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One of the main problems in statistical climatology is to construct a parsimonious model of

natural climate variability. Such a model serves for instance as a null hypothesis for detection

of human induced climate changes and of periodic climate signals. Fitting this model to various

climatic time series also helps to infer the origins of underlying temporal variability and to

cross validate it between different data sets. We consider the use of a spectral power-law

model in this role for the surface temperature, for the free atmospheric air temperature of the

troposphere and stratosphere, and for the total ozone. First, we lay down a methodological

foundation for our work. We compare two variants of five different power-law fitting methods

by means of Monte-Carlo simulations and their application to observed air temperature. Then

using the best two methods we fit the power-law model to several observational products and

climate model simulations. We make use of specialized atmospheric general circulation model

simulations and of the simulations of the Coupled Model Intercomparison Project 3 (CMIP3).

The specialized simulations allow us to explain the power-law exponent spatial distribution and

to account for discrepancies in scaling behaviour between different observational products. We

find that most of the pre-industrial control and 20th centurymodel simulations capture many

aspects of the observed horizontal and vertical distribution of the power-law exponents. At the

surface, regions with robust power-law exponents — the North Atlantic, the North Pacific, and

the Southern Ocean — coincide with regions with strong inter-decadal variability. In the free

atmosphere, the large power-law exponents are detected on annual to decadal time scales in
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the tropical and subtropical troposphere and stratosphere. The spectral steepness in the former

is explained by its strong coupling to the surface and in the latter by its sensitivity to volcanic

aerosols. However power-law behaviour in the tropics and inthe free atmosphere saturates

on multi-decadal timescales. We propose a novel diagnosticto evaluate the relative goodness-

of-fit of the autoregressive model of the first order (AR1) andthe power-law model. The

collective behaviour of CMIP3 simulations appears to fall between the two statistical models.

Our results suggest that the power-law model should serve asan upper bound and the AR1

model should serve as a lower bound for climate persistence on monthly to decadal time scales.

On the applied side we find that the presence of power-law likenatural variability increases

the uncertainty on the long-term total ozone trend in the Northern Hemisphere high latitudes

attributable to anthropogenic chlorine by about a factor of1.5, and lengthens the expected time

to detect ozone recovery by a similar amount.
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Chapter 1

Introduction

All models are wrong, but some are useful.

George E. P. Box

1.1 Characteristics of natural climate variability

Climate variability on interannual to multi-decadal time scales involves a mix of anthropogeni-

cally and naturally generated variability (Wigley and Raper, 1990)1. There are two main ap-

proaches to model climate variability in modern climate science: physical and statistical. The

first one is based on the fundamental laws of physics, chemistry, geology, and biology, such as

the laws of hydrodynamics, radiative heat transfer, carboncycle, etc. These laws are written

in a form of partial or ordinary differential equations, supplied with initial and boundary con-

ditions, and solved using various numerical schemes on supercomputers. Roughly speaking,

these equations combined with a computer code for their solution are called climate models.

The physical approach provides a huge amount of informationabout climate variability, but

it is very complicated, because it involves numerous interacting physical processes and their

parameters, some of which are poorly constrained by observations or scientific understanding.

1Text that appears in non-black fonts is hyperlinked, eitherto a cross-reference in the thesis or a URL, in the
electronic version of the thesis.
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CHAPTER 1. INTRODUCTION 2

An alternative and complementary approach is to use statistical models for description of

climate variability. This approach is phenomenological, i.e. it does not have to be based on

the fundamental laws of nature. Statistical models involving relatively few parameters, fitted

to observed data or to climate model output, provide a compact (“parsimonious”) description

of large data arrays. In climate science statistical modelsare mainly used for assessment, in-

terpretation, and comparison of various observational products and climate model simulations.

They are also extensively used for forecasting, but as physically based models are getting more

mature they achieve a similar skill to statistical models inthis kind of application.

The main focus of this thesis are two statistical models describing natural climate variabil-

ity. By means of these two models we will attempt to get new insights into climate dynamics

and provide new ways for its assessment. The development of such conceptual, but at the same

time very practically important, statistical models is a necessary step for construction of a the-

ory of climate variability. During our study of the statistical models of climate variability we

will employ multiple simulations of physical climate models as nice tools for testing various

hypotheses about the origins of climate variability. Therefore we will demonstrate that both

approaches, physical and statistical, are mutually beneficial.

Climate variability can be decomposed into three parts: internal climate variability, natu-

rally forced, and anthropogenically forced variability. The internal climate variability is gen-

erated by climatic processes at various time scales, e.g. atmospheric convection and breezes

on hourly scales, baroclinic life cycles on daily scales, annular modes on weekly scales, mon-

soons and midlatitude air-mixed ocean layer interactions on monthly scales, quasi-biennial

oscillation (QBO) and El Niño Southern Oscillation (ENSO)on annual scales, thermoha-

line circulation variability on decadal scales, interactions with biosphere on centennial scales,

glacial dynamics on millennial scales, etc. The natural forcings are solar and volcanic forc-

ings. The latter can be considered as a stochastic forcing due to the stochastic nature of the

location, size and frequency of climate affecting volcaniceruptions. The effect of the solar

forcing on the atmospheric air temperature in the 20th century is weak and highly debated
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(e.g.Benestad and Schmidt, 2009). Here for simplicity we regard the solar forcing effect on

interannual to multidecadal time scales as stochastic, although some of its components might

be quasi-deterministic, e.g. the so called 11 year solar cycle. A combination of internal and

naturally forced climate variability is called natural climate variability. The anthropogenically

forced climate variability is deterministic and is not of primary interest in this thesis.

Natural climate variability can be characterized by the temporal spectral density of either

observed/reconstructed climatic time series after filtering anthropogenically induced changes

if necessary or of climate model simulations forced by external natural forcings. Very often

it is useful to represent the spectral density with a simple approximate statistical model. This

kind of model, which is statistically parsimonious in the sense that it uses a small number of

parameters, provides input to studies of trend and periodicity detection, climate predictability,

extreme value statistics, etc. An advantage of a parsimonious statistical model is that it is

relatively easy to compare a few parameters, that this modeldepends on, across different data

sets and, as we do in this thesis, to look at the geographic distribution of such parameters. A

disadvantage of a complex statistical model, i.e. a model with many parameters, is that in case

some of its parameters turn out to be useless their only effect is to increase the probability of

error generation. In addition, if a model becomes too detailed, i.e. the data are overfit, then

there might be no ability to generalize it.

A parsimonious statistical model should be distinguished from a parsimonious physical

model. The principle of parsimony or Occam’s razor principle in physics and in science in

general is often a subjective matter that depends on the problem and the user’s prior knowledge

and way of thinking. For example, it is commonly accepted that linear models are simpler than

nonlinear models. Thus given a linear and a nonlinear model,which depend on the same num-

ber of parameters and provide equally good explanation for data, the linear model would most

typically be chosen. Although, one can imagine an individual who dealt only with nonlinear

models in his/her entire life. Because this individual has adifferent than commonly accepted

Occam’s razor, he/she would choose the nonlinear model as the most simple theory for given
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data. In this thesis we will mainly rely on the principle of statistical parsimony, in particular

because of its more rigorous formulation. However statistically parsimonious models might be

insightful for construction of parsimonious (low-order) physical climate models for explana-

tion and prediction of climate variability and change.

The best known statistically parsimonious approximation for discrete climatic time se-

ries is the autoregressive model of the first order (AR1), which was theoretically justified

by Hasselmann(1976). It is based on an idea of temporal scale separation betweenoceanic

and atmospheric dynamics and on their linear interaction. In Hasselmann’s (1976) model a

fast stochastic (weather-noise) atmospheric variabilitydrives slow damped components of the

climate system such as the ocean.

Autoregressive models belong to a class of Markov models. Ina continuous time frame-

work the AR1 model might be written as a linear stochastic differential equation of the first

order. In discrete time it has a very simple form

Mt = φMt−1 + εt, |φ| < 1, (1.1)

whereφ is a lag-one autocorrelation andεt are white noise innovations. The AR1 process has

an exponentially decaying autocorrelation function (ACF)

CAR1(t) = φ|t|, |φ| < 1, −∞ < t < +∞. (1.2)

The shape of the AR1 model spectral density is

SAR1(λ) =
σ2

ε

1 − 2φ cos(2πλ) + φ2
, |λ| ≤ 1/2, (1.3)

whereλ is the frequency, withλ = 1/2 corresponding to the Nyquist frequency, andσ2
ε is

proportional to the time series variance (see e.g.Brockwell and Davis, 1998). In typical ap-

plicationsσ2
ε andφ are estimated from time series or from power spectrum (spectral density

estimate) and used to test for the presence of significant periodic or externally forced signals

(e.g.Ghil et al., 2002). In other applications (e.g.Bretherton and Battisti, 2000) the model is

taken as a simplified physical model to analyze climate variability.
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There are multiple ways to generalize the AR1 model, e.g. an ARK model (e.g.Wunsch,

2004), a multivariate AR1 model (e.g.Barsugli and Battisti, 1998; Caballero et al., 2002), a

sum of several independent AR1 models (e.g.Granger, 1980; Maraun et al., 2004). Let us

consider the most straightforward and therefore the most popular of these generalizations, i.e.

the ARK model (see e.g.Brockwell and Davis, 1998; von Storch and Zwiers, 1999). The au-

toregressive model of the K-th order for monthly mean temperature,Mt, might be written as

follows:

Mt = φ1Mt−1 + φ2Mt−2 + . . . + φKMt−K + εt, (1.4)

where φk are autoregressive coefficients such thatMt is a stationary process (see e.g.

Brockwell and Davis, 1998; von Storch and Zwiers, 1999) andεt are white noise innovations

with varianceσ2
ε . The spectral density of the ARK process is

SARK(λ) =
σ2

ε
∣

∣

∣
1 −

∑K
k=1 φk exp(−2πikλ)

∣

∣

∣

2 , |λ| ≤ 1/2. (1.5)

It is easy to see thatSARK(λ) → const asλ → 0.

ARK models are used much more rarely in climate science than the AR1 model. We will

consider fitting ARK models to a particular climatic time series a few pages below. Another

generalization of the AR1 model, a sum of several multiscaleAR1 models, is considered in

Section6.6.

The spectral densitySAR1(λ) scales asλ−2 at high-frequencies and then, as well as the

spectral density of an ARK model, saturates to a constant at low-frequencies. But this be-

haviour is not always observed. Recent research has pointedout potential limitations of the

AR1 model (e.g.Hall and Manabe, 1997; Schneider and Fan, 2007). Also many studies in the

past two decades (e.g.Bloomfield, 1992; Pelletier, 1997; Tsonis et al., 1999; Eichner et al.,

2003; Fraedrich and Blender, 2003; Vyushin et al., 2004; Huybers and Curry, 2006) have re-

ported that the power spectra of various climatic time series do not seem to saturate but keep

growing at low-frequencies, although with slope shallowerthan−2.

A recently well developed mathematical theory of long-range correlated (LRC) processes
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(also known as long-range dependent or long-memory processes) provides a nice framework

for modelling or at least constraining the temporal variability of such time series. This theory

describes stochastic processes for which the ACF decays algebraically:

CPL(t) = a|t|2H−2, 1/2 < H < 1, |t| ≥ th, (1.6)

whereH is the “Hurst exponent”, named after the British hydrologist, who first observed this

phenomenon while studying the Nile river (Hurst, 1951). It can be shown that the spectral den-

sity of such processes increases by the power-law with decreasing frequency (see e.g.Taqqu,

2002)

SPL(λ) = b|λ|1−2H , 0 < |λ| ≤ λhigh ≤ 1/2, (1.7)

whereb represents the overall spectral power andλhigh is a high-frequency cutoff.H = 1/2

corresponds to a white-noise or short-memory spectrum andH = 1 corresponds to a “1/f ”

noise spectrum. Power-law variability represents temporal scaling behaviour without a char-

acteristic timescale. In this formulation forλhigh < 1/2 the power-law model is less parsimo-

nious than the AR1 model, because it has one extra parameter,λhigh. Statistically speaking, the

power-law model is a semi-parametric model, because it describes time series only partially (in

our case its low-frequency variability), whereas the AR1 model is formally a full parametric

model. Although implicitly the AR1 model is also semi-parametric, because, as we will show

below, it depends on time series aggregation time scale, i.e. whether monthly, annual, decadal

or whatever means are considered, which is somewhat similarto the high-frequency cutoff pa-

rameter. However in some applications, such as trend detection (see e.g.Smith, 1993), only the

low-frequency variability is important, which motivates the use of a semi-parametric model,

because for instance a full parametric model might be seriously affected by the high-frequency

variability. It has been shown byGranger(1980); Caballero et al.(2002); Maraun et al.(2004)

that various generalizations of the AR1 model can approximate the power-law model for fre-

quency ranges which exclude the zero frequency.

One important point, which some researchers miss, is that long-range correlations necessar-
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ily lead to temporal power-law behaviour, but not the other way around. Temporal power-law

behaviour could be caused by either the Joseph effect, whichcomes from the Old Testament

story about Joseph, where Egypt would experience seven years of feast followed by seven

years of famine, and represents long-range correlations, or the Noah effect, which refers to

another Old Testament story when the God caused it to rain upon the Earth for forty days and

forty nights, and represents fat (power-law) tails of the underlying probability density func-

tion (Mandelbrot and Wallis, 1968). A simple test to distinguish between these two effects

is to compare the Hurst exponent estimates for the original and for a shuffled version of the

time series. Because shuffling destroys serial correlations and preserves the distribution, it

removes the Joseph effect, but leaves the Noah effect. It hasbeen shown in several studies

(e.g.von Storch and Zwiers, 1999) that surface temperature and total ozone (with monthly and

coarser temporal aggregation), which are two of the three variables we focus on here, are ap-

proximately normally distributed in time. Thus, their potential power-law behaviour should

be attributed to long-range correlations — the Joseph effect. Consistently, we have found that

when we randomize in time the time series of surface temperature, free atmosphere air temper-

ature, and total ozone, the resulting estimates ofH are not distinguishable from 1/2, to within

the confidence of ourH estimation techniques (not shown). This points to the absence of the

Noah effect. The next question is if an observed Joseph effect is physical or an artefact of data

inhomogeneities, which, as we will discuss, are known to lead to power-law behaviour (see

Berton(2004); Rust et al.(2008) and Chapter5 of the thesis).

Power-law behaviour has been reported in globally and hemispherically averaged surface

air temperature (Bloomfield, 1992; Gil-Alana, 2005), station surface air temperature (Pelletier,

1997), geopotential height at 500hPa (Tsonis et al., 1999), temperature paleo climate proxies

(Pelletier, 1997; Huybers and Curry, 2006) and many other studies (see TableA.1 for a more

complete historical list of relevant studies). However only a few of these studies have per-

formed quantitative tests to determine if the power-law model is superior to the AR1 model.

Those who have (Stephenson et al., 2000; Percival et al., 2001) find that both models demon-
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strate similar scores for the goodness-of-fit tests employed. BothStephenson et al.(2000) and

Percival et al.(2001) conclude that century long time series are not long enough to clearly

demonstrate the superiority of one model over the other. In contrast, in most of the empirical

power-law model studies in all fields including climate science the only criteria used to test the

validity of the power-law model is the fact that the estimated Hurst exponent is significantly

greater than 1/2 (e.g.Willinger et al., 1999). We will start with this somewhat naive assump-

tion in Chapter3 and then progress to more sophisticated approaches to distinguish between

time series models in Chapter6.

With the discussion of parsimony in mind, we base much of our analysis in this

thesis on the AR1 and the power-law model for the following reasons: (a) they are

the most parsimonious red-noise models (a process with a power-law spectrum some-

times is also called a pink noise); (b) they give a lower and anupper bound on

climate persistence (see Chapter6); (c) at the moment the AR1 is the most com-

monly used climate noise model, for instance it is extensively used in the two most

influential recent climate assessments (Intergovernmental Panel on Climate Change, 2007;

World Meteorological Organization, 2007); (d) the power-law model is probably the second

most cited statistical model of natural climate variability (see TableA.1). Unlike some of the

literature cited in TableA.1, nowhere in the thesis do we claim that power-law behaviour is

universal on all time scales. Instead, we useSPL(λ) to provide a sense of how quickly power

builds towards lower frequencies on annual to multidecadalscales. Regions wherêH = 0.5

(the flat spectrum limit) might be well described by either model, while regions wherêH is

closer to 1 (the1/f limit) are candidates for true power-law behaviour.

In this thesis we will mainly use temperature variability torepresent climate variability. We

employ temperature because it is probably the best observationally constrained and physically

understood climate variable. To set the stage for our analysis of the modern temperature record,

we would like to start with Fig.1.1, which is Fig. 2 inHuybers and Curry(2006). It shows

a compilation of power spectra of various temperature records, predominately derived from
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paleo-proxies. The time scales extend from two days to several hundred thousand years. The

extratropical records have larger variance than the tropical ones. It can be argued that the power

spectra shown in Fig.1.1have at least three scaling (power-law like) regimes: subannual, from

one year to about hundred years, and longer than hundred years. In this thesis we mainly deal

with the second regime.

Huybers and Curry(2006) suggested that the scaling regime on scales longer than hun-

dred years could be related to the Milankovitch cycles. However one can imagine a simpler

world without the Milankovitch cycles. What would the powerspectrum of temperature be in

such a world? Would it saturate at low frequencies or would itmaintain the slope (in log-log

coordinates) inferred for the annual-to-centennial band?At this stage of the climate science

development we can not definitely answer these questions. Itis hard to separate the effect

of the Milankovitch cycles from the internal climate variability in existing paleo records (e.g.

Wunsch, 2004) and there is not yet enough trust in climate model paleo simulations. Therefore

we should consider both of the above mentioned possibilities for the unobserved low frequency

part of the spectrum, which are the limits stationary time series might tend to.

Answers to the above questions are essential for trend detection. The assumption that

climatic power spectra saturate after a certain low frequency is the current standard practice

(e.g. Intergovernmental Panel on Climate Change, 2007; World Meteorological Organization,

2007). However many studies, which reported power-law like increase of temperature power

spectra, in particular Fig.1.1, shed doubt on this assumption. Alternatively, if one wantsto

stay on a conservative side, i.e. to assume a strong natural climate variability, the assumption

that temperature power spectra increase by a power-law as frequency tends to zero is not un-

reasonable. In this case the power-law fit obtained using observed variability on interannual to

multidecadal time scales can be extrapolated to zero frequency by keeping the Hurst exponent

constant. Apart from trend detection a power-law fit to a specific frequency range is useful as a

parsimonious tool for intercomparison of temporal variability on specific time scales between

different observational products and climate model simulations (see Chapters 5-6).
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Figure 1.1:(Adopted fromHuybers and Curry(2006)) A combination of spectral estimates obtained using in-

strumental and proxy records of surface temperature variability, and insolation at 65◦N. The more-energetic spec-

tral estimate is from high-latitude continental records and the less-energetic estimate from tropical sea surface

temperatures. Highlatitude spectra are estimated from Byrd, Taylor and GISP2 ice-coreδ18O; Vostok and Dome

C ice-coreδD; Donard lake varve thickness; Central England Temperature; and a Climate Research Unit’s (CRU)

instrumental compilation. From low latitudes ODP846 marine sediment-core alkenones; W167-79, OCE205-103,

EW9209-1, ODP677 and ODP927 calciteδ18O; PL07-39 and TR163-19 Mg/Ca; ODP658 foram assemblages;

Rarotonga coral Sr/Ca; and the Climate Analysis Center and CRU instrumental compilations are used. Temper-

ature spectral estimates from records of the same data type are averaged together. Power-law estimates between

1.1-100 and 100-15,000 year periods are listed along with standard errors and indicated by the dashed lines. The

sum of the power-laws fitted to the long- and short-period continuum are indicated by the black curve. The vertical

line-segment indicates the approximate 95% confidence interval, where the circle indicates the background level.

The mark at 1/(100 years) indicates the region mid-way between the annual and Milankovitch periods.



CHAPTER 1. INTRODUCTION 11

One of the statistical characteristics of a time series is its decorrelation time scale, which

might be defined as follows

τD =

∫ ∞

−∞

C(t)dt, (1.8)

whereC(t) is a process autocorrelation function. Eq.1.8 is a continuous version of Eq. 17.5

in von Storch and Zwiers(1999). Stochastic processes can be classified as short-memory

and long-memory processes. A short-memory process, for instance an ARK process, has a

summable ACF and therefore a finite decorrelation time scale. In contrast, the integral of a

long-memory process ACF diverges, e.g. in the caseC(t) ∼ t2H−2, 1/2 < H < 1 for large

t, and therefore its decorrelation time scale is undefined. Thus, in the case an ARK model is

fitted to a particular time series its decorrelation time scale can be estimated using the ARK

model autocorrelation function, i.e.

τ̂D =

∫ ∞

−∞

CARK(t)dt. (1.9)

This approach for decorrelation time scale estimation is suggested, for instance, in

Bretherton et al.(1999); von Storch and Zwiers(1999). The ARK model decorrelation time

scale is unique, i.e. if the model was fitted to a time series ofmonthlymeans and the decorrela-

tion time scale is estimated using the model autocorrelation function to be equal, for example,

to 24 months, then the decorrelation time scale for theannualmeans of this time series should

be equal to 2 years according to the ARK model. We will apply the concept of decorrelation

time scale to a particular climatic time series below.

Let us illustrate an application of the ARK model together with the two limiting cases,

the AR1 and the power-law, by fitting the three models to the monthly mean Central England

Temperature (CET) anomalies time series (1659-1958). Herewe consider only the first 300

years of the CET record in order to avoid the effect of anthropogenic components, because our

focus is on natural climate variability.

In Fig. 1.2a we plot a multitaper spectrum estimator of the CET monthly mean anomalies

(black curve) together with the three fits to the spectrum. (This figure and much of the analysis
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Figure 1.2:Central England Temperature (CET, 1659-1958) (a) monthly means and (b) annual means

power spectrum estimators and their approximations. The black curve is a 5 sine tapers multitaper

power spectrum estimator (Section2.2.1). The red solid (dashed) curve is a spectral density of the

AR1 model fitted, using a maximum likelihood algorithm, to the CET monthly (annual) means time

series. The green solid (dashed) curve is a spectral densityof the best fitted, according to the Akaike

information criteria, autoregressive model (AR6 for monthly and AR4 for annual means) to the CET

monthly (annual) means time series. The power-law fit, estimated using the Geweke-Porter-Hudak

Estimator (see Section2.2.1) applied to the monthly means, is shown by the blue line. The spectral

density of the AR1 model fitted to the decadal means is shown bythe orange curve in panel (b). The

blue curve is the same in both plots. Also included are numerical estimates for the AR1 parameterφ

and its standard deviationsd(φ) (see Section 9.8 ofPercival and Walden, 1993) and the Hurst exponent

estimateĤ and its standard deviationsd(Ĥ) (seeMcCoy et al., 1998). The spectral and power-law

estimators are described in Section2.2.

in this thesis have been produced using an open-source package, PowerSpectrum, that I have

developed using the R statistical language during my Ph.D. study with the help of undergrad-
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uate student Josh Mayer. A manual for this package is included in the thesis as AppendixB.)

