slope of 0.5 above it. The exponent �= 0:5 indicates the loss of per-
sistence. Hence these models produce data sets which lack correlations exceeding 30
months, in contrast to the real record.
When we consider the full records (including next century data, see Figs. 2a–d), all

the models show pronounced linear trends which are shown by the <uctuation functions
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Fig. 3. Descriptions are same as that of Figs. 1 (a–d) but for Melbourne data.

obtained from FA and DFA1. Regarding scaling, all models show scaling with single
exponent but yield lower exponent � between 0.5 and 0.54 when compared with real
data.
(b) Melbourne: For Melbourne, the results of FA (shown by “∗”) for the past data

(Figs. 3a–d), show that all the models slightly overestimate trends at the large time
scales except the CSIRO-Mk2 (Fig. 3b) model. Regarding scaling in DFA, CSIRO-Mk2
(Fig. 3b) and HADCM3 (Fig. 3d) show straight line behavior in the double logarithmic
presentation. In this case, as for Prague, CSIRO-Mk2 shows an exponent close to the
real data where as the HADCM3 yields a slightly higher exponent. In contrast the
ECHAM4=OPYC3 (Fig. 3c) model shows a crossover at around 30 months yielding
exponents close to the real data below the crossover and 0.5 above it, again indicating
the loss of persistence at large time scales.
When we consider the entire records, the linear trends in the models are stronger and

might be overestimated as is clearly evident from F(s) obtained from FA and DFA1 at
large time scales (Figs. 4a–d). Regarding scaling behavior, ECHAM4=OPYC3 (Fig. 4c)
shows a crossover at around 30 months. Below the crossover it yields a high exponent
of about 0.85, while above the crossover � is about 0.6. In this case CSIRO-Mk2 and
HADCM3 show similar results as for the past data.
We have also obtained similar qualitative behavior for other simulated temperature

records. From the trends, one can estimate the warming of the atmosphere in future.
Since the trends are almost not visible in the real data and overestimated by the



R.B. Govindan et al. / Physica A 294 (2001) 239–248 247

Fig. 4. Descriptions are same as that of Figs. 2 (a–d) but for Melbourne data. While Figs. 3 (a–d) considered
only data in the past, Fig. 4 considers the whole data up to about year 2100 (past and future).

models in the past, it seems possible that the trends are also overestimated for the
future projections of the simulations. From this point of view, it is quite possible that
the global warming in the next 100 yr will be less pronounced than that is predicted
by the models.
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