The methods employed in Fig.1.2are specified in the caption and the power-law fit and mul-

titaper methods will be described in Chapter2. Fig. 1.2a demonstrates that the AR1 spectral

density overestimates the CET power spectrum at high-frequencies and underestimates it at

low-frequencies, whereas the power-law, which also depends only on two parameters as does

the AR1, does a much better job.

According to the Akaike information criteria the best fit to the CET monthly mean anoma-

lies among autoregressive models is given by the AR6, which spectral density is shown by the

green solid curve in Fig.1.2a. It better approximates the CET spectrum than the AR1, but it

still underestimates it on time scales longer than 20 years.The decorrelation time scale for

the CET monthly mean anomalies estimated according to the definition given by the Eq.1.9is

equal to 3 months (the estimated AR6 autocorrelation function is nonnegative everywhere).

Let us now see what happens to the three models during the transition from the monthly

to annual means. The power spectrum of the CET annual means isplotted in Fig.1.2b by the

solid black curve. According to the AR1 model fitted the CET monthly mean anomalies the

year-to-year autocorrelation should be equal to0.026 ± 0.003 (see Section6.3.1for details).

Instead, the estimated year-to-year autocorrelation is0.19± 0.06, i.e. about seven times larger.

To obtain a reasonable fit for the annual means using the AR1 model one has to fit it again.

The spectral density of the newly fitted AR1 model is shown in Fig. 1.2b by the dashed red

curve. (We plot the spectral densities of the AR1 and the bestfit ARK model for the CET

annual means by the dashed curves to underline the fact that these fits are obtained by direct

fitting to the annual means). As for the monthly means the AR1 spectral density overestimates

a high-frequency and underestimates a low frequency part ofthe spectrum.

Akaike information criteria chooses the AR4 as the best fit autoregressive model for the

CET annual means. Its spectral density is shown by the dashedgreen curve in Fig.1.2b. It

is probably the best fit for the CET annual means power spectrum among the three models.

The decorrelation time scale estimated using the AR4 model fitted to the CET annual means is
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equal to 3 years (the estimated AR4 autocorrelation function is also nonnegative everywhere)

in contrast to the 3 months estimated using the monthly means. This fact hints that presumably

different physics work on monthly and annual time scales over Central England and that the

ARK model cannot capture the dependence of the decorrelation time scale on the temporal

aggregation scale (the AR6 model fitted to the monthly means predicted that the annual means

should be uncorrelated).

The spectral density of the power-law model, shown by the blue curve in Fig.1.2b, is

obtained just by truncating time scales shorter than 2 yearsfrom the corresponding spectral

density shown in Fig.1.2a. Thus an advantage of this model is that in contrast to the AR1 and

the best fit autoregressive model it does not have to be refitted each time the aggregation time

scale is increased and therefore it better captures the overall power spectrum shape.

Bloomfield and Nychka(1992) compared the estimated linear trend confidence intervals

based on white noise, AR1, AR2, AR8, power-law, and two versions of Wigley and Raper

(1990) analytically solvable energy balance model for globally averaged annual mean surface

air temperature anomalies time series. They found that the estimates based on the AR8, power-

law model, and a multibox energy balance model are close to each other and about four times

greater than the white noise based confidence interval and about 70% greater than the AR1 and

AR2 estimates. However the estimated trend was statistically significant relatively to any of the

above mentioned confidence intervals. We will develop the ideas ofBloomfield and Nychka

(1992) and apply them to a problem of ozone recovery detection in Chapter3. Estimates for

a globally averaged surface air temperature will be updatedand compared to those reported in

Intergovernmental Panel on Climate Change(2007) in Section6.5.

We have also fitted the AR1 model to the CET decadal means. Its spectral density is shown

by the orange curve in Fig.1.2b. It closely follows the spectral density of the AR4 model fitted

to the annual means. Therefore for the CET record the AR1 provides a good fit to the spectrum

only for the decadal means and it could be used, under the assumption of the CET spectrum

saturation near zero frequency, as a noise model for detection of a trend in the decadal means.
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Given this background, we will make the working assumption through much of the thesis

that the atmospheric general circulation might be well characterized by power-law behaviour

on interannual and longer time scales. We will revisit this assumption in Chapter6, in which

we will return to the question of the goodness of fit of each statistical model for observed and

simulated climate variability.

Unlike the Hasselmann model, the power-law model, which indicates temporal scaling be-

haviour rather than dependence on any particular timescale, has no simple established physical

interpretation. The possible origins of the power-law spectral behaviour (also called1/fβ

noise), which might be relevant to climate on annual to centennial time scales, are: aggrega-

tion of multiple scales (Granger, 1980; Caballero et al., 2002), in particular in self-organized

criticality type models (Rios and Zhang, 1999; Maslov et al., 1999), stochastically forced diffu-

sion equations (Pelletier, 2002; Fraedrich et al., 2004; Dommenget and Latif, 2008), nonlinear

stochastic differential equations (Naidenov and Kozhevnikova, 2000; Kaulakys and Alaburda,

2009), a sum of slowly decaying intermittent shocks (Cox, 1984; Parke, 1999; Mandelbrot,

2003), point processes (Davidsen and Schuster, 2002; Kaulakys et al., 2005), chaotic

Hamiltonian dynamics (Geisel et al., 1987; Zaslavsky, 2002), intermittent nonlinear maps

(Barenco and Arrowsmith, 2004; Miyaguchi and Aizawa, 2007), etc. By the aggregation of

multiple scales we mean that various physical processes, which have a wide range of charac-

teristic time scales and which comprise an internal climatevariability, can generate a power-

law like spectrum for a wide range of frequencies. We have demonstrated an example of such

mechanism above for the CET record.

One way to introduce multiple time scales into the climate system is through a vertical

diffusion of the ocean temperature.Dommenget and Latif(2008) coupled a comprehensive

atmospheric GCM to a simple ocean model mainly represented by the vertical diffusion equa-

tion. Thus their global climate model (ECHAM5-OZ) can be roughly approximated by the

following equation

c
dT

dt
= −γsurfT + kz∆zT + εsurf , (1.10)
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Figure 1.3: (Courtesy of Dietmar Dommenget) The mean spectrum of observed (black curve)

and simulated (green and cyan curves) midlatitudinal SSTs.The spectrum is averaged over all

grid points in the North Pacific and North Atlantic Oceans between 30◦N and 55◦N. The red

curve shows the spectral density of a fitted to the observations AR1 process.

whereT is an upper ocean layer temperature,c is the heat capacity of the ocean layer,γsurf is

the damping coefficient,kz is the exponentially decreasing with depth diffusion coefficient, and

εsurf is the atmospheric white noise forcing. The spectrum of a midlatitude sea surface temper-

ature (SST) from an ECHAM5-OZ 800 year long simulation is shown in Fig.1.3together with

the spectrum of observations and its AR1 fit and the spectrum the IPCC models mean. (We will

discuss the analysis of the IPCC simulations in Chapter6.) All the spectra but the AR1 grow

with the decreasing frequency at all time scales. In contrast, the AR1 spectrum saturates to a

constant after several years, which is consistent with the behaviour of mixed layer ocean mod-

els coupled to an atmosphere, but inconsistent with the behaviour of dynamical ocean models
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(Dommenget and Latif, 2002).

While the previous discussion briefly touches on some of the dynamical factors that might

underlie power-law like behaviour in climate, the purpose of this thesis is not to develop a

detailed dynamical theory of such behaviour. Instead, our main purpose is to test the robust-

ness of spectral slope estimation techniques and to use the most robust techniques to estimate

spectral slopes in observations and simulations.

Here we provide a brief overview of the thesis structure. Thefollowing two sections of the

Introduction provide a literature and applications overview. In Chapter2 we lay down theoret-

ical and methodological foundations for our work. In particular we compare two variants of

five different Hurst exponent estimators by means of Monte-Carlo simulations. Chapter2 also

describes analysis related to trend detection. Chapter3 deals with understanding and quantifi-

cation of low-frequency variability in total ozone. It describes a multilinear regression model

for the total ozone variability and measures the spectral steepness of the model residuals us-

ing Hurst exponent estimates obtained by two methods. Then these estimates are employed

to calculate the confidence intervals for the observed trendand the number of years required

to detect this trend, which represents an important application of the power-law analysis. The

Hurst exponent based confidence intervals are compared to the standard for climate literature

AR1 based confidence intervals and shown to be more conservative (larger). In Chapter4,

which begins the main focus of the thesis, we switch from total ozone to reanalysis free at-

mosphere air temperature (FAAT) and compare the five Hurst exponent estimators described

in Chapter2. We find that the estimators agree provided equal frequency ranges are chosen

and known high-frequency climate signals, such as the quasi-biennial oscillation, are filtered

out. In Chapter4 we also compare the Hurst exponents for the zonally averagedair tem-

perature with the zonally averaged Hurst exponents estimated for each grid point time series.

Chapter5 focuses on physical mechanisms giving rise to the FAAT spectral power buildup at

low-frequencies. It compares the results for reanalyses with several specialized simulations of

an atmospheric GCM and shows that the high values ofĤ on annual to decadal time scales are
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caused by atmosphere-ocean interaction in the tropical troposphere and by volcanic aerosols in

the tropical and subtropical stratosphere. The influence ofdata inhomogeneities, for instance in

the tropical upper troposphere and the southern midlatitudes, on FAAT spectrum steepness and

the benefits of power-law analysis for their detection and for general low-frequency variability

cross-validation are also presented in Chapter5. Surface air temperature derived from obser-

vational products and 17 climate models from the Coupled Model Intercomparison Project 3

archive is analysed in Chapter6. We compare the Hurst exponent estimates for the observed

and simulated temperature for various climate scenarios, temporal scales, and geographical re-

gions. As mentioned above, in Chapter6 we also evaluate the relative goodness-of-fit of the

AR1 and power-law models. The results demonstrate that the real world seems to fall between

the AR1 and power-law statistical models. Chapter7 summarizes and discusses main findings

and describes future work. AppendixA lists previous studies related to the power-analysis of

temporal climate variability. AppendixB is a manual of the PowerSpectrum package.

Most of the results described in my thesis have been already published. Thus the

results of Chapter3 have been published in (Vyushin et al., 2007), of Chapter 4 in

(Vyushin and Kushner, 2009), and of Chapter5 in (Vyushin et al., 2009). Appendix B of Chap-

ter3 has been submitted for publication in theJournal of Geophysical Research: Atmospheres.

Chapter6 represents a manuscript in preparation.

1.2 Literature Review

In the past half a century there were more than a thousand papers in mathematics, physics,

statistics, Earth and life sciences, social sciences, engineering, etc. dealing with the phe-

nomenon of temporal power-law behaviour. The website“A Bibliography on 1/f Noise”at-

tempts to collect all of them. In this Section, we review the statistical climatology literature on

this topic, which involves a range of methods that often provide inconsistent results. For refer-

ence, we provide in TableA.1 a list of several studies in which temporal power-law behaviour

http://www.nslij-genetics.org/wli/1fnoise/
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has been quantified. The columns of the table specify analysed variables, estimation methods,

the time scale range for which the Hurst exponent was estimated, a range of estimatedH, and

a reference.

It can be noticed from TableA.1 that the analysis originally started from studies of indi-

vidual time series and progressed to studies of hundreds of station time series and of gridded

data sets of individual observational products and climatemodels and then to intercomparison

of multiple observational products with climate model ensembles. However only a few studies

used more than one estimation method and varied frequency ranges. Detrended Fluctuation

Analysis (DFA) seems to be the most popular estimation method, especially in the past 15

years. The majority of the papers is devoted to surface air temperature (SAT) followed by pre-

cipitation, humidity and sea level pressure. Connections with the previous studies will be made

throughout the thesis.

The first three articles (Bloomfield, 1992; Bloomfield and Nychka, 1992; Smith, 1993),

which studied temporal power-law spectral behaviour in SATand its impact on trend detection,

did not attract much attention in the climate community. They found that, although a confidence

interval of a linear trend in globally averaged SAT is wider under a power-law assumption for

the residuals, the observed 20th century trend is still significant under this assumption. These

articles had relatively little impact, perhaps because their findings merely reinforced previous

results.

Several subsequent papers (e.g.Pelletier, 1997; Koscielny-Bunde et al., 1998) focused

on the power-law behaviour of SAT from station records and Antarctic ice cores.

Koscielny-Bunde et al.(1998) made a serious claim, a so-called “universality hypothesis”, that

all SAT time series have the same Hurst exponent equal to 0.65. This claim was based on

the analysis of just 14 stations, most of which were located in coastal areas in midlatitudes.

Govindan et al.(2002), who questioned the fidelity of general circulation modelson the basis

of their inability to reproduce the power-law behaviour in 6station SAT time series, stimu-

lated some controversy. The climate models showed an absence of long-range correlations, i.e.
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H = 0.5, while all the stations hadH ≈ 0.65. Global warming contrarians attracted attention

to this article (e.g.http://www.heartland.org, Richard Lindzen’s talks) by using it in their cri-

tique of climate models, all of which attributed the surfacewarming of the second half of the

20th century to anthropogenic emissions.

Using NCEP/NCAR reanalysis SAT and simulations of two climate models

Fraedrich and Blender(2003) and Blender and Fraedrich(2003) showed that the “uni-

versality hypothesis” is not valid. The Hurst exponent was found to be greater over ocean

than over land and therefore the comparison between individual stations and nearest grid

points of coarsely resolved climate models is not fair, because the latter does not necessarily

capture local climate conditions, especially in coastal areas.Fraedrich and Blender(2003) and

Blender and Fraedrich(2003) also demonstrated that the large scale spatial Hurst exponent

patterns are similar between the reanalysis and the models.However they also oversimplified

the situation by stating thatH = 0.5 for inner continental sites,H = 0.65 for coastal stations,

andH = 1 over the ocean.Vyushin et al.(2004) examined 20th century simulations of NCAR

PCM with 10 different combinations of anthropogenic and natural forcings. They concluded

that the simulations with a historical volcanic forcing provide model SATH close to the

observed ones over land and also increaseH over ocean, whereas the simulations without the

volcanic forcing underestimateH everywhere.

Table A.1 also refers to several studies that show that the Hurst exponent estimates for

observed SAT over land are likely affected by local conditions, such as regional land surface

types, and by possible inhomogeneities present in the data.Eichner et al.(2003) analysed

around a hundred stations and found that most of the SATH values fall between 0.6 and 0.7.

Kurnaz(2004) studied 384 stations in the western US and foundH estimates mainly between

0.55 and 0.65.Kiraly et al. (2006) estimatedH for more than 9000 stations around the globe

and found most of the values between 0.6 and 0.9.Kiraly et al. (2006) used shorter time scales

thanEichner et al.(2003) andKurnaz(2004), which could lead to the higher estimates ofH.

None of the above mentioned station studies found a dependence of theH estimates on station

http://www.heartland.org
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distance to the nearest coast or on altitude.Kurnaz (2004) has noticed that at least a part

of the spatial variability ofH over the western US might be explained by local land surface

types. Rust et al.(2008) analysed SAT from 24 European stations before and after removing

detected data inhomogeneities caused, for instance, by a relocation of the measurement station

or by installing a new type of shelter. They found that homogenization typically leads to a

reduction ofH estimates by 0.04-0.06. The sensitivity of the Hurst exponent estimates for

observed SAT to local conditions and to possible data inhomogeneities makes it difficult for

the current generation of coarsely resolved global climatemodels to reproduce the precise

spatial distribution ofH estimated for observed SAT.

Because of this controversy in the previous work in the field,we will focus in this thesis on

the large-scalepattern of theH distribution within observational products and climate model

simulations. A well characterizedH distribution is required before any physical theory for the

H distribution can be developed. At the time we began this work, we encountered several open

questions:

• How method-independent and robust2 are the observed and simulated spatial patterns of

H for SAT? This general question might be broken into more specific questions, such as

what is the sensitivity to:

– estimation methods, including the choice of a frequency range for which the esti-

mation is performed?

– the choice of an observational product or a climate model?

– the presence of radiative forcings and internal climate modes, such as ENSO?

– the presence of data inhomogeneities?

• What is the statistical significance of differences betweenresults?

• What are the spatial patterns of the power-law exponents forvariables other than SAT?

2In this thesis the word “robust” is used as a synonym of the word “stable” (insensitive to small perturbations)
and also as a synonym for “having a small variance” when it is applied to a statistical estimator.



CHAPTER 1. INTRODUCTION 22

• What is the ability of climate models to capture theH distribution for various variables?

• What are the underlying physical mechanisms leading to a growth of spectral power at

low-frequencies?

• Is there a true scaling in the SAT or any other climate variable’s temporal variability?

• What are the implications of the fact that climate variables’ power spectra can be well

approximated by a power-law?

In this thesis we will try to answer some of these questions.

1.3 Applications

Temporal power-law behaviour characterization has already been successfully applied to space-

time modeling of winds in Ireland for wind energy studies (Haslett and Raftery, 1989), to

weather derivatives pricing (Caballero et al., 2002), and to trend confidence interval estima-

tion (Smith(1993) and Chapter3 of this thesis). Recently it has been shown numerically that

long-range correlations qualitatively affect extreme value statistics, e.g. the distribution and

serial correlations of extreme events return intervals (see e.g.Bunde et al., 2005). The first

applications of these results to climate have been reportedalready (e.g.Zorita et al., 2008),

but many more are expected to appear. Such results and their applications are of significant

practical importance for national and regional policy, public health, agriculture, industry, in-

frastructure, insurance, etc., because it can be argued that accurate quantification of extreme

value statistics saves lives and money. Another field, wherepower-law spectral approximation

might be useful, is the studies of potential climate predictability (e.g.Boer, 2004). Here we

will summarize some of the above mentioned applications.

Haslett and Raftery(1989) used long-range temporal correlations to model wind velocity

at 12 sites in Ireland, which allowed them to accurately estimate the confidence intervals for

the annual mean generated wind energy. The basic idea is thatin the case that the time series
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Los Angeles

Figure 1.4: (Courtesy of Rodrigo Caballero) Autocorrelation function for Los Angeles SAT

anomaly time series with the observed data (circles) and fitsfor the ARFIMA(1,d,1) (solid

curve), AR3 (dashed curve) and AR20 (dotted curve) models.

autocorrelation function scales ass2H−2 for large time lagss then the standard error of the time

series sample mean scales asσ/N1−H , whereσ is the time series standard deviation andN is

the time series length. For the conventional case of short-memory processes, e.g. white noise

or AR1,H = 1/2 and we get a conventional dependence on the inverse of the square root of

N . However, whenH > 1/2 the standard error of the sample mean decays slower withN than

in the conventional case. Consequently it can be shown that the standard error of a linear trend

superimposed on long-range correlated time series scales as σ/N2−H (see e.g.Smith (1993)

and Section2.4of this thesis).

A weather derivative is a form of insurance against adverse weather; a relatively cold win-

ter is an example of adverse weather for natural gas consumers, whereas a relatively warm
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winter is adverse weather for natural gas suppliers. Trading of weather related securities, in-

cluding weather derivatives, began around 1997 and according to Weather Risk Management

Association reached a volume of around US$50 billion in 2006. Consider a weather deriva-

tive based on heating degree days (HDD), which are defined asHDDi = max(T ∗ − Ti, 0),

whereTi is the averaged temperature on dayi andT ∗ is a threshold temperature, usually 18oC

(Caballero et al., 2002). The heating degree days index is defined as a sum of heating degree

days over a certain period of lengthN , i.e.

I =

N
∑

i=1

HDDi.

The most important term in weather derivative price is

S =

∫ ∞

0

Q(I)P (I)dI,

whereQ(I) is a given payout function andP (I) is the heating degree days index probability

density function. Assuming thatI is second order stationary and thatP (I) is Gaussian we have

to estimate the mean and the standard deviation ofI to estimateS. The mean ofI is obtained

from the temperature climatology, whereas the equation forthe standard deviation ofI is more

elaborate:

σ2
I = σ2

T

(

N + 2

N
∑

k=1

(N − k)ρk

)

,

whereσ2
T is the standard deviation andρk is the autocorrelation function of the temperature

anomalies. Thus accurate estimation of the autocorrelations is very important for accurate

pricing of weather derivatives. Underestimation of the autocorrelations leads to underestima-

tion of a weather derivative and to a potential loss for its issuer.Caballero et al.(2002) found

that a statistical model with autocorrelation function decaying asymptotically by a power-

law, namely an autoregressive fractionally integrated moving average (ARFIMA(1,d,1),Beran,

1994; Taqqu, 2002) better captures a slow decrease of the observed daily temperature anoma-

lies autocorrelations than autoregressive models even of the 20th order and therefore provides

a more accurate estimate for a weather derivative price. An example of such slow autocorrela-

tions decrease is demonstrated in Fig.1.4. It plots an estimate of the autocorrelation function
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for Los Angeles SAT daily mean anomalies and its three approximations. AR3 and AR20 inter-

polate the first three and twenty autocorrelations respectively and then unsurprisingly quickly

decay to zero. In contrast, the ARFIMA(1,d,1) model, which is the ARMA(1,1) model forced

instead of white noise innovations by power-law innovations with the Hurst exponent equal to

d + 1/2, closely approximates the autocorrelation function on time scales up to 90 days and

possibly longer.

The idea of potential predictability was introduced to climate research byMadden(1976)

and later developed byZwiers(1987) andZwiers and Kharin(1998). Boer(2004) considered

several definitions of potential climate predictability, the basic idea of which is the ratio of a

measure of the low-frequency variability to that of the total climate time series variability, i.e.

p = σ2
L/σ2. We recall that time series variance is equal to the integralof its spectral density.

Therefore using a power-law approximation for the spectraldensity we can rewrite the equation

for p in the following way

p = (

∫ λL

−λL

bλ1−2Hdλ)/(

∫ 1/2

−1/2

bλ1−2Hdλ),

where0 < λL ≤ 1/2 is a threshold frequency between the low- and high-frequency variability.

Thus we get

p = (2λL)2−2H .

In two limiting casesH = 1/2 andH = 1 we havep = 2λL andp = 1 respectively andp

monotonically increases withH between these values. This explains the similarity between

the spatial distribution of thep estimates for surface air temperature shown in Fig. 5 from

Boer (2004) and of theH estimates shown in Chapter6. More detailed connections between

potential climate predictability studies and power-law temporal behaviour are outside the scope

of the thesis and might be a subject of future research.



Chapter 2

Methodological Basis

2.1 Introduction to long-range correlated processes

The theory of stochastic processes with long-range correlated increments was originated by

Kolmogorov in two short notes (Kolmogorov, 1940a,b) during his studies of turbulence. The

seminal paper ofMandelbrot and Ness(1968) developed many of their properties and intro-

duced the term “self-similar” to describe these processes.

There are at least two definitions of a self-similar process.The first one states that a real-

valued stochastic processY = {Y (t)}t∈R is self-similar with indexH > 0 if, for any a > 0,

{Y (at)}t∈R

d
= {aHY (t)}t∈R, (2.1)

where
d
= denotes the equality of the finite-dimensional distributions (Taqqu, 2002). The Hurst

exponent,H, comes in as a fundamental parameter governing the scaling properties of a self-

similar stochastic process. In this thesis we use increments of a self-similar process for model-

ing low-frequency natural climate variability. The increments are defined as follows

Xi = Yi − Yi−1, i ∈ Z. (2.2)

The autocovariance ofXi

γ(k) = cov(Xi, Xi+k) =
σ2

X

2

[

|k + 1|2H − 2|k|2H + |k − 1|2H
]

, k ∈ Z, (2.3)

26
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whereσ2
X is the variance ofXi, asymptotically decays by a power law (e.g.Beran, 1994)

γ(k) ∼ σ2
XH(2H − 1)|k|2H−2, as k → ∞. (2.4)

The increments of a self-similar stochastic process for1/2 < H < 1 have long-range cor-

related behavior, sinceγ(k) decays to 0 so slowly that
∑∞

k=−∞ γ(k) diverges. In the case

{Y (t)}t∈R is a Gaussian process and satisfies (2.1) it is called fractional Brownian motion and

the corresponding sequence{Xi}i∈Z is called fractional Gaussian noise.

The second definition of a self-similar process states that asecond order stationary se-

quence{Xi}i∈Z with zero mean and finite variance is called second order self-similar if its

autocovariance function is equal to that of fractional Gaussian noise (see Eq. (2.3)). One useful

property of a second order self-similar process is that its autocorrelation function is invariant

to temporal aggregation (Cox, 1984), e.g. its day to day autocorrelation is equal to month to

month autocorrelation, year to year autocorrelation, and so on. We will use this property in

Chapter6 to compare the performance of two competing statistical models.

Physicists prefer to work with a spectral domain analog of the autocovariance function,

namely the spectral density, due to the superior statistical properties of its estimates compared

to autocovariance estimates. The spectral density of the increment sequence,{Xi}i∈Z, of a

self-similar process scales by a power law in the vicinity ofthe origin

SX(λ) ∼ b|λ|1−2H , as λ → 0. (2.5)

A stochastic process with such spectral density for all frequencies is called a “pink” noise or

1/f noise (more correctly1/fβ noise) when1/2 < H < 2. Note that in the caseH ≥ 1

the variance of a process becomes infinite. In the caseH = 1/2 and relation (2.5) holds for

all frequencies we get a flat spectral density, which corresponds to a “white” noise process.

For H < 1/2 a 1/fβ noise turns into a “blue” noise. The blue noise hasβ < 0. Stochastic

processes withH < 1/2 are also called antipersistent.

Climatic time series usually have power spectrum (a spectral density estimate) with more

complicated structure than that described by a single power-law function. However numerous
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studies in the past two decades have shown that on interannual to centennial time scales cli-

matic spectra often have a single scaling regime with1/2 ≤ H < 1, i.e. either a flat spectrum

or a spectrum that corresponds to a class of long-range correlated processes. The processes

which spectral density grows at high-frequencies and then saturates are called short-memory

processes. Thus at low-frequencies short-memory processes’ H = 1/2. Typically such pro-

cesses can be well modeled by conventional autoregressive moving average (ARMA) models.

The next section provides an overview of statistical methods for estimating the parameters

b andH for a given time series. In Section2.3we describe and use Monte-Carlo benchmarking

to compare a suite of power-law estimation methods. The implications of LRC behavior for

estimation of trend uncertainties and the number of years todetect a linear trend are mathemat-

ically described in Section2.4. We provide a summary of this chapter in Section2.5. The ma-

terial in this chapter has been published in the Journal of Geophysical Research (Vyushin et al.,

2007) and in the Journal of Climate (Vyushin and Kushner, 2009).

2.2 Description and Tests of Power-law Estimators

Many methods for estimating the Hurst exponentH are documented in the literature and a sig-

nificant challenge in our analysis has been to reconcile the non-robust aspects of these methods.

In this and the following section we describe several of the documented methods, develop some

variants of our own, and characterize them using Monte-Carlo benchmarking. In Chapters 4-

6, we will apply the methods to observed and simulated temperature data. The methods are

summarized in Table2.1. They include time domain methods, and periodogram and multitaper

(spectral domain) methods. The Monte-Carlo benchmarking will show that all the methods

agree reasonably well for simulated pure power-law stochastic processes. But when we apply

the methods to observed data in Chapter4, we will find that the methods are sensitive in various

ways to the range of frequencies chosen and the filtering applied to the time series.
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Table 2.1: The Hurst exponent estimation methods considered in the thesis. HF stands for high

frequency and LF for low frequency.

Method HF cutoff LF cutoff Remark

DFA(t) sshort=18m slong=11y Kantelhardt et al.(2001)

DFA(a) sshort=18m slong=45y Vyushin and Kushner(2009)

GPHE(t) λhigh=1/18m λlow=1/15y (l = 2) Robinson(1995b)

GPHE(a) λhigh=1/18m λlow=1/45y (l = 0) Hurvich et al.(1998)

MTM GPHE(t) λhigh=1/18m λlow=1/15y (l = 2) McCoy et al.(1998)

MTM GPHE(a) λhigh=1/18m λlow=1/45y (l = 0) Vyushin and Kushner(2009)

GSPE(t) λhigh=1/18m λlow=1/15y (l = 2) Vyushin and Kushner(2009)

GSPE(a) λhigh=1/18m λlow=1/45y (l = 0) Robinson(1995a)

MTM GSPE(t) λhigh=1/18m λlow=1/15y (l = 2) Vyushin and Kushner(2009)

MTM GSPE(a) λhigh=1/18m λlow=1/45y (l = 0) Vyushin and Kushner(2009)

2.2.1 Spectral Methods

The spectral methods findH by estimating the spectral slope. These methods first calculate

an estimatêS(λ) from a finite-length time series of the true spectrumS(λ) and then find the

best power-law fit toŜ(λ). We consider two choices of spectral estimatorsŜ(λ): the peri-

odogram estimator (corresponding to the raw discrete spectrum) and the multitaper estimator

(Percival and Walden, 1993). For a time seriesX(t), t = 1, . . . , N , the periodogram estima-

tor is simply the square amplitude of the discrete Fourier transform divided by the time series

length:

Ŝ(p)(λj) =
1

N

∣

∣

∣

∣

∣

N
∑

t=1

X(t)e−i2πtλj

∣

∣

∣

∣

∣

2

, j = 1, . . . , [N/2], (2.6)
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whereλj = j/N and the square brackets denote rounding towards zero. The periodogram

is an asymptotically unbiased but inconsistent3 spectrum estimator, since its variance is not a

decreasing function ofN : periodograms, as illustrated by the gray curve in Fig.1.2, tend to

appear noisy in spectral plots.

Multitaper spectral estimation (Thomson, 1982) provides an estimated spectrum with rel-

atively reduced variance compared to the periodogram. It employs a set ofK orthogonal

“tapers”hk(t), k = 1, . . . , K, that is applied to the time seriesX(t). The multitaper spectral

estimate is given by

Ŝ(mt)(λj) =
1

K

K
∑

k=1

S
(d)
k (λj), j = 1, . . . , [N/2], (2.7)

where

Ŝ
(d)
k (λj) =

∣

∣

∣

∣

∣

N
∑

t=1

hk(t)X(t)e−i2πtλj

∣

∣

∣

∣

∣

2

, j = 1, . . . , [N/2], (2.8)

is thek-th direct spectral estimator. In this thesis we use sine tapers (Riedel and Sidorenko,

1995)

hk(t) =

√

2

N + 1
sin

[ kπt

N + 1

]

, t = 1, . . . , N. (2.9)

The number of tapers,K, used in geophysical applications usually ranges between 3and 5

(e.g.,Ghil et al., 2002; Huybers and Curry, 2006). We chooseK = 3 because of the large

number of time series analyzed.

It can be shown that the variance ofŜ(mt) is a factorK smaller than the variance of̂S(p)

for largeN . Thus multitaper spectra appear smoother in spectral plots; the smoothing effect is

evident in the multitaper spectral estimate shown by the black curve in Fig.1.2.

Given the spectral density estimatorŜ(λ), we find a power law fit toŜ(λ) of the form

f(λ; b, H) = b|λ|1−2H over a frequency rangeλlow ≤ λ ≤ λhigh, whereH is the Hurst ex-

ponent,b is a scaling factor, andλlow and λhigh are low and high cutoff frequencies. For

a review of these methods, known as spectral semiparametricestimation methods, see e.g.

3This is the only place in the thesis where the word “inconsistent” is used in a statistical sense. Everywhere
else it has its regular meaning.
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Moulines and Soulier(2002). We estimateb andH by minimizing

K(b, H) =
1

m − l

m
∑

j=l+1

k(Ŝ(λj), f(λj; b, H)), (2.10)

wherek(u, v) is the so called contrast function, which can be thought of asa distance between

functionsu andv. In the summation,l andm are indices related to the low and high-frequency

cutoffs:λlow = λl+1 andλhigh = λm.

The semiparametric power-law fits differ in their choice of contrast functionk(u, v). We

here consider the Geweke-Porter-Hudak estimator (GPHE,Geweke and Porter-Hudak, 1983)

with k(u, v) = [log(u)−log(v)]2, which corresponds to log-linear regression, and the Gaussian

semiparametric estimator (GSPE,Fox and Taqqu, 1988) with k(u, v) = log(u) + u/v, which

corresponds to a maximum likelihood estimator. GPHE is the best known and simplest of the

two methods; the optimalb andH can be found in closed form along with confidence intervals.

We use GPHE to obtain the CET power-law fit for the multitaper spectrum estimator in Fig.1.2;

the confidence intervals for GPHE with multitapering are found in McCoy et al.(1998).

GSPE is relatively more sophisticated andRobinson(1995a,b) has shown it to be superior

to GPHE in various ways. Its optimization is not in closed form but reduces to a standard one

dimensional numerical optimization procedure.Robinson(1995b) andHurvich et al.(1998)

show that GSPE has a factor ofπ2/6 ≈ 1.7 smaller asymptotic variance than GPHE [1/(4(m−

l)) vs. π2/(24(m− l)) for largeN ]. This property leads to practical advantages: in an analysis

of power-law behavior in stratospheric ozone (see Chapter3) it is found that GSPE yieldedH

estimates that are spatially smoother and more robust (havesmaller variance) than GPHE.

2.2.2 Time domain method: Detrended fluctuation analysis (DFA)

The DFA (Peng et al., 1993; Kantelhardt et al., 2001) time domain estimator ofH is, along

with GPHE, the best known power-law fitting technique and hasbeen applied widely in the life

sciences, the earth sciences and physics. DFA works as follows. First, a cumulative sum time

series is generated from the original time seriesX(t). The cumulative sum time series is then
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split into segments of sizes. Each of these segments is approximated by a least squares fitto a

polynomial of orderP , with P typically chosen to be between 1 and 5. The standard deviation

of the residual of each least-squares fit is then calculated for each segment and then averaged

over all the segments. This quantity is denotedF (s) and is calculated for segment sizess,

whereP + 2 ≤ s ≤ smax. The standard method is to takesmax = [N/4] (Kantelhardt et al.,

2001) but we will test a variant withsmax = N . The so-called “fluctuation function”F (s)

characterizes the noise at each time scales; if the spectral densityS(λ) ∼ λ1−2H for smallλ,

the fluctuation functionF (s) ∼ sH for larges (Taqqu et al., 1995; Heneghan and McDarby,

2000).

Given this, we determineH by least-squares linear regression oflog F againstlog s in the

rangesshort ≤ s ≤ slong (Peng et al., 1993; Kantelhardt et al., 2001), wheresshort andslong are

short and long timescale cutoffs that correspond to the highand low frequency cutoffs for the

spectral methods. For DFA3 (i.e. DFA withP = 3) we use a lower (high frequency) cutoff

scale ofsshort=18 months because it is only for longer timescalesF (s) for DFA3 might be

well represented by a power-law function (Kantelhardt et al., 2001). The choice ofslong will

be discussed in Section2.3.

DFA is relatively straightforward to implement and can be used to infer information about

the order of a trend of the time series. For example, a quadratic trend is effectively filtered out

by DFA with P > 2. But unlike the GPHE and GSPE spectral methods DFA is numerically

based and so lacks rigorous expressions for bias and confidence intervals estimates. Another

disadvantage of DFA, is that, to our knowledge, there is still no theory allowing to estimate

scaling factorb using DFA.

2.3 Benchmark tests of the estimator methods

Before applying the power-law fit methods to reanalysis climate data we benchmark the meth-

ods using Monte-Carlo tests of time series with known power-law behavior. These time series
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Figure 2.1: Absolute bias of the Hurst exponent estimators as a function of time series length

N . Synthetic time series were simulated by ARFIMA(0,0.3,0),i.e. the true Hurst exponent was

set to 0.8. Time series lengthN = 540 corresponds to the length of the monthly mean ERA40

data and is marked by a solid triangle. Panel (a) shows the results for the trimmed (t) version

of the methods and panel (b) for the all-frequency (a) version of the methods. See Table2.1

and Section2.2for a description of the methods.

are generated from autoregressive fractionally integrated moving average (ARFIMA) models,

which are linear models for power-law stochastic processes(Beran, 1994; Taqqu, 2002). By

convention, an ARFIMA(0,d,0) time series has Hurst exponentH = d+0.5 (that is, the power

spectrumS(λ) ∼ λ−2d). To mimic our climate data analysis, we take the ARFIMA timeseries

to represent monthly mean records and estimate the Hurst exponent for frequencies lower than

λhigh=1/(18 months). We chooseλhigh =1/(18 months) for consistency with DFA3.

We find thatH estimates in climate data are sensitive to the choice of frequency range,

and that this sensitivity is method dependent. This is a practical issue encountered when deal-

ing with time series that are not pure power-law stochastic processes with uniform behavior

across all timescales. Many of the standard applications ofpower-law estimates build in these

inconsistent ranges, for various reasons. For example, standard practice for DFA is to use

slong = [N/4], for periodogram spectral methods to useλlow = 1/N and for the multitapered
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methods to useλlow ≈ K/N (see Table2.1for references to each of these “conventional” meth-

ods). To test for the effect of these choices, we benchmark “all-frequency” (denoted “(a)”) and

“trimmed” (denoted “(t)”) versions of the methods. The all-frequency methods set the low-

frequency (long time scale) cutoff as low as possible. The trimmed methods cut off some of

the lowest frequencies. Table2.1 lists two versions of the methods we use, and in connection

with the table we note the following:

• The multitapered methods conventionally trim the lowest frequencies and the peri-

odogram methods conventionally use all frequencies. We here test trimmed and all fre-

quencies versions of all spectral methods.

• For DFA3, DFA3(t) with smax = slong = [N/4] is the conventional method

(Kantelhardt et al., 2001). We here test a version DFA3(a), whose time scale range is

consistent with the all frequencies spectral methods. DFA3(a) usessmax = slong = N .

We first test for the convergence of the magnitude of the estimators’ bias,< |Ĥ − H| >, as

a function of time series lengthN , whereĤ is the estimated value of the ARFIMA time se-

ries. Figs.2.1a and b plot< |Ĥ − H| > for the trimmed and all-frequency versions of the

five methods: DFA3, GPHE, MTM GPHE (i.e. multitapered GPHE),GSPE and MTM GSPE.

Here the angle brackets represent the ensemble mean over 10,000 realizations of the ARFIMA

model, forH = 0.8 and 270 ≤ N ≤ 900. We see that the DFA3(t) estimator converges

most slowly among the trimmed estimators, the periodogram spectral methods converge most

quickly among the all frequencies estimators and neither DFA3 nor the periodogram methods

are sensitive to the trimming. The convergence rate of the multitaper spectral methods falls

between the periodogram and DFA3 methods for the all frequencies estimators. The increase

in bias from tapering for the all frequencies cases is expected from general statistical princi-

ples: heavier smoothing, i.e. reduction of the variance from tapering, leads to an increase in

the bias (von Storch and Zwiers, 1999). The effect of including the additional low frequency

points degrades the convergence of the multitaper methods (Fig. 2.1b). This degradation is not



CHAPTER 2. METHODOLOGICAL BASIS 35

H

B
ia

s 
of

 th
e 

es
tim

at
ed

 H

0.5 0.7 0.9 1.1

−
0.

06
−

0.
02

0.
02

−
0.

04
0

(a)

DFA3
Periodogram GPHE
MTM GPHE
Periodogram GSPE
MTM GSPE

H
B

ia
s 

of
 th

e 
es

tim
at

ed
 H

0.5 0.7 0.9 1.1
−

0.
06

−
0.

02
0.

02
−

0.
04

0

(b)

DFA3
Periodogram GPHE
MTM GPHE
Periodogram GSPE
MTM GSPE

Figure 2.2: Bias of the Hurst exponent estimators as a function of the true Hurst exponent.

Time series length was fixed to 540, which corresponds to the length of the monthly mean

ERA40 data. The rest of the description is similar to Fig.2.1.

surprising because the tapering impacts low frequencies most strongly. The impact of trimming

on the spectral methods is consistent with theory (Hurvich et al., 1998; McCoy et al., 1998) but

to our knowledge the robustness of DFA3 to changing fromslong = [N/4] to slong = N has not

been reported before.

Next we test how the estimators’ bias depends onH for N = 540, which corresponds to

the length of the monthly reanalysis time series analyzed inChapters 4-6. In Figs.2.2a and

b we plot the bias< Ĥ − H > over 10,000 realizations. All the methods provide accurate

estimates ofH, within the estimators’ standard deviation (see Fig.2.3). DFA3 exhibits the

largest bias among the trimmed estimators. This bias increases in magnitude with increasing

H and is robust to the trimming. The periodogram methods have the smallest bias, which is also
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Figure 2.3: Standard deviation of̂H averaged for each method in Table2.1over theH values

shown in Fig.2.2. The short and long dashed lines demonstrate the asymptoticconfidence

intervals for GPHE and GSPE respectively.

robust to the trimming. The bias of the trimmed multitaper methods is comparable to that of

the periodogram methods (Fig.2.2a). But the bias increases for the all frequencies multitaper

methods, indicating again that the multitaperH estimate degrades when all frequencies are

included (Fig.2.2b).

Fig. 2.3shows the relative robustness of the different methods as measured by the estimator

standard deviation

√

〈

(

Ĥ− < Ĥ >
)2

〉

averaged across values ofH from 0.5 to 1.1. In this

figure we also include the largeN asymptotic estimates for periodogram GPHE and GSPE;

these estimates are independent ofH. DFA3 exhibits the least spread and is not sensitive to

the trimming. However all the spectral methods have smallervariance when all frequencies are

included. Among the spectral methods the periodogram GSPE(a) exhibits the least spread. The
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decrease of thêH variance gained from multitapering is outweighed by the increased variance

from the necessary trimming. The experimental standard deviations are consistently greater

than the asymptotic ones (shown by the dashed lines in Fig.2.3) for the time series length of

540, but the asymptotic results provide useful constraintsin many applications.

Thus all the methods provide valid approaches to power-law fitting of pure power-law

stochastic processes, but each method has distinct characteristics:

• DFA3 is robust (has the smallest variance) but has relatively large biases.

• GSPE is more complicated than GPHE but produces more robust estimates than GPHE

and less biased estimates than DFA3.

• The standard trimmed MTM methods (MTM GPHE(t), MTM GSPE(t))are less ro-

bust than the corresponding standard all frequencies periodogram methods (GPHE(a),

GSPE(a)).

2.4 Trend variance and the number of years required to de-

tect a trend

For the purpose of trend analysis memory is an issue. It is hard to distinguish a trend from nat-

ural variability if a time series is strongly serially correlated. The importance of taking into ac-

count LRC in trend analysis was first realized byBloomfield(1992) during his studies of trends

in surface air temperature. He proposed to use an ARFIMA model, introduced independently

by Granger and Joyeux(1980) andHosking(1981), for modeling temperature residuals. The

idea is to fit the residuals, obtained after filtering out deterministic components of temperature

time series such as seasonal cycle and trend, by ARFIMA and knowing analytical expression

for the variance of ARFIMA calculate the variance of the trend. Bloomfield’s approach can be

classified as sequential full parametric estimation, sinceone first estimates and filters out the

trend and then estimates the parameters of ARFIMA. Joint full parametric estimation, in which
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the trend and the parameters of ARFIMA are estimated simultaneously, was theoretically jus-

tified by Robinson(2005) and applied to Northern Hemisphere SAT anomalies byGil-Alana

(2005). The disadvantage of full parametric approach for trend detection studies is a problem

of choosing the correct order of the ARFIMA, which itself is an issue (Beran et al., 1998). An

appealing way to overcome the issue of model selection was proposed bySmith (1993). He

showed that it is important to fit only the low frequency part of the residuals’ spectrum using an

asymptotic form of LRC spectral densityb|λ|1−2H with only two unknown parameters. Then

the variance of the trend can be calculated based on these twoparameters. We will follow this

direction in Chapters3 and6. This approach is classified as semiparametric since it requires

estimation only of a part of the whole parameter set.Smith and Chen(1996) advocate for

joint estimation of the trend and the parametersb andH. Unfortunately this theoretically more

correct approach is still missing a solid mathematical foundation. Therefore in this thesis we

implement sequential semiparametric estimation, i.e. we first estimate and filter out the trend

from the time series and then findb andH for the residuals using semiparametric estimation.

The general theoretical justification of this method is given by Yajima(1988).

2.4.1 Estimation of trend variance through autocovariance

Let us consider a general linear estimator

ξ̂ =
n

∑

t=1

l(t)Y (t). (2.11)

The variance of̂ξ may be expressed through autocovarianceγ of Y (t)

σ2(ξ̂) =
n

∑

t=1

n
∑

s=1

l(t)l(s)γ(t − s). (2.12)

For example for the statistical model

Y (t) = α + βy(t) + X(t), (2.13)
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wherey(t) is a certain explanatory variable (covariate) with zero mean andX(t) is a noise, the

ordinary least squares slope estimatorβ̂ and its varianceσ2(β̂) may be written as follows

β̂ =

∑n
t=1 y(t)Y (t)
∑n

t=1 y2(t)
, (2.14)

σ2(β̂) =
γ(0)

∑n
t=1 y2(t) + 2

∑n−1
k=1 γ(k)

∑n−k
j=1 y(j)y(j + k)

(
∑n

t=1 y2(t))2
, (2.15)

wheren is the time series length,γ(t) is the residuals’ autocovariance function.

2.4.2 Approximation of autocovariance by exponential function

The most conventional way to proceed from this point is to usean exponential approximation

for the residuals’ autocovariance functionγ(t) for deriving an asymptotic formula forσ(β̂). In

principle one can use an estimate ofγ(t) to numerically evaluateσ(β̂). However due to poor

sampling properties of autocovariance function estimatesstatisticians prefer to use approxi-

mations of the sample autocovariance function. To obtain anexponential approximation for

the autocovariance function one can fit an autoregressive model of the first order (AR1) to the

noise. Symbolically AR1 can be written as follows

X(t) = φX(t − 1) + ε(t), (2.16)

where−1 < φ < 1 is the month-to-month autocorrelation (lag-one autocorrelation coeffi-

cient) andε(t) is a Gaussian white noise. Let us review some of the AR1 model properties.

Autocovariance function of AR1 decays exponentially

γAR1(t) = σ2
Xφ|t|. (2.17)

Spectral density of AR1

SAR1(λ) =
σ2

X

2π

1 − φ2

|1 − φe−iλ|2
→ σ2

X

2π

1 + φ

1 − φ
, as λ → 0, (2.18)

whereσX is standard deviation ofX(t). Equations2.17and2.18are analogous to equations1.2

and1.3.
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In the case we assume an AR1 model for the monthly resolved residualsX(t) and take

y(t) = t − (n + 1)/2, we have

σAR1(ω̂) ≈ σX

N3/2

√

1 + φ

1 − φ
, (2.19)

whereω̂ = 12β̂ is the estimate of the linear trend in unit(Y)/year andN is the length of a

considered period in years (Weatherhead and Coauthors, 1998) .

2.4.3 Approximation of autocovariance by power law function

The alternative approach is to use a power law approximationof the sample autocovariance

function whose coefficients can be obtained by various estimation methods (see Section2.2).

Substitutingγ(0) = σX
2, γ(t) = at2H−2 for t > 0, andy(t) = t − (n + 1)/2 into (2.15) and

performing asymptotic derivations we obtain

σ2(β̂) ≈ 36a(1 − H)

H(1 + H)(2H − 1)
n2H−4. (2.20)

Scaling factors of the autocovariance and the spectral density, a andb, related as follows (e.g.

Smith, 1993)

a =
πb

Γ(2H − 1) sin(πH)
. (2.21)

Using this relation and some properties of the gamma function we can rewrite the asymptotic

formula forσ(β̂) in terms ofb andH

σLRC(β̂) ≈ B(b, H)nH−2, (2.22)

whereσLRC(β̂) is the standard deviation of the estimated trend under the LRC hypothesis and

B(b, H) =

√

72bπ(1 − H)

(1 + H)Γ(2H + 1) sin(πH)
. (2.23)

Formulas (2.19) and (2.22) were used in Fig.3.8b and Fig.3.9.
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2.4.4 Estimation of trend variance through spectral density

Asymptotic formulas for the standard deviation of a regression coefficient (slope) can be de-

rived only in cases when the explanatory variabley(t) has a relatively simple form such as a

linear trend. In other cases one can estimate the standard deviation of the slope only numer-

ically. From the numerical point of view it is more convenient to express the autocovariance

through the spectral density. Thus replacing in formula (2.12) the autocovariance by its expres-

sion through the spectral density ofX(t)

γ(k) =

∫ π

−π

eiλkSX(λ)dλ, (2.24)

we obtain

σ2(ξ̂) =

∫ π

−π

U(λ)SX(λ)dλ, (2.25)

where

U(λ) =

∣

∣

∣

∣

∣

n
∑

t=1

l(t)eiλt

∣

∣

∣

∣

∣

2

. (2.26)

The important thing is that for the case of a trend estimator almost all weight of the function

U(λ) is concentrated near the origin. Therefore for calculationof the trend uncertainty a high

frequency part of the spectrum is not important. This fact motivates the implementation of

semiparametric (local) instead of full parametric (global) statistical models (Smith, 1993). For

example in order to calculate the slope uncertainty in the casey(t) = EESC(t) − EESC(t),

whereEESC(t) is the equivalent effective stratospheric chlorine time series, and the spectral

densitySX(λ) can be approximated by a power-lawb|λ|1−2H we use the following equation

σ2(β̂EESC) = b

∫ λhigh

−λhigh

UEESC(λ)|λ|1−2Hdλ, (2.27)

whereλhigh = π/12 - high-frequency cutoff and

UEESC(λ) =

∣

∣

∣

∣

∣

n
∑

t=1

EESC(t) − EESC(t)
∑n

s=1(EESC(s) − EESC(s))2
eiλt

∣

∣

∣

∣

∣

2

.

Therefore we could neglect intra-annual variability (frequency ranges(−π/2,−π/12) and

(π/12, π/2] of the total ozone anomalies. Formula (2.27) was used in Fig.3.8a.
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2.4.5 Estimation of the number of years required to detect a trend

The number of years required to detect a trend of specified magnitude|ω| under the hypothesis

that X(t) can be well described by an AR1 model according toWeatherhead and Coauthors

(1998) is as follows

N∗
AR1 ≈

[(2 + zp)σX

|ω|

√

1 + φ

1 − φ

]

2/3

, (2.28)

whereN∗
AR1 is the number of years required to detect a trend of specified magnitude|ω| (in

particular one may chooseω = ω̂) andzp is thep-percentile of the standard normal distribution.

In this setup the probability to reject the test hypothesis of zero trend when it is true is equal to

5% and the probability to accept the hypothesis of zero trendwhen it is false is equal top. The

number of years required to detect a linear trend of specifiedmagnitude|ω| depends on three

key parameters in the AR1 case (ω, σ, φ).

From (2.22) we derive an analogous formula for the case whenX(t) is long-range correlated

n∗
LRC ≈

[(2 + zp)B(b, H)

|β|
]

1
2−H

. (2.29)

In the above formulan is expressed in basic time units of the time series, i.e. daysor months,

andβ has a unit “unit(Y)/(basic time unit)”. Let us now transformthis formula to the form

which is conventionally used in ozone trend analysis when the time to detect the trend has

units of years and the trend has units of DU/year. Letn = TN andβ = ω/T , whereT is the

length of year in basic time units, i.e.T = 365 or T = 12, N is the length of the time series in

years, andω is the trend in DU/year. Then from (2.29) we get

N∗
LRC ≈

[(2 + zp)B(b, H)

|ω|T 1−H

]

1
2−H

. (2.30)

This formula is somewhat similar to formula (2.28). However, due to the fact that the exponent

in formula (2.30) is greater than the corresponding exponent in formula (2.28), trend error bars

tend to be larger under the LRC hypothesis than under the AR1 hypothesis. This means that

in the presence of long-range correlations we have to observe the time series longer in order to

detect the trend with the same statistical significance. Thenumber of years required to detect
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a linear trend of specified magnitude|ω| in the case whenX(t) is LRC also depends on three

key parameters: magnitude of the trend|ω|, spectral scaling factorb, and the Hurst exponent.

It is worth noting that formula (2.30) is a generalization of formula (2.28). Thus for monthly

resolved time series (T = 12) under assumption of AR1 model we get that

HLRC → HAR1 =
1

2
, bLRC → bAR1 =

σ2
X

2π

1 + φ

1 − φ
, (2.31)

and BLRC → BAR1 =
√

24πbAR1. Therefore formula (2.30) reduces to formula (2.28).

The numerical validation of this fact can be noticed by looking at the Southern Hemisphere

mid- and high latitudes in Figs.3.4b, 3.6b, 3.8, 3.9, and3.11. The Hurst exponent converges

to 0.5 as one moves from 30◦S to 60◦S as shown in Figs.3.4b and3.6b. Simultaneously the

LRC trend error bars converge to the AR1 errors bars in Figs.3.8and3.9, and the number of

years to detect the trend under LRC hypothesis converges to the one under AR1 hypothesis in

Figs.3.10a and3.11.

2.5 Conclusions

We have described two variants of the five Hurst exponent estimation methods. We have tested

them using synthetic power-law time series (ARFIMA(0,d,0)) of various length andH. In the

case when the lowest frequencies are trimmed DFA3 shows the largest bias, whereas when all

the lowest frequencies are retained the DFA3 has a bias similar to the MTM methods and larger

than the periodogram methods. However DFA3 has 1.5-2 time smaller variance comparing to

other methods. By default DFA sets the largest used time scale equal to a quarter of the time

series length. But we have demonstrated that this time scalerange can be extended up to the

time series length, because the statistical properties of DFA H estimate almost do not change

in this case. These results, to our knowledge, represent a more comprehensive test of the time-

domain and spectral-domain methods than has been previously carried out. It is reassuring that

DFA3, which is widely used but not well justified, performs relatively well. Indeed, we find

that DFA3 is one of the best Hurst exponent estimators. Overall the methods have shown a good
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performance and final selection of the two best methods, which we recommend to employ in

similar studies, will be done in the next chapter based on theresults of the methods’ application

to zonal mean tropospheric and stratospheric air temperature. Some of the Hurst exponent

estimators, we have described and tested in this chapter, will be used in each of the following

chapters. The equations for trend confidence interval estimation derived in Section2.4will be

used for estimation of total ozone trends uncertainty through out Chapter3 and for improving

an IPCC result in the conclusions of Chapter6.

We have assembled the code written in the R statistical language for the

power spectrum estimators, Hurst exponent estimators, andtheir Monte-Carlo bench-

marks described in this section into a package, which can be found at the URL

http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum0.3.tar.gz. The pack-

age, called PowerSpectrum, also includes functions for fitting AR1 model in the spectral do-

main, for estimation of a linear trend and its confidence intervals based on white noise, AR1,

and power-law assumptions for the residuals, for cross spectrum estimation, for a spectral

goodness-of-fit test, for Portmanteau tests, etc. In order to make our results easily reproduced

and extended, we have made this package open source. A manualfor this package is included

in the thesis as AppendixB.

http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum_0.3.tar.gz


Chapter 3

Total ozone trend detection

3.1 Introduction

The problem of the long-term decline of stratospheric ozone(e.g. Stolarski et al., 1992;

World Meteorological Organization, 1988) and, in recent years, of ozone recovery (e.g.

Newchurch et al., 2003; Reinsel et al., 2005) has received wide attention from both the sci-

entific community and the general public. Statistical models, particularly those based on

multilinear regression methods, are commonly used for the detection of ozone changes (see

SPARC (Stratospheric Processes and their Role in Climate)(1998) and references therein).

Once a statistical model is established, it can be combined with a fitting method, for example

ordinary least squares, to find the best fit to the observations. Ozone variations are typically rep-

resented as a combination of a long-term trend, natural periodic components (seasonal cycle,

solar cycle, quasi-biennial oscillation, etc.), and a random component (the residuals). Knowl-

edge about autocorrelations of the residuals of the regression model is required for a correct

estimation of the model parameter uncertainties. Since theearliest ozone assessments (e.g.

World Meteorological Organization, 1988) it has been assumed that the residuals can be de-

scribed by an AR1 model, i.e. that the residual for a given month is proportional to the residual

for the previous month plus random uncorrelated noise. In this case the autocorrelation func-

45
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tion of the residualsC(t) declines exponentially, i.e.C(t) ∼ exp(−at), and the time series do

not contain any significant long-term components other thanthose included explicitly in the

model. In terms of equation1.2a = − log(φ), whereφ is a lag-one autocorrelation. Once the

model parameters and their uncertainties have been estimated, they can be used, for example,

to calculate the number of years required to detect a trend ofa given magnitude at a given level

of statistical significance (e.g.Weatherhead and Coauthors, 1998, 2000; Reinsel et al., 2002).

As we stated in Introduction chapter, geophysical time series do not always follow the AR1

model, however. They commonly exhibit slow autocorrelation function decay, which can be

approximated by a power law, i.e.C(t) ∼ |t|2H−2, where0.5 < H < 1. There are also indi-

cations that ozone time series are not always well describedby the AR1 model.Toumi et al.

(2001) considered daily total ozone records from three west European stations (Arosa, Ler-

wick, and Camborne) and calculated Hurst exponents for deseasonalized and detrended time

series (assuming a linear trend). All three time series exhibited Hurst exponents of about 0.78.

However the authors did not remove the QBO- and solar cycle-related components, which

could affect the estimate of the Hurst exponent.Varotsos and Kirk-Davidoff(2006) considered

total ozone time series for large spatially averaged areas,but also removed only the seasonal

cycle and the linear trend. The estimates of the Hurst exponents were calculated using DFA1

(see Section2.2 for DFA details). (The DFA filters out polynomial trends whose order is

less than the order of the DFA applied.) The Hurst exponents for tropical ozone estimated by

(Varotsos and Kirk-Davidoff, 2006) were about 1.1, which corresponds to a spectral slope of

-1.2 (in log-log coordinates). If we took the naive view thatthis value characterized the entire

spectral range, this would imply an infinite spectral variance, since the integral of the spectral

density would diverge. But as we will see later, strongly negative spectral slopes are charac-

teristic of restricted frequency ranges of geophysical data, and these slope estimates can be

affected by periodic signals not removed from the ozone timeseries in the Varotsos and Kirk-

Davidoff analysis, like QBO and the solar cycle (seeJánosi and Müller(2005) and Chapter4).

In recent years it has been established that a sizable fraction of the long-term ozone changes
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over northern midlatitudes can be related to long-term changes in dynamical processes (e.g.

Weiss et al., 2001; Randel et al., 2002; Hadjinicolaou et al., 2005). Estimation of ozone trends

requires a proper accounting for the effects of these processes on ozone. One approach is to

add more terms to the statistical models used for trend calculations (e.g.Reinsel et al., 2005;

Dhomse et al., 2006). However, the physical mechanisms behind these dynamicaleffects on

ozone are often not well understood and therefore it is difficult to account for them properly in

a statistical model (see further discussion in subsection3.3.1). Furthermore such non-periodic

components cannot be predicted and thus such models cannot be used to estimate future be-

haviour. An alternative approach is to consider the contribution of dynamical processes to

ozone fluctuations to be part of the noise. In this case, the noise may be LRC and a proper

estimation of the residuals’ autocovariance is required.

Here we investigate the possible existence of LRC behaviourin total ozone time series and

study its effects on ozone trend significance estimates and on the number of years required

for trend detection. In this chapter we take a somewhat naiveviewpoint that significantly

greater than 1/2 values of̂H imply the LRC behaviour. Later, in Chapter6 we will modify this

viewpoint by demonstrating that this condition is necessary but insufficient. Here we employ

spectral methods of Hurst exponent estimation instead of DFA because they provide a neces-

sary estimate of the spectral scaling factorb (see subsection2.2.1and Section2.4) together

with an estimate ofH, which are needed for trend confidence interval evaluation.An introduc-

tion to the theory of LRC processes has been given in Section2.1. Some details of the spectral

methods for Hurst exponent estimation have been presented in Section2.2. Formulas elucidat-

ing the implications of LRC behaviour for trend uncertainties and for the number of years to

detect linear trends have been derived in Section2.4. The plan of the chapter is as follows. The

total ozone data used in the analysis are described in Section 3.2. Section3.3is devoted to the

statistical models and their estimates of the noise. We review the theoretical background in sub-

section3.3.1. Long-term trends in total ozone are represented in terms ofeither the equivalent

effective stratospheric chlorine (EESC) time series or a piecewise-linear trend (PWLT) with
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a turning point in early 1996. Evidence of spectral power growth of several total ozone time

series, including station data, is given in subsection3.3.2, while for TOMS/SBUV zonal aver-

ages it is quantified in subsection3.3.3and compared with AR1 behaviour. The significance of

the long-term ozone decline is compared under two differentassumptions for the ozone resid-

uals (AR1 vs. LRC) in subsection3.4.1. The recent positive ozone trend, and the number of

years required to detect this trend under the two different assumptions, are compared in sub-

section3.4.2for both the EESC and PWLT derived trends. Some results for TOMS/SBUV

gridded total ozone data, showing longitudinal structure,are discussed in Section3.5. The

main results are summarized and their implications discussed in Section3.6. The material in

this chapter has been published, along with relevant material in Chapter2, in the Journal of

Geophysical Research (Vyushin et al., 2007).

3.2 Data

The merged satellite data set used here is prepared by NASA and combines version 8 of

TOMS and SBUV total ozone data (Frith et al., 2004; Stolarski and Frith, 2006); it is avail-

able fromhttp://hyperion.gsfc.nasa.gov/Data_services/merged/. The

data set provides a nearly continuous time series of zonal and gridded (10◦ latitude by 30◦

longitude grid) monthly mean total ozone values between 60◦S and 60◦N (higher latitudes

have data gaps during polar night) for the period from November 1978 to December 2005.

Here we consider only the period from January 1979 to December 2005. Some data, particu-

larly the data for August-September 1995 and May-June 1996,were missing. Zonal averages

estimated from ground based total ozone measurements (Fioletov et al., 2002) were used to fill

the gaps. In addition, Dobson monthly mean total ozone values from three sites (Mauna Loa,

Buenos Aires, and Hohenpeissenberg) were also analyzed here. These data are available from

the WMO World Ozone and UV Radiation Data Centre (http://www.woudc.org).

http://hyperion.gsfc.nasa.gov/Data_services/merged/
http://www.woudc.org
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3.3 Analysis of long-range correlations in total ozone time

series

3.3.1 Statistical methods

A typical statistical model describing observations of monthly mean total ozone can be ex-

pressed in the form

Ω(t) = a0 + A(t) + Q(t) + S(t) + T (t) + X(t), (3.1)

where Ω(t) denotes total ozone,t is the number of months after the initial time (taken

here as January 1979),a0 is the mean,A(t) represents the seasonal cycle,Q(t) the quasi-

biennial oscillation (QBO),S(t) the solar cycle,T (t) the long-term trend, andX(t) are

the residuals (noise). We usedA(t) =
∑4

j=1 a2j−1 sin(2πjt/12) + a2j cos(2πjt/12),

Q(t) = (a9 + a10 sin(2πt/12) + a11 cos(2πt/12))w30(t) + (a12 + a13 sin(2πt/12) +

a14 cos(2πt/12))w50(t), andS(t) = (a15 + a16 sin(2πt/12) + a17 cos(2πt/12))S107(t), where

w30(t) andw50(t) are the equatorial zonally averaged zonal winds at 30 and 50 hPa respec-

tively (http://www.cpc.ncep.noaa.gov/data/indices/), andS107(t) is the solar

flux at 10.7 cm (http://www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/icarus/).

We use winds at both 30 and 50 hPa, because they are about 90 degrees out of phase,

which allows a better representation of the QBO signal in total ozone. Thesin(2πt/12)

and cos(2πt/12)) terms inQ(t) and S(t) represent seasonal dependence. To describe the

long-term trend in total ozone, two commonly used approaches are the equivalent effective

stratospheric chlorine time series,EESC(t) (http://fmiarc.fmi.fi/candidoz/)

(Guillas et al., 2004; Newman et al., 2004; Fioletov and Shepherd, 2005; Stolarski and Frith,

2006; Weatherhead and Andersen, 2006), and a piecewise-linear trend with a turning point

that is typically chosen in the second half of the 1990s. Similar to Reinsel et al.(2005) and

Miller and Coauthors(2006) we choose a turning pointn0 in January 1996, because of the

changes in ozone behaviour and in the EESC tendency in the late 1990s. Therefore, we use ei-

http://www.cpc.ncep.noaa.gov/data/indices/
http://www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/icarus/
http://fmiarc.fmi.fi/candidoz/
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therT (t) = (a18+a19 sin(2πt/12)+a20 cos(2πt/12))EESC(t) orT (t) = a18T1(t)+a19T2(t),

whereT1(t) = t, for 0 < t ≤ n, wheren is time series length (324 in our case), and

T2(t) =











0, 0 < t ≤ n0,

t − n0, n0 < t ≤ n.
(3.2)

In order to provide analytical expressions for trends and their uncertainties, we use rel-

atively simple trend models similar to those used byReinsel et al.(2002) andReinsel et al.

(2005). In addition, one of key principles of statistical modeling is that the model be parsimo-

nious, namely that it involve a minimum number of free parameters (von Storch and Zwiers,

1999). The more parameters are introduced, the easier it is to fit the time series and there is a

risk that an improved fit may be fortuitous. This is particularly critical when the time series are

very limited, as is the case with total ozone. We therefore restrict ourselves to Eq. (3.1) and

do not, for example, introduce 12 coefficients for each component in Eq. (3.1) to more fully

account for seasonal dependences. We have checked that using 12 coefficients for the QBO

and/or trend terms does not alter the statistical properties of the residuals.

To test the impact of the El Chichon and Mt. Pinatubo volcaniceruptions we included

SAGE aerosol optical depth observations into our regression model. For each eruption the

aerosol loading was added to the model with the time lag that maximized the correlation be-

tween total ozone residuals and the aerosols. It was found that inclusion of volcanic aerosols

only slightly decreases the Hurst exponent north of 30◦S. Qualitatively, the Hurst exponent

distribution and other results stay the same.

There are several reasons why we included the solar cycle andQBO into Eq. (3.1)

but not other explanatory variables, for example, EP flux or tropopause height (see also

World Meteorological Organization, 1998). First, ozone changes could affect temperature and

other dynamical variables. Clearly, the solar cycle is not affected by ozone. In addition, QBO

and solar variations are reasonably well-explained variations. EP flux forcing variations are not

- they are part of the climate noise. If LRC manifest themselves through the EP flux forcing and

we remove this forcing, then we just transfer the problem to that of understanding LRC in EP
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flux forcing. Furthermore, the correlation between ozone and dynamical variables could be dif-

ferent at different spectral intervals. The ozone-temperature correlation is a good example: the

two fields are positively correlated on daily and monthly time scales but negatively correlated

on an annual basis during major volcanic eruptions (Randel and Cobb, 1994). So, the relation-

ship between ozone and such variables cannot be described bya single regression coefficient.

This is not an issue for QBO and solar forcing because the variability of the QBO and the solar

signal is located in a narrow spectral range. The QBO and solar cycles create maxima in the

ozone time series power spectrum that could affect LRC estimates (Jánosi and Müller, 2005).

Since we also want to estimate the number of years that is required to detect future changes, we

have to make some assumption about the statistical model terms. We cannot predict the future

solar and QBO signals, but we have their power spectra estimates. So, their impact on the

future trend errors can be estimated. It is hard to make any predictions of dynamical variables

or even about their spectral characteristics.

The parametersaj of the model (3.1) are unknown coefficients identified by multilinear

regression on the total ozone observations using least squares. The autocovariance of the resid-

ualsX(t) affects the variance ofaj and should be properly accounted for. Certain assumptions

are typically made about the behaviour ofX(t). For example, the AR1 model assumes that

X(t) = φX(t − 1) + ε(t), whereε(t) are independent normally distributed random errors.

Similarly, the ARK model assumes thatX(t) = φ1X(t−1)+ . . .+φkX(t−k)+ε(t). The pa-

rameterφ can be estimated after estimation of the parametersaj as the lag-one autocorrelation

coefficient of the residuals, or it can be included in the model (3.1) directly and estimated si-

multaneously with the parametersaj . In this thesis we follow the first approach, i.e. sequential

estimation, because the simultaneous approach is still missing a solid mathematical foundation

for a semiparametric power-law model, which will be described below. We estimate lag-one

autocorrelation coefficient using the Yule-Walker method.

A different methodology is used if the autocorrelation function of X(t) decays by a power

law, i.e. C(t) ∼ |t|2H−2, where0.5 < H < 1. The methods we use here are based on the
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fact that long-range correlations (dependence) in the timedomain translate into a particular

behaviour of the spectral density around the origin. It follows from the Abelian theorem that if

the autocovarianceγ(t) ∼ |t|2H−2 ast → ∞, where0.5 < H < 1, then the spectral density

S(λ) ∼ b|λ|1−2H asλ → 0 (seeTaqqu, 2002), where by definition

S(λ) =
1

2π

∞
∑

t=−∞

γ(t)e−itλ.

In particular, the log of the spectral density is a linear function of log(λ) asλ → 0. In contrast,

the spectral density of an AR1 process is a constant functionof λ under the same conditions

(see Section2.4) and can be considered as a particular case of a more general power-law model.

Thus, as shown in Section2.4, the results we obtain for the LRC model are generalizationsof

those for the AR1 model and reduce to the latter whenH tends to 0.5.

The GPHE and the GSPE are the two methods used in this chapter to estimate the two

parameters,b andH, of the spectral density approximation, as described in Section 2.2. We

recall that GPHE estimatesb andH by means of a linear regression of thelog(periodogram)

on log(λ) and that GSPE is a maximum likelihood estimator (see Section2.2for an estimators

description). The variances of the coefficientsaj of the statistical model (3.1) can be expressed

as a function ofb andH, as discussed in Section2.4. Furthermore, they can be used to esti-

mate the number of years that is required to detect a statistically significant trend of a given

magnitude (see Section2.4).

The integral of the autocorrelation function from negativeinfinity to positive infinity, which

is one way of quantifying a decorrelation time, is finite for an AR process and infinite for an

LRC process. This means that, in contrast to the case with an AR process where the limit

t ≫ tdecorrelation is well-defined, two observations of an LRC process do not become statis-

tically independent in the limit of arbitrarily large time separations (von Storch and Zwiers,

1999). Among many possible mechanisms generating LRC behaviour, which have been listed

in Section1.1, we think that at least two might be relevant for total ozone.One is based on the

aggregation of an infinite number of AR1 processes whose timescales satisfy certain condi-

tions (Granger, 1980). In practice, apparent LRC behaviour may obtain from the aggregation
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of a finite number of AR1 processes whose longest time scale iscomparable to the length of

the time series (Maraun et al., 2004). This is a definite possibility in the case of ozone time

series where the records are comparatively short. A second possible origin of LRC behaviour

is a sequence of shocks or pulses with stochastic magnitudesand durations (Parke, 1999). Vol-

canic eruptions could play such a role, although as noted earlier a direct link between aerosol

loading and total ozone for the time period 1979-2005 does not appear to be associated with

LRC behaviour. The attribution of LRC behaviour in total ozone is a separate topic which is

not addressed here.

3.3.2 Illustrations of long-range correlations

Fig.3.1shows time series of the residualsX(t) for Eq. (3.1), obtained by filtering out the mean,

seasonal cycle, QBO, solar flux, and EESC trend, for zonal andmonthly mean total ozone in

various latitude bands from 1979-2005. The corresponding Hurst exponentsH, estimated

using the GSPE (see Section2.2 for an estimator description), are also indicated. The latitude

bands correspond to local maxima or minima ofH (see Fig.3.4b below), and have been chosen

to illustrate the different temporal behaviour that is exemplified by large or small values ofH.

The time series with larger values ofH tend to exhibit greater low-frequency variability with

more instances of strong apparent “trends” over decadal timescales. Values ofH that are close

to 0.5 correspond to behaviour that is not significantly different from AR1, while the larger

values ofH are clear indicators of LRC behaviour.

To illustrate how the Hurst exponent is calculated by the GPHE we show power spectra

of monthly mean total ozone residuals for three ground-based stations, Mauna Loa (19.5◦N,

155.6◦W), Buenos Aires (34.6◦S, 58.5◦W), and Hohenpeissenberg (47.8◦N, 11.0◦E), as well as

for the corresponding nearest grid points and zonal averages from the merged satellite data set.

For the purpose of comparison the period was limited to 1979-2005 for all data sets. Several

months with missing data were filled by linear interpolationin time. Fig.3.2 shows the peri-

odograms in log-log coordinates of the total ozone residuals for station data (panels (a,b,c)),
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Figure 3.1: Monthly and zonal mean total ozone residuals in DU obtained by filtering out the

seasonal cycle, QBO, solar cycle, and EESC fit for various 5◦ latitude bands, as indicated. The

Hurst exponent for each time series is indicated in the top left corner of each panel. Note the

differences in the extent of low-frequency behaviour in thetime series with different Hurst

exponents.

for the nearest grid points from the merged data set (d,e,f),and for the corresponding zonal av-

erages from the merged data set (g,h,i). The periodograms show an increase in variability with

a decrease of frequency, which as noted earlier is a manifestation of LRC behaviour. The solid

straight lines are the best linear fits of the periodogram in log-log coordinates, corresponding

to power law approximations in ordinary coordinates for thefrequency bandwidth 1-27 years.
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Figure 3.2: The periodograms in log-log coordinates for monthly mean total ozone residuals

obtained by filtering out the seasonal cycle, QBO, solar flux,and EESC fit. The solid lines are

the best linear fits, while the dashed lines represent the onesigma uncertainty envelope. Panels

(a), (b) and (c) show ground-based station data as indicated, panels (d), (e) and (f) the merged

satellite data from the grid point nearest to the corresponding station, and panels (g), (h) and

(i) the corresponding zonal averages from the merged satellite data.

The dashed straight lines represent the one sigma uncertainty envelope defined by the standard

errors for slope and intercept. The linear fit of the periodogram represents the calculation of

the Hurst exponent using the GPHE (see Section2.2 for details). Apart from panel (e) all

slopes are statistically significantly less than zero, meaning thatH is statistically significantly

greater than 0.5 (H = (1 − slope)/2). Therefore eight out of the nine power spectra shown

reveal that the corresponding total ozone residuals are LRC(and the slopes for panels (b) and

(e), which should be comparable, agree within the error bars). The zonal average time series

typically have slightly greater Hurst exponents than the grid point time series from the same
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Figure 3.3: Autocorrelation function for two sample latitude bands (solid circles) of monthly

and zonal mean total ozone residuals obtained by filtering out the seasonal cycle, QBO, solar

flux, and EESC fit, together with that of various approximations (lines). The autocorrelation

function of the best-fit AR1 model is shown by the short dashedcurve, that of the AR3 model

by the long dashed curve, and that of the best-fit power law function by the solid curve. The

50◦-55◦N latitude band (panel (a)) shows clear evidence of LRC, while the 50◦-55◦S latitude

band (panel (b)) shows no such evidence.

latitudinal belt since the average of several time series tends to have a Hurst exponent equal to

the maximum of the Hurst exponents of the individual time series (Granger, 1980). Additional

evidence that this is the case for total ozone will be provided in Section3.5.

To illustrate why it can be important to allow for LRC behaviour in a statistical model,

Fig. 3.3a shows the autocorrelation function of the residualsX(t) for 50◦-55◦N as well as the

fits produced by various statistical models. In this case,H is significantly different from 0.5.

Fig. 3.3a shows that the AR1 model (the short dashed curve) does not fitwell the autocorre-

lation function of the total ozone residuals (the solid circles) for periods longer than several

months. Even using higher order AR models such as AR3 (the long dashed curve) does not
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improve the fit. The most parsimonious approximation of the solid circles is a simple power

law functiona|t|2H−2 (the solid curve). Autocorrelation functions of the AR1 andAR3 mod-

els rapidly decay, while the power law function decays slowly and follows the autocorrelation

function of the original time series.

However as seen in Fig.3.1 there are latitude bands where LRC behaviour is not evident.

For example over 50◦-55◦S, whereH is not significantly different from 0.5 (see the appropriate

panel of Fig.3.1 and Fig.3.4b), the power law function does not provide a superior fit to the

autocorrelation function of the total ozone residuals, whereas a reasonably good fit is provided

by the AR3 model (Fig.3.3b). Thus, it is important to establish where LRC behaviour is

evident and where it is not (see a more general discussion on this topic in Chapter6).

3.3.3 Quantification of long-range correlations in zonallyaveraged ozone

Ozone trend studies are typically performed using zonally averaged data. Part of the motivation

for this lies in the approximate zonal symmetry of the stratosphere and thus of quantities such

as ozone trends. By taking a zonal average of the data longitudinal fluctuations (eddies) are

removed, thereby reducing the standard deviation (noise level) of the time series while keeping

the zonally symmetric trend unchanged. Thus zonal averaging usually leads to an increase

of the signal to noise ratio. However a drawback of zonal averaging for trend detection is an

increase in the strength of serial correlations (see also Section 4.5).

In this subsection we systematically analyze the zonally averaged total ozone residuals in

the merged satellite data set as a function of latitude. Whatis considered a residual depends

on how the trend contribution is defined. We thus consider (and compare) two versions of

the residuals, which represent the trend contribution in different ways: one with the EESC

function and the other with the PWLT. The residuals are then analyzed using the AR1, GPHE,

and GSPE approaches. The GPHE and GSPE were applied to the frequency bandwidth from

1 to 27 years. The estimates for the square root ofb andH for the case where the EESC

trend is removed are shown in Fig.3.4a and b, respectively. The GPHE and GSPE provide
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Figure 3.4: Estimates of various statistical parameters for monthly and zonal mean total ozone

residuals obtained by filtering out the seasonal cycle, QBO,solar flux, and EESC fit, shown as

functions of latitude. (a) Standard deviationσ calculated by AR1 (red circles) and the square

root of the parameterb calculated by GPHE (violet circles) and GSPE (blue circles)applied to

the frequency bandwidth 1-27 years. (b) Month-to-month lag-one autocorrelationφ calculated

by AR1 (red circles) and the Hurst exponents calculated by GPHE (violet circles) and GSPE

(blue circles). The violet (blue) dashed lines in panel (b) indicate the 95% confidence intervals

for GPHE (GSPE). Thus, time series for which the Hurst exponents lie above the dashed lines

may be roughly considered as LRC at the 95% significance level(see the comment about

conditions of LRC existence in Section3.1).

consistent estimates for the Hurst exponents, although GPHE is more spatially noisy. (This

lends further support to our conclusion, following the analysis in Chapter4, that GSPE is

preferable to GPHE because it typically produces results with reduced disagreement between

spatially proximate time series.) All but one Hurst exponent shown in Fig.3.4b is less than one,
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Figure 3.5: Same as Fig.3.4, but with GPHE and GSPE applied to the frequency bandwidth

2 months-27 years. Note the different vertical scale in panel (b) compared with Fig.3.4. This

analysis yields spurious results, namely Hurst exponents greater than unity (indicating non-

stationary behaviour). The figure is included to highlight the importance of choosing an appro-

priate bandwidth (see text for further discussion).

i.e. the corresponding time series are second order stationary with finite and time-independent

mean and standard deviation. The estimates ofσ (standard deviation of the residuals) and

φ (lag-one autocorrelation of the residuals) for the AR1 model are also shown in Fig.3.4.

Although
√

b andσ, as well asH andφ, cannot be compared directly, they represent similar

quantities: the first pair is a measure of the variability of the residuals, while the second pair is

an indicator of the persistence in the time series. It is interesting to note that the maxima and

minima ofb andσ, as well as ofH andφ, tend to occur in roughly the same latitude bands.

The theory for distributions ofH estimated by GPHE and GSPE exists only for the asymp-

totic casem → ∞, wherem is the number of frequencies used, with some other additional
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Figure 3.6: Same as Fig.3.4, but with PWLT filtered out instead of EESC to describe the long-

term trend. The Hurst exponents are similar to those in Fig.3.4 in the Southern Hemisphere,

but are reduced in magnitude by about 0.1 in the Northern Hemisphere.

conditions [seeRobinson, 1995a,b]. Under these conditions the theorems proved by Robinson

state that the estimates ofH obtained by GPHE and GSPE are distributed normally with a

mean equal to the true value ofH and variances equal toπ2/24m and1/4m, respectively (see

also Section2.2.1). Therefore GSPE has a smaller asymptotic variance than GPHE by a factor

of π2/6. The values0.5 ± 1.96π/
√

24m and0.5 ± 1.96/(2
√

m) are indicated in Fig.3.4b by

dashed violet and blue lines, respectively. All Hurst exponent estimates located above these

lines may be considered as greater than 0.5 with 95% statistical significance, meaning that the

corresponding time series may be parsimoniously describedby an LRC model. This applies to

just over half the latitudes analyzed. There is clear evidence of LRC at certain latitude bands,

while at other latitude bands the autocorrelation behaviour is not significantly different from

the AR model. Interestingly, the latitudinal structure of LRC behaviour is quite different in the
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Figure 3.7: (a) Monthly and zonal mean total ozone anomaliesfor the 55◦-60◦N latitude band

obtained by filtering out the seasonal cycle, QBO, and solar flux, together with the EESC

(solid) and PWLT (dashed) fits. (b) The corresponding total ozone residuals when the PWLT

fit is removed. Panel (b) may be compared directly with the EESC-based residuals shown in

Fig. 3.1f.

two hemispheres.

It should be emphasized that the LRC methods discussed here are based on asymptotic ap-

proximations at low frequencies and therefore they could besensitive to the frequency interval

used for the parameter estimation: a wider interval may yield a bias in the estimates, while a

narrower interval results in larger uncertainties of the estimates. Fig.3.5 is similar to Fig.3.4,

except that GPHE and GSPE were applied to the entire frequency bandwidth from 2 months to

27 years. (The results for the AR1 model (red circles) are identical to those shown in Fig.3.4.)

The Hurst exponents shown in Fig.3.5b are almost everywhere greater than one, i.e. they be-

long to a nonstationary range. However, Fig.3.2g,h,i demonstrates that the periodograms for

the zonal averages have steeper slopes for the bandwidth 2 months-1 year than for the band-
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width 1 year-27 years. Therefore the fact that the calculated Hurst exponents are greater than

one in this case is a result of including the high frequency (sub-annual) part of the spectrum in

the fit. We will further discuss the importance of the frequency range choice in Chapter4.

To investigate the dependence of the residuals on the definition of the long-term trend, the

calculations were repeated but with the residuals defined byusing the PWLT in Eq. (3.1) instead

of the EESC time series. The results are shown in Fig.3.6, and may be compared with Fig.3.4.

In the Southern Hemisphere the statistical parameters (andtheir latitudinal variations) are very

similar in the two cases. However there is a distinct change in the Northern Hemisphere,

where the Hurst exponents decrease by about 0.1. Over a broadregion of the midlatitudesH

is no longer significantly different from 0.5, implying the loss of LRC in this region; and at

the highest sub-polar latitudes, the extent of LRC behaviour is strongly reduced. Inspecting

Fig. 3.1f, corresponding to 55◦-60◦N, it is evident that the major low-frequency variation in

the residual defined relative toEESC(t) projects strongly on a piecewise-linear trend with a

turning point in early 1996, and its contribution to the residual is therefore substantially reduced

when the PWLT function is used to define the long-term trend. This is illustrated by Fig.3.7,

which shows the ozone time series for 55◦-60◦N (with mean, solar, QBO and seasonal cycle

filtered out) together with the EESC and PWLT fits (panel (a)) and the PWLT residual (panel

(b)); the latter may be compared with the EESC residual shownin Fig. 3.1f.

3.4 Significance of long-term trends in zonal-mean total

ozone

3.4.1 Long-term ozone decline

The statistical model used to describe the noise does not affect the mean trend estimated by

Eq. (3.1), but it does affect the estimated uncertainty of the trend.The regression coefficient

of the total ozone anomalies on the EESC time series is shown in Fig. 3.8a as a function
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of latitude for the period 1979-2005. The magnitude of the regression coefficient basically

displays the sensitivity of total ozone in that latitude band to the stratospheric abundance of

ozone-depleting substances as represented by the EESC. Forcomparison with other estimates

the result is presented in units of DU/year for the time period 1979-1995, during which time the

EESC time series is nearly linear with a net change of approximately 1.0 ppb of chlorine. As is

well known, the long-term ozone decline has a minimum in the tropics and increases towards

the poles, with larger values in Southern Hemisphere as compared with Northern Hemisphere

midlatitudes. The strong increase of the Southern Hemisphere trend with latitude is indicative

of the large influence of Antarctic ozone loss on the SouthernHemisphere midlatitude long-

term decline (e.g.Chipperfield, 2003; Fioletov and Shepherd, 2005).

The error bars in Fig.3.8a indicate the 95% confidence intervals estimated under AR1 and

LRC hypotheses concerning autocorrelation of the residuals. The trend uncertainties under the

LRC hypothesis are evidently wider than those under the AR1 hypothesis. The differences

are particularly large whereH exceeds 0.7, which from Fig.3.4b occurs basically everywhere

north of 35◦S. In this region the standard deviation of the trend under the LRC hypothesis is

up to 1.5 times larger than that under the AR1 hypothesis. This broadens the range of tropical

latitudes over which the trend is not significant at the 95% level, and substantially increases

the already large trend uncertainty in northern middle and high latitudes. In contrast, the Hurst

exponent is about 0.5-0.6 over southern middle and high latitudes, i.e. the residuals have

relatively weak long-range correlations, and in this region the trend uncertainties estimated

under the LRC and AR1 hypotheses are nearly identical.

Fig. 3.8b shows the corresponding results for the linear trend from 1979-1995 (the declin-

ing part of the PWLT function). The means and standard deviations (including the differences

between the latter for LRC and AR1 hypotheses for the residuals) are very similar to those

obtained using the EESC fit in Fig.3.8a, except in northern middle and high latitudes where

the PWLT-derived trend is larger. This is consistent with the behaviour already noted in sec-

tion 3.3.3, where the strong decline in total ozone in northern middle and high latitudes in the
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Figure 3.8: (a) Regression coefficients of monthly and zonalmean total ozone anomalies (ob-

tained by filtering out the seasonal cycle, QBO, and solar flux) on EESC for the period 1979-

2005. (b) The first (declining) slope of the PWLT fit for the period 1979-1995. The regression

coefficients in panel (a) are scaled so as to be comparable to the linear trend over 1979-1995;

thus, the two panels represent respectively the EESC-basedand PWLT-based estimates of the

long-term ozone decline. The 95% confidence intervals shownare calculated under two alter-

native assumptions: AR1 (light grey region) and LRC (dark grey region bordered by the dashed

curves.). Details of the confidence-interval calculationscan be found in Section2.4.

early 1990s and its subsequent increase in the late 1990s is interpreted as LRC noise relative to

the EESC time series, but contributes to the long-term decline (with weaker LRC behaviour in

the noise) under PWLT.



CHAPTER 3. TOTAL OZONE TREND DETECTION 65

3.4.2 Recent and future ozone increase

The EESC time series can be well approximated by two linear functions, with the first slope

equal to about 1 ppb/decade for the period before the EESC maximum in the second half of

the 1990s and the second slope equal to about -0.34 ppb/decade for the period after the EESC

maximum.

Therefore it is possible to estimate the expected rate of ozone increase after the late 1990s

from the EESC fit: it is just the regression coefficient plotted in Fig.3.8a multiplied by -0.34.

The result is shown in Fig.3.9by the dotted-dashed curve. For comparison, the positive trend

estimated from PWLT, which is the observed linear trend overthe time period 1996-2005, is

shown by the diamonds connected by the solid curve together with its uncertainties under both

the AR1 and LRC hypotheses. The two trends are fairly similarin southern middle and high

latitudes, although the uncertainties on the observed trends encompass zero. In northern middle

and high latitudes, however, the observed linear trend is roughly four times the EESC-predicted

trend, and is actually statistically significant over 40◦-50◦N according to the PWLT estimate of

the noise. Thus, once again in northern middle and high latitudes we have a major difference

between the analysis provided by the EESC and PWLT-based models, although this difference

is within the 95% error bars.

Once the analytical relation between the trend uncertaintyand the length of the time series

is known, it is possible to estimate the number of years required to detect a certain trend with

a given error, and its dependence on location. This is important from a practical point of view

for designing an ozone monitoring strategy. The number of years required to detect future

ozone trends was studied by (Weatherhead and Coauthors, 2000) using the AR1 model. Here

we expand on Weatherhead et al.’s results by including an allowance for LRC behaviour. The

methods and formulas used here to calculate the number of years are described in Section2.4.

We first consider the number of years required to detect a trend of a given magnitude, with-

out reference to the magnitude of the expected trend. With the noise estimated relative to the

EESC trend function (as in Fig.3.4), the number of years required to detect a 1 DU/year trend
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Figure 3.9: The EESC-based linear trend calculated for the declining part of EESC (solid

circles connected by the dashed line) is compared with the second (increasing) slope of the

PWLT fit for the period 1996-2005 (diamonds connected by the solid line), the latter with 95%

confidence intervals calculated under the AR1 (light grey region) and LRC assumptions (dark

grey region bordered by the dashed curves).

in zonal mean total ozone at the 95% significance level under the AR1 and the LRC hypothe-

ses is shown in Fig.3.10a. The latitudinal structure primarily reflects that of the variability

(cf. Fig. 3.4a), with the shortest number of years being required in the tropics (30◦S-30◦N).

However the impact of long-term memory (cf. Fig.3.4b) mainly accounts for the hemispheric

asymmetry in Fig.3.10a, increasing the number of years required in northern as compared with

southern latitudes. In those latitude bands for which the Hurst exponents are below 0.7, both

the AR1 and LRC models give consistent estimates of the number of years required; whereas

in other latitude bands, and especially in northern subtropical and high subpolar latitudes, LRC

behaviour considerably lengthens the time required to detect a given trend, by a factor of up to
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Figure 3.10: (a) The number of years required to detect a 1 DU/year trend at the 95% signifi-

cance level under the AR1 (red curve) and LRC assumptions (violet curve shows GPHE, blue

curve shows GSPE) applied to the frequency bandwidth 1-27 years of the monthly mean total

ozone residuals obtained by filtering out the seasonal cycle, QBO, solar flux, and EESC fit.

(b) The same as panel (a), but using the frequency bandwidth 2months-27 years for the LRC

estimates (the red curve is the same in both panels). Note thedifferent vertical scales in the two

panels. Panel (b) is a spurious result (cf. Fig.3.5), and is shown to highlight the importance of

choosing an appropriate bandwidth for the analysis.

1.5 or so.

If the noise is estimated according to the PWLT trend function (as in Fig.3.6), then the

number of years required to detect a 1 DU/year trend is virtually identical to that shown in

Fig.3.10a in the Southern Hemisphere, but is, as expected, reduced and closer to that estimated

from the AR1 model in the Northern Hemisphere (not shown).

Fig.3.10b shows the same estimates as in Fig.3.10a, except that in estimating the statistical
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parametersb andH under the LRC hypothesis, GPHE and GSPE were applied to the frequency

bandwidth from 2 months to 27 years (cf. Fig.3.5). The number of years in this case is

several times larger than for the proper bandwidth (1-27 years). We include Fig.3.10b here to

emphasize the importance of a correct bandwidth choice for Hurst exponent estimation under

the LRC model.

We now consider the latitudinal dependence of the expected trends, and estimate the num-

ber of years required to detect a statistically significant ozone increase if the positive trends are

those estimated in Fig.3.9 according to either the EESC or PWLT models. In both cases the

“detection” is here made under the assumption that the trendis independent of the past trend

(prior to 2000 for EESC, prior to 1996 for PWLT), and both AR1 and LRC estimates are com-

puted. Consider first the detection of the positive ozone trend expected from the EESC decline,

shown in Fig.3.11a. As was noted by (Weatherhead and Coauthors, 2000), southern middle

and high latitudes are the best places to detect ozone recovery according to the AR1 model; the

same is seen to be true for the LRC model. In the Northern Hemisphere, there appears to be

an optimal region for detection of ozone recovery around 30◦-40◦N; on either side, there is a

strong effect of LRC behaviour on the number of years required, especially at northern middle

and high latitudes where, according to the LRC model, it should take about 1.5 times longer to

detect the expected trends than estimated under the AR1 model.

The number of years required to detect the observed trend from 1996-2005 at the 95%

significance level, according to the PWLT analysis, is shownin Fig. 3.11b. The length of

the observed record (10 years) is indicated by the dotted line; at latitudes with points lying

below this line, a significant trend has therefore already been detected (cf. Fig.3.9b). The

result is completely different from Fig.3.11a. According to the PWLT analysis, the best place

to detect ozone recovery is northern middle and high latitudes - moreover, in this region a

positive trend is either on the verge of being detected or hasalready been detected - and the

second best region is in the equatorial zone. However at southern high latitudes the number of

years required,∼ 18, is similar between the EESC and PWLT analyses, and is well estimated
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Figure 3.11: (a) The number of years since 2000 required to detect the EESC-based linear

trend calculated for the declining part of EESC at the 95% significance level under the two

alternative assumptions: AR1 (red curve) and LRC (blue curve, based on GSPE). (b) The same

as panel (a), but for the PWLT-based trend calculated for theperiod 1996-2005, so the value

represents the number of years after 1996. Values higher than 100 years are plotted as 100

years. Note the similarity of the two estimates in southern middle and high latitudes, but the

large differences in the Northern Hemisphere.

by the AR1 model in both cases. This is expected given the consistency at these latitudes of the

EESC-predicted and observed recent trends, the consistency of the EESC and PWLT derived

noise estimates, and the absence of LRC.

3.5 Longitudinal structure

In this section we present the latitude-longitude distributions of some of the statistical param-

eters discussed above for zonal averages. Fig.3.12a and b show the spatial distributions of
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Figure 3.12: Spatial distribution of the month-to-month autocorrelation parameterφ (top panel)

and the Hurst exponent (bottom panel) calculated by GSPE formonthly mean total ozone

residuals obtained by filtering out the seasonal cycle, QBO,solar flux, and EESC fit. This is

the two-dimensional version of Fig.3.4b.

the AR1 month-to-month autocorrelation parameterφ and the Hurst exponentH, respectively,

when the trend is defined by the EESC function. Bothφ andH reflect “memory” in the total

ozone time series but there is a distinct difference in theirspatial structure. The autocorrelation

parameter has its maximum at the equator and decreases towards the poles; the values are very

similar to those reported by (Weatherhead and Coauthors, 2000) (see their Fig.3.4 and Plate

3) for 1979-1998. In contrast, the spatial distribution of the Hurst exponent has two maxima,

around 15◦S over the Pacific and 20◦N over the Pacific, eastern Atlantic, and Africa. For both

φ andH, the maxima have pronounced longitudinal structure. The values ofH for zonal-mean
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Figure 3.13: Spatial distribution of the EESC-based lineartrend calculated for the declining

part of EESC in DU/year (top panel) and the second (increasing) slope of the PWLT fit for the

period 1996-2005 (bottom panel). This is the two-dimensional version of Fig.3.9.

ozone (Fig.3.4b) are approximately equal to the maximum values ofH for gridded ozone at

the given latitude. We will discuss the relationship between the zonally averagedH and theH

for zonal averages in Chapter4 in relation to temperature. The spatial distribution of theHurst

exponent when the PWLT is filtered out instead of EESC (not shown) is similar to Fig.3.12b,

except the values are lower in the Northern Hemisphere.

Fig. 3.13a and b show the spatial distributions of the recent trends according to the EESC

and PWLT functions, respectively; they correspond to the curves in Fig.3.9 for zonal-mean

ozone. In the case of EESC, this represents the positive linear trend expected since the late

1990s based on the fitting of the entire 1979-2005 record by the EESC time series. Based
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Figure 3.14: The number of years since 2000 required to detect the EESC-based linear trend

calculated for the declining part of EESC at the 95% significance level under the LRC assump-

tion (based on GSPE). This is the two-dimensional version ofFig. 3.11a.

on EESC, the ozone recovery rate should be strongest in the Southern Hemisphere sub-polar

regions, apart from the south-west Pacific. In the Northern Hemisphere the recovery rate is

predicted to be relatively strong over northern Europe and over eastern Siberia. In the tropics

and subtropics the expected recovery rate is weak and very zonal. As can be anticipated from

Fig. 3.9, the ozone recovery rates based on PWLT (i.e. the observed linear trend from 1996-

2005) are also positive everywhere but have a very differentspatial distribution and strength.

In particular, the PWLT recovery rates are greater in the Northern Hemisphere midlatitudes

and sub-polar regions than in the Southern Hemisphere; the trends are especially strong over

Siberia, the north Pacific, the subtropical Atlantic, and southern Europe. The only place in

the Northern Hemisphere midlatitudes and sub-polar regions where the trends are relatively

weak is the north Atlantic. The spatial distribution of the recent PWLT over the Southern

Ocean is opposite to that for the EESC trend, with a maximum rather than a minimum over the

south-west Pacific.

Finally, Fig. 3.14presents the number of years from the year 2000 required to detect the

expected EESC-based ozone trends shown in Fig.3.13a, based on the LRC noise estimates

computed from the entire time series (with the EESC trend filtered out). The Fig.3.14allows
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us to identify the optimal locations to make long-term ground-based total ozone observations.

For example, it would be desirable to have some stations in the southern sub-polar Atlantic

since the number of years required to detect ozone recovery has a minimum in that region,

where it varies between 12 and 20 years. In the Northern Hemisphere the minimum is located

in the zonal band around 35◦N, and varies between 20 and 30 years.

3.6 Summary and discussion

The statistical analysis of long-term changes in total ozone has traditionally been performed

assuming that the residuals, which represent the noise in the system, are well described by an

AR1 model. In this chapter the total ozone record from 1979-2005 has been examined from the

alternative viewpoint that the time series is long-range correlated, implying a deviation from

AR1 behaviour with an unbounded decorrelation time. The existence of LRC behaviour in

total ozone would reduce the statistical significance of a given trend, and lengthen the number

of years required to detect a trend, from that estimated using an AR1 model. We employ the

merged satellite data set prepared by NASA which combines version 8 of TOMS and SBUV

total ozone data (Frith et al., 2004; Stolarski and Frith, 2006), use well-based spectral estima-

tion techniques to quantify LRC paying proper attention to the frequency bandwidth, and filter

long-term time-periodic signals (QBO, solar) which can give spurious indications of LRC be-

haviour. The analysis mainly concerns zonal-mean ozone, although some station data and

gridded satellite data are also considered. However the analysis is restricted to 60◦S-60◦N, as

in polar regions the satellite data have gaps during polar night.

We first summarize the results obtained when the long-term total ozone changes are rep-

resented in terms of the EESC time series. The large values ofthe Hurst exponent, which is

the necessary condition for the presence of long-range correlations, are found basically every-

where north of 35◦S. In southern middle and high latitudes the correlation behaviour is not

significantly different (at the 95% confidence level) from that of the AR1 model. In the regions
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with strong LRC behaviour, uncertainties in the magnitude of the long-term ozone decline at-

tributable to EESC are increased by about a factor of 1.5 compared with those estimated from

AR1; this includes northern middle and high latitudes, where the AR1-based uncertainties are

already quite large. However the strongest long-term ozonedecline is found at southern middle

and high latitudes, and there the AR1 estimates are found to be reliable.

Analogous results are found for the number of years (from 2000) required to de-

tect the increase of ozone expected from the anticipated decline of EESC. We confirm

(Weatherhead and Coauthors, 2000)’s finding, based on the AR1 model, that southern mid-

dle and high latitudes should be the optimal place (within the 60◦S-60◦N region) to detect

ozone increase; at these latitudes we have the combination of the strongest expected trend,

the apparent absence of LRC behaviour, and the shortest autocorrelation times. The required

detection time (to 95% confidence) is about 18 years for zonal-mean ozone at 60◦S, but is

even a few years shorter in the sub-polar south Atlantic. (While limited regions have higher

noise levels, they also have weaker serial correlations.) The recent observed behaviour of total

ozone in these regions is consistent with the EESC-predicted trend, but detection of an ozone

increase attributable to EESC is not expected until sometime late in the decade 2010-2020. In

the Northern Hemisphere, detection of ozone increase is more challenging. There appears to be

a narrow band around 35◦N where LRC behaviour is relatively weak and the required number

of years is around 30, but in northern middle and high latitudes the required number of years is

increased from around 25-35 to around 30-60 by LRC.

Although the representation of long-term ozone changes in terms of the EESC time series

is preferred, given the a priori nature of the representation, a commonly used alternative is a

piecewise-linear trend (PWLT) with a turning point in the second half of the 1990s. There-

fore we compared the results obtained using the two different representations of the long-term

changes. In our implementation of PWLT we use a turning pointin early 1996. The estimates

of the noise and the long-term ozone decline are essentiallythe same for the two cases in the

Southern Hemisphere, but there is a notable discrepancy in the Northern Hemisphere (partic-
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ularly at northern middle and high latitudes) where the strong decrease in ozone in the early

1990s, and its subsequent increase in the late 1990s, are interpreted mainly as LRC noise rela-

tive to EESC, but project strongly on the long-term changes (thereby reducing the strength of

the LRC behaviour) relative to the PWLT. This difference affects all subsequent estimates. For

example, according to PWLT the long-term ozone decline in northern middle and high (sub-

polar) latitudes is comparable in magnitude to that in the Southern Hemisphere; and the recent

ozone increase (since 1996) is strongest in this region, andmarginally statistically significant

(at the 95% confidence level) indicating that a positive ozone trend is already on the verge of

being detected.

The natural question is, then, which representation of the long-term changes (and thus of

the noise) is correct? We do not attempt to answer this question definitively, but a few com-

ments may be in order. If one adopts the EESC perspective, then the results seem physically

sensible: we know that the annual-mean long-term ozone decline, from pre-1980 levels to

those characteristic of the 2000 time period, over middle and high (sub-polar) latitudes has

been much greater in the Southern as compared with the Northern Hemisphere - roughly 6%

as compared with 3% (World Meteorological Organization, 2002). Furthermore we know that

Northern Hemisphere ozone exhibits more interannual variability than Southern Hemisphere

ozone because of the greater stratospheric dynamical variability in the Northern Hemisphere,

which is for well-understood reasons. What remains then to be understood is the physical

origin of the LRC, especially in northern middle and high latitudes. If it is the existence of

AR time scales comparable to the 27-year observational record, then are these time scales as-

sociated with natural variability or with climate change? These questions can likely only be

answered with climate models.

If, on the other hand, one adopts the PWLT perspective, then one is forced to consider the

strong decline of northern middle and high latitude ozone inthe early 1990s, and its subsequent

increase in the late 1990s, as part of the signal and account for it. One possibility often con-

sidered (e.g.Solomon et al., 1996) is that the increased stratospheric aerosol from the Mount
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Pinatubo volcanic eruption in 1991 amplified the EESC-associated ozone loss. The problem

with this argument is that there was no corresponding ozone decrease observed in the South-

ern Hemisphere, even though EESC and aerosol abundances were comparable (Bodeker et al.,

2001). Another argument is that the behaviour reflects decadal-scale variations in stratospheric

wave forcing (e.g.Randel et al., 2002; Hadjinicolaou et al., 2005), which would affect ozone

both through changes in transport and changes in chemical ozone loss, especially in the Arc-

tic which would then affect the annual mean sub-polar ozone abundances through transport of

ozone-depleted air. The impact of long-term changes in stratospheric wave forcing on both

polar and midlatitude ozone is well established (World Meteorological Organization, 2002).

However, attributing the ozone changes to changes in wave forcing merely changes the prob-

lem to that of accounting for the variations in wave forcing.In principle, they could be part of

the signal or part of the noise. Yet the use of PWLT involves the implicit assumption that the

recent strong positive trend in northern middle and high latitude ozone is secular and can be ex-

trapolated; moreover by regarding this trend as part of the signal rather than part of the noise,

the estimated noise is reduced and the LRC behaviour weakened, and the estimated signifi-

cance of the trend thereby increased. So far, no mechanism that could give such a statistically

significant positive trend in northern middle and high latitude ozone has been put forward.

3.7 Appendix A: Comparison with ground based measure-

ments for 1979-2008

The analysis of total ozone was repeated for the period 1979-2008 for the merged

TOMS/SBUV/OMI data and for the ground based measurements (Fioletov et al., 2002). In

comparison to the 1996-2005 period the PWLT for 1996-2008 became significant every-

where in the Northern Hemisphere relative to the AR1 confidence intervals, although it

dropped in magnitude north of 40◦N and thus became somewhat closer to the EESC trend

(see Fig.3.9,3.15,3.16). The EESC trend for the merged satellite data is similar to the EESC
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Figure 3.15: Same as Fig.3.9, but for the period 1996-2008 using the TOMS/SBUV/OMI

merged data set.

trend for the ground based measurements (see Fig.3.15,3.16). In contrast the PWLT disagrees

in the two data sets in the Southern Hemisphere, which emphasizes its sensitivity to noise.

The monthly autocorrelations are noticeably lower for the ground based than for the satel-

lite merged data, whereas the Hurst exponents are more similar (see Fig.3.17b,3.18b), though

slightly larger for the former. This probably means that thelow-frequency residual variabil-

ity, represented by the Hurst exponent, is more consistent in the two data sets than the high-

frequency variability, represented by the monthly autocorrelations. Trends and autocorrelations

demonstrate more zonal variability in the ground based data. The standard deviations are no-

ticeably larger for the ground based measurements (see Fig.3.17a,3.18a), which leads to larger

confidence intervals for the PWLT (see Fig.3.15,3.16). We tend to think that these differences

are presumably caused by data inhomogeneities in the groundbased measurements.

One can also notice that the Hurst exponent estimates, especially for the PWLT residuals,
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Figure 3.16: Same as Fig.3.9, but for the period 1996-2008 using the ground based measure-

ments. Please note that the latitudes extent from the South to the North Pole.

fall below 0.5 over the polar regions (see Fig.3.18), which means that the corresponding time

series demonstrate blue noise behaviour, i.e. their spectral power decreases with decreasing

frequency. As a result the power-law confidence intervals over the poles are less than the AR1

confidence intervals. It is interesting what physical mechanism stands behind this phenomenon.

Overall the three additional years (2006-2008) of the merged satellite data and the indepen-

dent ground based measurements support our conclusions based on the TOMS/SBUV merged

data for the 1979-2005 period.

3.8 Appendix B: Analysis of Kiss et al. results

(Kiss et al., 2007) (K07 henceforth) analyzed long-range temporal correlations of total ozone

measured by the TOMS instrument. K07 estimated the Hurst exponent for the total ozone

time series by means of DFA3. Thus the Hurst exponent was estimated as the slope of a
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Figure 3.17: Same as Fig.3.6, but for the period 1979-2008 using the TOMS/SBUV/OMI

merged data set.

DFA curve in log-log coordinates, which was measured for therange of scales from about

a month to 6 years. The Hurst exponent was estimated for each grid point time series of the

gridded TOMS measurements (0◦-360◦E, 60◦S-60N◦) and then zonally averaged. The obtained

latitudinal distribution of the Hurst exponent estimate has local maxima over high latitudes and

the equator and local minima over midlatitudes. This distribution was compared by K07 with

the distribution of the Hurst exponent estimated in this chapter and published inVyushin et al.

(2007) (below in this appendix we will refer to the current chapteras V07 for short) for the

merged zonally averaged TOMS/SBUV total ozone and found to be different.

In this note we explain the difference in the two distributions. Seven differences in the

ways the exponents were estimated are: (a) only TOMS data were utilized by K07, while V07

employed the merged TOMS/SBUV data set; (b) daily data was used by K07 vs. monthly

data used by V07; (c) DFA3 was used by K07 vs. the GPHE and GSPE used by V07; (d)
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Figure 3.18: Same as Fig.3.6, but for the period 1979-2008 using the ground based measure-

ments. Please note that the latitudes extent from the South to the North Pole.

only annual cycle and QBO were filtered out by K07 vs. annual cycle, QBO, solar cycle and

the EESC trend by V07; (e) scales from about a month to 6 years were used by K07 vs. the

frequency range corresponding to 1 to 27 years by V07; (f) V07reported results for the zonally

averaged total ozone, while K07 reported the zonally averaged Hurst exponents for the gridded

total ozone; (g) the QBO was filtered by linear regression in V07 and by the Wiener filter in

K07. We demonstrate here that the last four differences are key in explaining the different

results reported.

First, we checked that the results for monthly TOMS/SBUV data are the same as for TOMS

only data. Therefore we excluded item (a). Item (b) is irrelevant in these studies, because sub-

monthly frequencies are not used. Providing time series arepower-law stochastic processes

not contaminated by the presence of trends or periodicities, DFA and spectral methods (GPHE

and GSPE) should give close estimates of the Hurst exponent as was shown in Section2.3.
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However climatic and meteorological time series do not usually have pure power-law spectra.

Often their spectra have different slopes for high and low frequency ranges (see e.g. Fig3.2).

Moreover, they may contain periodic and quasi-periodic signals of various periods, secular

trends as well as data inhomogeneities, caused for instanceby changes in instrumentation, etc.

In such circumstances an estimate of the Hurst exponent depends on the filtering applied to

the time series and the choice of frequency (time scale) range (seeJánosi and Müller(2005);

Marković and Koch(2005) and Chapter4). It will be shown in Chapter4, using tropospheric

and stratospheric air temperature as an example, that DFA and spectral methods give similar

estimates provided equal time scales and frequency ranges including the lowest available fre-

quencies are chosen and that trends and periodic and quasi-periodic signals are filtered out.

Below we show that these principles are also applicable to the total ozone.

Fig. 3.19 shows estimates of the Hurst exponent for the TOMS/SBUV zonally average

total ozone anomalies estimated by DFA, GPHE, and GSPE for different filters and time scales

combinations. We start with filtering the components which were filtered in K07, namely the

annual cycle and the QBO. In panel (a) the annual cycle and theQBO have been filtered out

using linear regression on four annual cycle harmonics and the equatorial zonally averaged

zonal winds at 30 and 50 hPa (see Section3.3.1for the linear regression details) and the Hurst

exponents are estimated for the time scales from one to six years (the intersection of the time

scale ranges used in V07 and K07). The Hurst exponents estimated by DFA1, GPHE, and

GSPE do not agree in this case. At the next stage (see Fig.3.19b) we have also filtered out

the solar cycle using the solar flux at 10.7 cm and the EESC trend in addition to the annual

cycle and the QBO. This brings the three curves closer together, but there are still noticeable

differences between them. Comparison of Fig.3.19a and b reveals the effect of filtering of the

solar cycle and the EESC trend, i.e. the effect of item (d).

At the third stage to fully comply with the recommendations of Chapter2 we extend the

time scale range up to 27 years and thus include the lowest available frequencies. Most of

the articles, which employed DFA, set the maximum used time scale equal to a quarter of
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Figure 3.19: Estimates of the Hurst exponent for zonally averaged TOMS/SBUV total ozone

anomalies by DFA, GPHE (violet curve) and GSPE (blue curve).Only the annual cycle and

the QBO have been filtered out by means of linear regression inpanel (a). In all other panels

annual cycle + QBO + solar flux + EESC have been filtered out. Thetime scales from 1 to

6 years have been used in panels (a) and (b) and from 1 to 27 years in panels (c) and (d).

The DFA1 results are shown by the orange curves. In panel (d) we also show the results of

DFA2 (brown curve) and DFA3 (red curve). The horizontal dashed lines in panels (a-c) show

the upper 95% asymptotic confidence intervals for GPHE and GSPE for the Hurst exponent

equal to 1/2, which corresponds to stochastic processes with white noise like low-frequency

variability.
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time series length. This limitation was eliminated in Chapter 2 demonstrating by means of

Monte-Carlo simulations that the properties (bias and variance) of the Hurst exponent estimate

obtained by DFA do not almost change when the longest available time scales are included.

This actually makes DFA based estimates comparable to periodogram based results, for which

the lowest available frequency are typically included by default. The inclusion of the longest

available time scales is also consistent with the fact that the Hurst exponent is defined only

asymptotically (see e.g.Taqqu, 2002). Another motivation for the inclusion of the lowest

available frequencies is that for the estimation of trend uncertainty (the trend is supposed to

be filtered out prior to the Hurst exponent estimation) only alow-frequency behaviour of the

power spectrum matters (Smith, 1993). Fig. 3.19c shows that by the inclusion of the lowest

available frequencies we reach a very close agreement between the different methods estimates.

The GPHE and GSPE Hurst exponent estimates (the violet and blue curves) in Fig.3.19c are

the same as in Fig.3.4b, which K07 used for comparison. Comparison of Fig.3.19b and c

reveals the effect of item (e).

In the first three panels of Fig.3.19we employed DFA of the first order (DFA1), because

it can automatically filter out only discontinuities in timeseries, but not trends, and therefore

is more similar to spectral methods than DFA of the higher orders. K07 used DFA3, which

automatically filters out local quadratic trends, and it is important to compare its results with

the results of DFA1. We plot in Fig.3.19d the Hurst exponent estimates obtained by DFA1-3

after the annual cycle + QBO + solar flux + EESC have been filtered out and the time scales

from 1 to 27 years have been used. With the exception of the Southern Hemisphere middle

and high latitudes the DFA results have qualitatively similar distribution with generally larger

estimates obtained by higher orders of the DFA. We will explain the differences between the

DFA results below in relation to Fig.3.20.

Comparing panels (b) and (c) of Fig.3.19one can notice that the shift of the low frequency

cutoff from 6 to 27 years has decreased the value of the Hurst exponent estimates over the

Southern Hemisphere middle and high latitudes. Let us now take a careful look at the power
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Figure 3.20: Periodogram (panel (a)) and DFA1-3 fluctuationfunctions (panel (b)) of the

TOMS/SBUV total ozone anomalies obtained by filtering out annual cycle + QBO + solar

flux + EESC from the 50◦-55◦S zonal band. The periodogram, fluctuation functions, and their

power-law approximations are shown in log-log coordinates. The estimated values ofH are

rounded to one digit.

spectrum and DFA curves (fluctuation functions) of the totalozone anomalies for the 50◦-55◦S

zonal band. They are plotted in Fig.3.20. There are two scaling regimes in this power spectrum

(see panel (a)). The first is a high frequency one. It ranges from 2 months to somewhere

between one and two years. The second, low frequency regime,ranges from about two years

to the lowest frequency. If one fits a power-law curve to the frequency range from 2 months

to 6 years, which is the scaling range used in K07, then one obtains a Hurst exponent equal to

about unity, as illustrated by the green line. In contrast, if a power-law is fitted to the frequency

range from 1 to 27 years, as illustrated by the violet line andas was done in V07, then the

estimated Hurst exponent is about one half. This explains the difference seen at 50◦-55◦S

during the transition from Fig.3.19b Fig. 3.19c (the effect of item (e)). The sensitivity of the

Hurst exponent estimates to the choice of the frequency range was actually stressed in V07 by

contrasting Fig.3.4and3.5.

Fig. 3.20b shows fluctuation functions and their best linear fits in log-log coordinates for
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DFA of the first, second, and third order. In agreement with Fig. 3.19d the Hurst exponent

estimate increases from 0.5 to 0.8 as one increases the DFA order from the first to the third. It is

known that even for a power-law stochastic process DFA curves have two regimes: short scale

and long scale (Kantelhardt et al., 2001). The Hurst exponent should be estimated by fitting

a power-law function to the long time scales. It is also knownthat the transition (crossover)

point between the two regimes depends on the order of DFA. Thehigher the order, the larger

the transition point (Kantelhardt et al., 2001). This phenomenon can be observed in Fig.3.20b.

The transition point for DFA1 is located around a one year time scale, whereas for DFA3

it is close to two years. Thus using the same time scale range (1-27 years) for DFA1 and

DFA3 the Hurst exponent is overestimated by the inclusion ofthe short scale range regime into

the estimation domain for DFA3. We conclude that K07 obtained significantly higher Hurst

exponent estimates over the Southern Hemisphere high latitudes, because they used the time

scale range located in high frequencies and the third order of DFA. Both of these facts lead

to an overestimation of the true Hurst exponent. This paragraph also underlines that care is

needed when estimation of the Hurst exponent is performed and that none of the estimation

methods should be used in isolation.

The discussion above only partially explains the differences in the shape of the Hurst ex-

ponent distributions between V07 and K07. Fig.3.21reveals the effect of items (f) and (g).

Panel (a) of Fig.3.21 shows the zonally averaged Hurst exponent obtained for the gridded

TOMS/SBUV merged data set after the annual cycle + QBO + solarflux + EESC have been

filtered out by linear regression. The time scales from one tosix years have been used. There-

fore this panel is analogous to panel (b) in Fig.3.19. One can notice that qualitatively the spatial

distributions of the Hurst exponent are somewhat similar inthese panels. However the zonally

averaged Hurst exponents are generally lower than the Hurstexponents for the zonal averages,

in agreement with the theory of power-law stochastic processes (Granger, 1980) and the results

for the atmospheric general circulation (see Chapter4). This phenomenon was also discussed

in V07 in respect to Fig.3.2. Nevertheless K07 compared in their Fig. 7 the Hurst exponent
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Figure 3.21: Zonal averages of the Hurst exponent estimatesobtained for the gridded

TOMS/SBUV data by DFA1 (orange), GPHE (violet), and GSPE (blue) after filtering the an-

nual cycle + QBO + solar flux + EESC using the time scales from 1 to 6 years. In panel (a) the

QBO has been filtered out by linear regression, whereas in panel (b) it has been filtered out by

the Wiener filter as in K07.

estimates from V07 for the zonally averaged total ozone withtheir zonally averaged Hurst

exponent estimates for the gridded data. When we recalculate the Hurst exponents plotted in

Fig. 3.21a for the time scale range 1-27 years we get a picture very similar to Fig.3.19c with

somewhat smaller values but with even better agreement between the methods (not shown).

Fig. 3.21b is analogous to Fig.3.21a, with the only difference is that the QBO has been

filtered out using the Wiener filter following K07. K07 linearly interpolated the total ozone

anomalies power spectrum for frequencies in the range from 1.1 to 4.3 years. When we apply

this filtering method to monthly ozone data the results are significantly affected, as seen by

comparing panels (a) and (b) of Fig.3.21. Remarkably, DFA1 and the spectral methods start

to significantly disagree over several regions when the linear regression filtering of the QBO
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used in V07 has been replaced by the Wiener filter used in K07. All the methods demonstrate

a relative boost of the Hurst exponent estimates over the tropics. Although K07 utilized daily

data and a wider estimation frequency range, for which the 1.1 to 4.3 years range comprises a

smaller portion, their results still could be affected by this rough filtering method.

The major sources of differences between the results of V07 and K07 are the way the

data were filtered and which frequency (time scale) ranges were chosen to measure a power-

law exponent. V07 employed a low frequency range for two reasons. Firstly, because only

a low frequency residual variability affects the uncertainty of a trend, a proper estimation of

which was the main goal of V07. Secondly, the mathematical theory of power-law stochastic

processes is developed primarily for the asymptotic case, i.e. when the spectral density (auto-

correlation function) scales by a power-law for low frequencies (large time lags). K07 chose

the intermediate range of scales mainly because of conventional DFA requirements. Therefore

the comparison of V07 and K07 results is not appropriate.



Chapter 4

Power-law characteristics of the

atmospheric general circulation

4.1 Introduction

In Chapter3, we applied the two statistical noise models that are the focus of this thesis —

the power-law and AR1 models —- to the problem of ozone trendsand variability, which is an

issue of significant practical interest. In this and the following chapters, we turn to the more

general question of how best to characterize internal variability in the climate system. As we

have just seen in the ozone context, the choice of noise modelcan strongly affect conclusions

about trend analysis, and this is also the case for detectionof periodic signals in climate data

(Ghil et al., 2002). But the ozone analysis did not help us settle several of thequestions we

raised in the Introduction. The questions we focus in this Chapter regard the choice of power-

law method and a preliminary attribution of observed spectral power growth to some specific

processes.

In this chapter, several power-law exponent estimators areapplied to global zonally aver-

aged free atmosphere air temperature data from reanalysis products. The methods employed

(detrended fluctuation analysis, Geweke Porter-Hudak estimator, Gaussian semiparametric es-

88
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timator, and multitapered versions of the last two) agree well for pure power-law stochastic

processes as was shown in Chapter2. But for the observed temperature record, the power-law

fits are sensitive to the choice of frequency range and the intrinsic filtering properties of the

methods. The observational results converge once frequency ranges are made consistent and

the lowest frequencies are included, and once several climate signals have been filtered. Two

robust results emerge from the analysis for interannual anddecadal time scales: first, that the

tropical circulation features relatively large power-lawexponents that connect to the zonal-

mean extratropical circulation; and second, that the tropical and subtropical lower stratosphere

exhibits power-law like behavior that is volcanically forced.

In Chapters 4-6 we employ monthly mean temperature from the ERA40 and NCEP/NCAR

reanalyses. The NCEP/NCAR reanalysis is a continually updating gridded data set represent-

ing the state of the Earth’s atmosphere, incorporating observations and global climate model

output dating back to 1948. It is a joint product from the National Centers for Environmental

Prediction and the National Center for Atmospheric Research. ERA40 is a similar product

by the European Centre for Medium-Range Weather Forecasts,which covers the period from

September 1957 to August 20024. For consistency we use only data from this 45 year long pe-

riod from both reanalyses. The NCEP/NCAR reanalysis has horizontal resolution of 1.9ox1.9o

and 17 vertical levels between 1000 and 10hPa. ERA40 has horizontal resolution of 2.5ox2.5o

and 18 vertical levels between 1000 and 10hPa. (ERA40 has fiveextra vertical levels, which

go up to 1hPa, but we do not use them.)

This chapter represents an attempt to systematically fit spectral power growth of the atmo-

spheric general circulation by the power-law. First, we apply the methods to air temperature

from reanalysis products for the last half century, focusing on plots of zonal mean cross sec-

tions of the Hurst exponent (Section4.2). Although no single power-law fit technique should

be employed in isolation, we identify a pair of techniques that characterize the range of results

4Originally the ERA40 data set was planned to be 40 years long,which gave the name to the project. However
during realization of the project another five years of data were added.
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that might be typically expected (Section4.3). We attribute robust features of these plots to

specific physical climate processes and other less robust features to methodological artefacts

(Section4.4). In Section4.5we also discuss the connection between point statistics andzonal

mean statistics as the starting point for a more complete physical theory explaining spectral

power growth of the general circulation. We provide a summary of this chapter in Section4.6.

The material in this chapter has been published, along with relevant material in Chapter2, in

the Journal of Climate (Vyushin and Kushner, 2009).

4.2 Results for unfiltered data

Having benchmarked theH estimation methods with synthetic data in Section2.3 we now

apply the methods to the monthly mean tropospheric and stratospheric ERA40 air temperature

from September 1957 to August 2002 (Uppala and Coauthors, 2005). The annual cycle and

three of its harmonics are removed from the temperature. Theestimates of the Hurst exponent,

Ĥ, are then carried out identically to the benchmark tests in Section2.3. We calculateĤ at

each longitude, latitude and pressure level, and take the zonal mean of the result to obtain a

zonal cross section that characterizes the power-law behavior of the global atmosphere. We

plot the resulting zonal mean̂H in Fig. 4.1a-d for DFA3(t), DFA3(a), periodogram GPHE(a)

and periodogram GSPE(a) (see Table 1 for parameter settingsfor these methods). By including

these various methods and being clear about parameter settings we aim to reconcile existing

results for the value ofH for air temperature since different studies use different methods and

different frequency ranges (see Section1.2and TableA.1).

Fig. 4.1 shows that, apart from a common maximumH in the tropical troposphere, there

are clear contrasts between DFA3(t) and DFA3(a), and also between DFA3 and the two spectral

methods. The differences generally lie well outside the range of biases found in the benchmark

tests and one of our main aims is to pin down the source of thesedifferences. DFA3(t) and

DFA3(a) show a similar decrease ofH from the tropics to the extratropics, but the values of
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(d) GSPE(a)
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Figure 4.1: Zonal mean̂H of ERA40 air temperature for a) DFA3(t), b) DFA3(a), c) GPHE(a),

d) GSPE(a). Values below 0.4 are shown in white.

H are generally lower in DFA3(a) than in DFA3(t). This is particularly true in the tropical

lower stratosphere, where the methods disagree most strongly (see Section4.4). The spectral

methods produce noisier plots, as might be expected by theirgenerally larger variance (see

Section2.3). They display pronounced maxima in the Southern Hemisphere that are not found

in the DFA3 plots and that we will show are largely tied to linear trends in the data, some of

which might arise from data inhomogeneities (Section4.4). They also show strong minima and

even blue-noise (positive spectral slope) behavior in the tropical stratosphere; these features are

also discussed below.
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4.3 Effect of multitapering and frequency range

We reported in Section2.2 that multitaper based GPHE and GSPE have somewhat similar

biases and standard deviations to the periodogram based GPHE and GSPE. The difference be-

tween the multitapered MTM GSPE(a) and the periodogram GSPE(a) for linearly detrended

data is shown in Fig.4.2a. When all frequencies are included, the differences between the

methods range from about -0.15 to about 0.1. The asymptotic limit of the GSPE Hurst expo-

nent estimate standard deviation (one sigma) for this frequency range is1/2
√

30 ≈ 0.1, where

30 is the number of frequencies used. Therefore the differences for the first case are statisti-

cally significant only for a few locations and the MTM GSPE plot of Ĥ is visually similar to

Fig. 4.1d (not shown). But we recall that MTM GSPE(a) has a larger biasthan MTM GSPE(t)

(Section2.3). Thus, standard practice would suggest that we should compare MTM GSPE(t)

and GSPE(a). Fig.4.2b plots the difference of̂H for MTM GSPE(t) and GSPE(a). The total

area where the two methods disagree has increased relative to Fig. 4.2a. The difference be-

tween MTM GSPE(t) and GSPE(t) is even larger (see Fig.4.2c) especially in the observation

sparse regions, such as the Southern Hemisphere stratosphere, which points to different sensi-

tivities to data inhomogeneities (Section4.4) in periodogram and MTM based methods. Given

this, it is clear that differences introduced by standard multitapering methods reflect not only

the effect of multitapering itself but also a) the selectionof frequency range for the power-law

fit; b) the effect of data inhomogeneities; and c) the increased variance ofH due to trimming.

At this point we are in a position to reduce the number of methods we consider. Together

with the results of the Monte-Carlo testing, and additionaltesting with the GSPE method,

we conclude that multitapering adds unnecessary complication to the Hurst exponent spectral

estimation procedure. Multitapering might produce graphically smoother spectral plots (as in

Fig. 1.2), but it does not provide obviously improvedH estimates. We have also found that

the all-frequency estimates work equally well for both DFA3and the periodogram spectral

methods. Finally, we find the GSPE method to be similar to but moderately more robust than

the GPHE method. We thus proceed to focus mainly on the DFA3(a) and GSPE(a) methods,
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(a) MTM GSPE(a)−GSPE(a)
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(b) MTM GSPE(t)−GSPE(a)
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(c) MTM GSPE(t)−GSPE(t)
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Figure 4.2: a) Zonal mean of̂H for MTM GSPE(a) minus that for GSPE(a). b) Zonal mean of

Ĥ for MTM GSPE(t) minus that for GSPE(a). c) Zonal mean ofĤ for MTM GSPE(t) minus

that for GSPE(t). AllĤ were estimated for linearly detrended (LTR filtered, in the notation of

Section4.4) ERA40 air temperature.

and try to explain the robust and non-robust aspects of theirĤ portraits.

4.4 Effects of filtering and choice of reanalysis product

We now show that many of the differences between the spectraland time domain methods

(e.g. between Figs.4.1b and d) can be attributed to specific physical processes and method-

ological artefacts. We consider the effects of detrending,the quasi-biennial oscillation (QBO),

ENSO, and volcanic aerosol forcing. The filters we use are

• LTR: We remove a simple linear trend from the data.

• QBO: We remove a QBO signal by means of multilinear regression using the equatorial

zonally averaged zonal winds at 30 and 50 hPa (see Section3.3.1). We use winds at both

30 and 50 hPa, because they are about 90 degrees out of phase, which allows a better

representation of the QBO signal.
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• ENSO: We remove an ENSO signal consisting of the Nino3.4 index lagged by 4 months

by means of linear regression. We choose 4 months lag becauseit maximizes correlations

between Nino3.4 index and tropical troposphere air temperature (Yulaeva and Wallace,

1994; Trenberth and Smith, 2006).

• VOL : We remove the effect of volcanic aerosols by regressing airtemperature on merid-

ionally and time dependent historical reconstructions of volcanic aerosols optical depth

(Ammann et al., 2003).

All signals described above are modulated by the seasonal cycle in our filtering procedure (see

Section3.3.1). We have also carried out additional calculations involving solar and Atlantic

multidecadal variability signals, but these did not show significant effects onH estimates. The

impact onĤ of removing each signal is plotted in Fig.4.3. For all rows in Fig.4.3 the left

column corresponds to DFA3(a) and the right to GSPE(a).

The first row of Fig.4.3(Figs.4.3a and b) shows the effect of the linear detrending (filtering

LTR ) on Ĥ. Specifically,Ĥ with LTR filtering is subtracted from̂H with no filtering. As ex-

pected, detrending has little effect on the DFA3 based estimate, since this method effectively fil-

ters out polynomial trends up to the second order. However the effect is significant for GSPE es-

pecially in the Northern Hemisphere lower stratosphere andSouthern Hemisphere troposphere.

The presence of a linear trend increasesĤ by 0.1 to 0.25 for the spectral methods, because a

linear trend increases power at low frequencies and therefore steepens the spectral slope. It

is well known that climate trends in reanalysis products often reflect data inhomogeneities

(Dell’Aquila et al., 2007; Bromwich and Fogt, 2004; Marshall, 2002; Randel and Wu, 1999;

Randel et al., 2000), although effect of data inhomogeneities is generally nota trend. We do

not aim to evaluate the realism of these trends; instead, we want to point out the relative sensi-

tivities of theH estimation methods to detrending.

The second row of Fig.4.3 (Figs. 4.3c and d) shows the impact of removing the QBO.

Specifically,Ĥ with LTR + QBO filtering was subtracted from̂H with LTR filtering. For

DFA3(a) and GSPE(a), removing the QBO reducesĤ in the tropical and subtropical lower
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stratosphere, but the impact is much greater for GSPE(a) than for DFA3(a). Thus the presence

of a quasiperiodic signal appears to significantly impact the spectral method. In contrast to the

linear trend case, the QBO boosts frequencies near the high-frequency cutoff of 18 months and

shallows the spectral slope. Thus, the presence of the QBO reducesĤ.

In another analysis, we have found that for the trimmed DFA, DFA3(t), which is the stan-

dard method in the literature, the effect of filtering the QBOwas to significantlyincreaseĤ in

the lower stratosphere (not shown), opposite to what is seenin Figs.4.3c and d. This effect can

be attributed to spreading of the QBO signal by the DFA smoothing (e.g.Jánosi and Müller,

2005; Marković and Koch, 2005). The effect is seen in the difference between the DFA3(t) and

DFA3(a) plots in Figs.4.1a–b. This again illustrates how sensitive theH estimation methods

are to the frequency range choice.

Figs.4.3e and f show the impact of removing the ENSO signal. The location of the dif-

ference is in the tropical troposphere and the sense of the impact is similar to the QBO case.

ENSO represents a high (interannual) frequency signal thatis significantly correlated with trop-

ical temperatures, and so the ENSO and QBO effects onĤ are analogous. Again, the impact

on Ĥ for DFA3(a) is minimal, but it is more significant for the standard-practice DFA3(t) (not

shown).

Unlike for the other filtered signals, the impact of the volcanic signal onĤ is similar for

both DFA3 and GSPE (Figs.4.3g and h). Volcanic forcing appears to increaseĤ in the tropical

and subtropical lower stratosphere. In climate simulations with and without volcanic forcings,

we have been able to reproduce this volcanic signature inĤ (see Chapter5), andVyushin et al.

(2004) have reported a similar boost of surface temperatureĤ from volcanic forcing in climate

of the 20th century simulations. The fact that volcanic forcing leads to power-law behavior

points to an ambiguity in how to interpret power-law spectraas indicators of long-memory

processes. In this case the long-memory process is the geophysical one of volcanism, which

leads to intermittent pulses of shortwave forcing, rather than a process internal to the atmo-

spheric general circulation.
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(f) GSPE(LTR)−GSPE(LTR+ENSO)
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Figure 4.3: Impact on zonal-mean̂H of filtering different climate signals. Difference plots for

DFA3(a) are in the left column and difference plots for GSPE(a) are in the right column. First

row, a) and b): zonal mean̂H for the unfiltered time series minus that forĤ with LTR filtering.

Second row, c) and d): zonal mean̂H for LTR filtering minus that forĤ with LTR+QBO

filtering. e) and f): as in c) and d), but forENSO instead ofQBO filtering. g) and h): as in c)

and d), but forVOLC instead ofQBO filtering.
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In Fig. 4.1, we saw considerable disagreement between the methods, andespecially be-

tween the spectral-domain and time-domain methods. Now that we have accounted for the

various effects of trends, QBO, ENSO, and volcanoes, as wellas considered the effect of using

different time scale ranges, we compare again the spectral and time domain methods. Com-

pared to the corresponding plots in Figs.4.1b and d, the methods have converged considerably.

Both methods show relatively largêH in the tropical troposphere, subtropical lower strato-

sphere, in the tropical stratosphere above 20hPa, and in theextratropical Southern Hemisphere.

The methods still disagree substantially in the Southern Hemisphere stratosphere. Overall, the

GSPE provides somewhat largerĤ, which is expected based on the Monte-Carlo testing (see

Fig. 2.2b).

The Southern Hemisphere stratosphere, where GSPE(a) and DFA3(a) continue to dis-

agree in Fig.4.4a and b, is a highly problematic area for this kind of analysisbecause of

inhomogeneities in reanalyzed data (Randel and Wu, 1999; Marshall, 2002). For example a

red spot inĤ structure at (600S,300hPa) is caused by an obvious jump in temperature re-

lated to the assimilation of the Vertical Temperature Profile Radiometer data (see Section5.3

and (e.g.Bromwich and Fogt, 2004; Dell’Aquila et al., 2007)). To test the robustness of the

H estimates for ERA40, we calculatêH using the NCEP/NCAR reanalysis air temperature

(Kalnay and Coauthors, 1996) for the same time period and with the same filtering applied.

Figs.4.4c and d show that the main features of theĤ portraits found in the ERA40 data are

also present in the NCEP data. But in the data poor Southern Hemisphere polar stratosphere,

the four panels disagree significantly. It is known that the Southern Hemisphere stratosphere

record has nonlinear temperature trends related to photochemical ozone loss (see Chapter3)

and these cannot be filtered out byLTR in GSPE; but this does not explain why GSPE(a) gives

different results for NCEP and for ERA40. We thus do not expect to find a robust estimate of

H in this region from reanalyzed data.
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(b) GSPE(ERA40)
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(c) DFA3(NCEP)
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(d) GSPE(NCEP)
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Figure 4.4: Zonal mean̂H with LTR+QBO+ENSO+VOLC filtering for a) DFA3(a) and

ERA40 data, b) GSPE(a) and ERA40 data, c) DFA3(a) and NCEP data, d) GSPE(a) and NCEP

data.

4.5 Hurst exponent estimates of zonal-mean temperature

Figs. 4.1,4.2,4.3,4.4 represent the zonal average ofĤ values calculated at each point. But

energy and momentum conservation constraints, along with the theory of eddy mean-flow in-

teractions in the atmospheric general circulation (e.g. Lorenz 1967, Schneider 2006), suggest

that Ĥ values of the zonal mean circulation might also be dynamically interesting. With this

very general motivation, we show in Fig.4.5Ĥ for the zonally averaged ERA40 air temperature

which, analogously to Fig.4.4, have had all the (LTR , QBO, ENSO, VOL ) signals removed.

We include both DFA3(a) and GSPE(a) estimates in Figs.4.5a and b, and plot the difference

fields (Ĥ for the zonal-mean temperature minus the zonal mean ofĤ for the temperature at
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each point) in Figs.4.5c and d.

We see in Fig.4.5 that the zonal-mean temperature statistics exhibit considerably more

power law behavior in the extratropics than the point temperature statistics. For example, the

regions withĤ > 0.8 are confined between 150S and 100N in Fig. 4.4a but between 400S and

200N in Fig. 4.5a. For GSPE this difference is even more pronounced. The boost provided by

taking the zonal mean first, which is shown in Figs.4.5c and d, is remarkably robust between

the twoH-estimate methods. We have also documented that the zonal averages have larger

values ofĤ than individual grid point time series in the case of total ozone (see Section3.5).

There is a possibility that some of the boost seen in Figs.4.4c and d comes about because

of an aggregation effect that arises when independent power-law time series are averaged. In

particular, when independent power-law time series are averaged, theH of the mean is greater

than the meanH of the individual time series (Granger, 1980). Although the temperature time

series are spatially correlated this aggregation effect might still operate on sufficiently large

scales. We test for the aggregation effect by the following Monte Carlo test: we create a set

of independent synthetic temperature time series with values ofH equal to the estimatedH at

each spatial point in the ERA40 reanalysis grid representedin Fig.4.4b. Therefore we simulate

144 × 73 × 18 mutually uncorrelated time series using the ARFIMA(0,d,0) model. The zonal

meanĤ of this dataset is, by construction, the same as that seen in Fig. 4.4b. We note that

we do not include spatial correlations in order to focus on the aggregation effect. We then

estimateĤ of the zonal averages of these synthetic time series. The obtained spatial patterns

(not shown) are noisier than Figs.4.4a and b but are numerically close to it. Thus for mutually

uncorrelated time series the statistical aggregation effect is negligible. This suggests that the

boost inH from using the zonal-mean temperature is of dynamical origin and stems from

systematic zonal correlations of the eddy fields.

The boost in Figs.4.5c and d is relatively small in the tropics, consistent with the idea of

Sobel et al.(2002) that point temperatures in the tropics are well correlatedwith the zonal-

mean tropical temperature field. The enhanced values ofH in midlatitudes, at the surface



CHAPTER 4. POWER-LAW CHARACTERISTICS OF THE ATMOSPHERIC GENERAL CIRCULATION100

90S 60S 30S Eq. 30N 60N 90N

10

20

30

50

70

100

150
200
250
300
400
500

700
850

1000

(a) DFA3(ERA40 ZA)

90S 60S 30S Eq. 30N 60N 90N

10

20

30

50

70

100

150
200
250
300
400
500

700
850

1000

(b) GSPE(ERA40 ZA)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

90S 60S 30S Eq. 30N 60N 90N

10

20

30

50

70

100

150
200
250
300
400
500

700
850

1000

(c) DFA3(ERA40 ZA) − DFA3(ERA40)
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(d) GSPE(ERA40 ZA) − GSPE(ERA40)
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Figure 4.5: a)Ĥ of the zonal-mean temperature for ERA40 data for DFA3(a). b)As in a), for

GSPE(a). c)Ĥ of the zonal-mean temperature minus zonal mean ofĤ for point temperatures,

for DFA3(a). d) As in c), for GSPE(a).

and in the lower stratosphere suggest that the long-memory behavior in the tropics is coupled

to midlatitudes via the eddy driven zonal-mean overturningcirculation (Held and Schneider,

1999).

4.6 Conclusions

Under the working assumption that the atmospheric general circulation exhibits power law

behavior, we have estimated the Hurst exponentH for the temperature of the global atmosphere
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using several statistical methods. Monte-Carlo benchmarking with pure power-law time series

reveals no obvious discrepancies between the methods, but when we apply these methods to

reanalyzed climate data we find a striking degree of inconsistency among the results. We

summarize our current understanding of the methods:

• DFA3 results are insensitive to trends and can be made insensitive to high-frequency

periodicities, provided trimming is not applied and all timescales are used, i.e. provided

slong is set toN .

• Multitapered and periodogram spectral methods can be made consistent with one another

provided consistent frequency ranges are used and the lowest frequencies are included.

Since the two methods yield consistentH estimates (Fig.4.2a), there is no obvious ad-

vantage to using multitapering inH estimation, at least in this application.

• The DFA3 and the spectral methodŝH results are quite inconsistent unless filtering is

applied, consistent frequency ranges are chosen and the lowest frequencies are included.

The spectral methods are sensitive to periodicities and trends, and DFA3 appears to be

more robust in this regard.

Given our current understanding, we recommend the use of DFA3(a) and GSPE(a), or alterna-

tively DFA3(a) and GPHE(a), and tests to filtering of well-known climate signals such as the

QBO, ENSO and external climate forcings, to provide a representative picture of power-law

behavior in climate time series.

Another issue that has arisen is the different sensitivities the methods exhibit to data inho-

mogeneities, e.g. temperature jumps induced by instrumentation changes. Although previous

work suggests that DFA3 is more robust in the presence of suchinhomogeneities (Berton, 2004;

Chen et al., 2002; Hu et al., 2001) than spectral methods, its results might also be affected.We

discuss this question in more details in Section5.3below.

Using DFA3(a) and GSPE(a), we have found several robust highH regions in the atmo-

spheric general circulation. In particular, we have found that point temperature statistics exhibit
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robust power-law behavior in the tropics that decreases with latitude. A connection between

the tropics and extratropics becomes evident whenĤ is calculated for the zonal-mean tem-

perature. These results may have practical implications for analysis of tropical tropospheric

temperature trends (e.g.Santer et al., 2005; Randel and Wu, 2006; Thorne et al., 2007). These

trends are highly nonrobust: satellite measurements, radiosondes, and climate model simula-

tions all provide different values for these trends. But if tropical temperatures exhibit power-

law behavior, confidence intervals on these trends would very likely be underestimated using

AR1 based noise models. Calculation of confidence intervalsaccording to a power-law model

for the residuals as carried out inSmith (1993) would lead to a significant increase of the

trends confidence intervals (see also Chapter3 and Section6.5). Thus at least some of the

apparent discrepancies could be accounted for by properly representing long-range temporal

correlations in the tropical atmosphere.

Another robust result, found both for DFA3(a) and GSPE(a), is that volcanic forcing in-

creasesĤ in the lower tropical and subtropical stratosphere. Volcanic forcing has also been

found to have an effect onH at the surface (Vyushin et al., 2004) and it still remains to rec-

oncile the surface and stratosphericH signatures. Furthermore, since the volcanic forcing

record can be imprinted in the deep oceanic circulation (Delworth et al., 2005; Gleckler et al.,

2006), this result suggests that some of the long-memory behavior seen in the coupled ocean

atmosphere system might be attributable to a volcanic forcing effect.



Chapter 5

Reanalysis vs. specialized GCM

simulations

5.1 Introduction

In Chapter1, we discussed how the ability of climate models to capture observed power-

law behaviour has lead to some considerable controversy in the previous literature (e.g.

Govindan et al., 2002; Fraedrich and Blender, 2003; Vyushin et al., 2004). With the results

of Chapters2 and 4 in hand, we have established the relative sensitivity and reliability of

the different estimation methods. We are now in a position toanalyze the ability of climate

prediction models to simulate temporal scaling behavior. In our view this represents a strin-

gent performance test because it requires the model to capture variability on a wide range of

timescales.

In this chapter, we estimate the power-law exponent distribution — i.e. the Hurst exponent

distribution — for the global atmospheric circulation of the stratosphere and troposphere during

the 20th century, in observations and in climate simulations, and use the climate simulations

to gain insight into the distribution. This is a significant extension of the previously cited

literature, which has generally been restricted to surfaceair temperature. We will highlight

103
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results that are independent of the Hurst exponent estimation technique. Here we focus on

DFA3 results, since it is more robust than GSPE; it automatically filters out linear and quadratic

trends; and we do not need to estimate scaling factorb in this chapter. However we verify that

DFA3 and GSPE, the two methods we recommend to use in similar studies, results agree. We

will mainly use highly constrained climate simulations in which the ocean surface temperatures

and different combinations of radiative forcings are prescribed; in Chapter6, we will extend

the analysis to coupled ocean-atmosphere climate models.

This chapter is structured as follows. Section5.2 compares spatial distributions of̂H for

reanalyses and various GCM simulations. The effect of tropical SST forcing is analysed in

Section5.3. The results of the DFA3 are compared with the GSPE in Section5.4. A simple

model for understanding the effect of volcanic eruptions onthe temporal spectrum of the lower

tropical stratosphere is presented in Section5.5. Section5.6 concludes. The material in this

chapter has been published in Geophysical Research Letters(Vyushin et al., 2009).

5.2 Specialized GCM simulations

Fig.5.1plots DFA3 estimates ofH for the reanalysis products and several climate simulations.

The Ĥ distribution displays a characteristic shape that we have verified is robust to differ-

ent methods ofH estimation (see Chapter4). Both the NCEP/NCAR and ERA40 reanalyses

(Figs.5.1a and b) show maxima in̂H in the tropical to low-extratropical troposphere and in the

tropical to subtropical stratosphere and a minimum in the Northern Hemisphere polar strato-

sphere. But there are differences between the reanalysis products; for example, ERA40 has

separate local maxima in̂H in the lower and upper troposphere at 600S that will be discussed

later in relation to Fig.5.3. We will also show that even where the distributions appear to agree,

they might do so for different reasons.

Fig.5.1c plots theĤ distribution for a simulation of the GFDL Atmospheric Model(AM2.1

The GFDL Global Atmospheric Model Development Team, 2004) forced by historical SSTs,
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(b) ERA40 (QBO)
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(f) WCRP CMIP3
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Figure 5.1: Ĥ distribution for zonal-mean temperature for (a) the NCEP/NCAR reanalysis,

(b) the ERA40 reanalysis, (c) the GFDL AM2.1 HistSST+AllForc simulation, (d) the GFDL

AM2.1 HistSST simulation, (e) the GFDL AM2.1 Vol simulation, (f) the CMIP3 simulations.

Panel (f) represents a multiple model average. As stated in the text, QBO filtering has been

applied to the reanalysis temperatures in panels a-b.

anthropogenic greenhouse gases and aerosols, ozone changes, solar flux, and volcanic aerosols

(hereafter the “HistSST+AllForc” simulation). The main features of theĤ distribution of this

simulation are similar to those displayed in the observationally based Figs.5.1a-b, including

the falloff of Ĥ as we move from the equator to the poles and separate maxima inthe lower

stratosphere and the troposphere. Therefore given historical SSTs and the other principal ex-

ternal forcings the GFDL AM2.1 is able to reproduce the continuum of zonal mean temporal

temperature variability represented by the Hurst exponent.

Three additional simulations of AM2.1 help explain the physical origins of theĤ distri-

bution. First, a simulation with time-independent radiative forcings and with prescribed cli-

matological SSTs (labelled “Climo”) haŝH values close to 0.5, with a range of 0.4 to 0.6
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(results not shown). Thus, the atmosphere exhibits a flat spectrum on interannual to multi-

decadal timescales in the absence of forcing on these timescales. Second, a simulation with

time-independent radiative forcings and with historical SSTs (“HistSST”) has a tropospheric

pattern ofĤ (Fig. 5.1d) that is similar to that in Figs.5.1a-c. The simulated tropospheric

H is thus determined by the SSTs and is consistent with the surface-temperature analysis of

Fraedrich and Blender(2003) that suggested that the origin of largêH in the atmosphere is

oceanic. Third, a simulation with time-independent forcings from the radiatively active gases

and anthropogenic aerosols and with prescribed climatological SSTs, but with historical vol-

canic forcing (“Vol”) gives rise to a stratospheric patternof Ĥ (Fig. 5.1e) that is similar to that

in Figs.5.1a-c. To summarize, the simulations show that the observedĤ distribution is mainly

determined by temporal variability of the SSTs in the troposphere and by volcanic forcing in

the lower stratosphere.

We briefly demonstrate that current generation climate models can capture thêH distribu-

tion in a less constrained forcing framework. TheĤ distribution averaged over the CMIP3

coupled ocean-atmosphere model simulations of the 20th century is shown in Fig.5.1f; it dis-

plays a similar structure to Figs.5.1a-c but has a narrower meridional extent and a weaker

volcanic signature in the lower stratosphere. The simple explanation for the latter is that only

9 of the 17 models considered included realistic volcanic forcings. In Chapter6 we will com-

pare spatial distributions of̂H for the 20th century simulations of the models with a realistic

volcanic forcing to those without it. We will also show that theĤ for the CMIP3 models is es-

sentially the same whether we estimateĤ for the range 18 months to 45 years over the second

half of the 20th century or for the range 18 months to 100 yearsover the entire 20th century.

5.3 Influence of tropical SSTs

We propose that the relatively steep spectral slopes represented by theĤ maximum centered in

the tropical troposphere are generated by tropical SST variability. Our test of this idea reveals
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(a) NCEP/NCAR ( − TropSST)
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(b) ERA40 ( − TropSST)

90S 60S 30S Eq. 30N 60N 90N

10

20

30

50
70

100

150
200

300
400
500
700

1000
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Figure 5.2:Ĥ without TropSST filtering minuŝH with TropSST filtering, which represents

the signature of the tropical SSTs in thêH field: (a) NCEP/NCAR, (b) ERA40, (c) AM2.1

HistSST+AllForc. QBO filtering has been applied to ERA40 andNCEP/NCAR reanalyses.

a significant discrepancy between the two reanalysis products. To test the idea, we create time

series of tropical mean SST in the latitude band 200S-200N (“TropSST”Smith et al., 2008). We

then filter the TropSST signal from the temperature time series using linear regression and esti-

mateH of the result for the NCEP/NCAR and ERA40 reanalyses and for the HistSST+AllForc

simulations. Fig.5.2isolates the part of thêH distribution related to tropical SSTs by showing

the originalĤ minus the TropSST-filtered̂H. In the NCEP/NCAR reanalysis (Fig.5.2a) and

in the simulation (Fig.5.2c), there is a vertically coherent part of thêH distribution throughout

the tropical and low extratropical troposphere that is related to the TropSST signal, as indi-

cated by the positive values. The TropSSTĤ signature in the ERA40 reanalysis (Fig.5.2b) is

qualitatively different, being vertically incoherent andof mixed sign.

In Fig. 5.2, the NCEP/NCAR reanalysis and the climate model simulationappear to agree

with our hypothesis of tropical SST control, while the ERA40appears to disagree with it. To

understand these inconsistent results we display the residuals of the tropical upper tropospheric

temperatures after TropSST filtering has been applied, for the three reanalysis products and for

the HistSST+AllForc and HistSST simulations (Fig.5.3a). A one year running average has also

been applied. The ERA40 residuals (shown in red) show much more decadal variance than the

NCEP/NCAR and Japanese reanalysis (JRA-25Onogi and Coauthors, 2007) residuals and the
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Figure 5.3: The one year running mean of zonally averaged airtemperature residuals (a) at

(Equator, 400 hPa) with TropSST filtering as described in thetext; (b) at (600S,925hPa), with-

out TropSST filtering ; (c) as in (b), at (600S,300hPa). ERA40 time series are shown in red,

NCEP/NCAR in orange, JRA-25 in green, HistSST in blue, and HistSST+AllForc in violet.

All time series were adjusted to have zero mean for 1979-2002.

simulations’ residuals. Significant fluctuations for the ERA40 include particularly high val-

ues during 1975-1983, which are probably related to problems with transition from VTPR to

TOVS satellite data (Simmons et al., 2004; Uppala and Coauthors, 2005), and low values for

1986-1991 and after 1992. Similar issues also explain the lower and upper tropospheriĉH max-

ima at 600S that are seen in the ERA40 reanalysis (Fig.5.1b) but not seen in the NCEP/NCAR

reanalysis (Fig.5.1a) or in the HistSST+AllForc simulation (Fig.5.1c). Figs.5.3b and c plot

temperature anomalies (without TropSST filtering) from thesame five data sets at these loca-
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tions. There is an obvious jump (negative at 925hPa and positive at 300hPa) in the ERA40

temperature presumably related to problems with assimilation of the VTPR data from 1973 to

1978 (Bengtsson et al., 2004; Simmons et al., 2004). Another striking difference between the

models and reanalyses are the strong positive trends at 300hPa. These trends seem to be spuri-

ous and stem from the reanalysis models’ cold biases combined with a gradual increase in the

number of observations in the Southern Hemisphere (Bengtsson et al., 2004; Simmons et al.,

2004). Discrepancies in the Southern Hemisphere polar stratosphere have been discussed in

Section4.4. Therefore several data inhomogeneity issues in the ERA40 affect and are revealed

by ourH analysis. However this does not exclude a possibility of other data problems present

in the ERA40 and NCEP/NCAR reanalyses. The data inhomogeneities described above could

also probably be identified by comparison of the spatial distributions of standard deviations

of the annual mean anomalies of the reanalyses and model simulations. However the Hurst

exponent characterizes temporal variability for a range oftime scales, whereas the variance is

typically dominated by a high-frequency variability of a given time series. Thus to capture pos-

sible data inhomogeneities using the variance one should test several temporal aggregations,

e.g. to estimate standard deviations of daily, monthly, annual, or decadal means. In contrast,

the power-law analysis achieves this goal in one step.

5.4 DFA3 vs GSPE

We have established two primary methods ofH estimation, DFA3(a) and GSPE(a), and now

test whether some of our key results are method dependent. Inthe Figs.5.1and5.2we used the

DFA3 time domainH estimator. We have shown in Chapter4 that DFA3 and other spectral do-

main methods yield consistent estimates ofH provided a consistent frequency range has been

chosen and known climate signals have been filtered out. DFA3effectively filters out linear

and quadratic trends in the data, which helps us to focus on internal climate variability. The

distribution of the DFA3Ĥ seems to be approximately Gaussian (Rybski and Bunde, 2009)
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(c) AM2.1 Hist SST + AllForc (LTR)
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Figure 5.4: Ĥ distribution estimated by GSPE for zonal-mean temperaturefor (a) the

NCEP/NCAR reanalysis, (b) the ERA40 reanalysis, (c) the GFDL AM2.1 HistSST+AllForc

simulation, (d) the GFDL AM2.1 HistSST simulation, (e) the GFDL AM2.1 Vol simulation,

(f) the CMIP3 simulations. Panel (f) represents a multiple model average. As stated in the text,

QBO filtering has been applied to the reanalysis temperatures in panels a-b. Values of̂H less

than 0.4 are shown in white.

with standard deviation≈ 0.075 for the case of the time scale range of 18 to 540 time units

(seeWeron(2002) and Section2.3). Overall, DFA3 provides more robust estimates than other

available methods, but for the results reported here, we have found consistent results using the

spectral domain Gaussian semiparametric estimator.

Figs.5.4and5.5apply the Gaussian Semiparametric Estimator (GSPE,Robinson, 1995a)

to the same data sets as in Figs.5.1and5.2. GSPE is a maximum-likelihood spectral domain

estimator ofH. The GSPEĤ is known to be relatively sensitive to the presence of linearand

nonlinear trends and to high-frequency spectral peaks compared to DFA3 (see Section4.4). Be-

cause of the known sensitivity to trends we have filtered out the linear trend before calculating

the GSPEĤ.
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(f) AM2.1 HistSST+AllForc(−LPTropSST)
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Figure 5.5:Ĥ without LPTropSST filtering minuŝH with LPTropSST filtering, which repre-

sents the signature of the tropical SSTs in theĤ field. First row - DFA3 estimates, second row

- GSPE estimates.

In Fig. 5.4 the overall distribution of the GSPÊH is similar to, but noisier than, the DFA3

Ĥ in Fig. 5.1. However, significant differences remain. For example, Southern Hemisphere

stratospheric values of̂H are larger for GSPE than for DFA3 in the reanalyses due to data

inhomogeneities and to nonlinear trends from ozone depletion (see Section4.4and Chapter3).

In addition, the differences in the tropical troposphere arise from ENSO related variability that

boosts the high frequencies and is known to reduce the GSPEĤ relative to the DFA3Ĥ (see

Section4.4). In the CMIP3 simulations this discrepancy is present whenwe analyze 45 year

long time series, but is reduced when we analyze 100 year longtime series.

We also have to bear in mind GSPE’s sensitivity to high frequency spectral peaks when

we try to reproduce the results of Fig.5.2, which illustrates the sensitivity of̂H to tropical

SST variability. The impact on the GSPÊH of TropSST (Smith et al., 2008) filtering (not

shown) looks quite different from that for the DFA3̂H, which is shown in the Figs.5.2d-f.

This difference arises because the high frequency component of the TropSST signal dominates



CHAPTER 5. REANALYSIS VS. SPECIALIZED GCM SIMULATIONS 112

the GSPEĤ response while the low frequency component of the TropSST signal dominates

the DFA3Ĥ response. But we can put the two methods on a more even footingby focusing

on the decadal component of the tropical SST variability, which is the timescale of interest in

this thesis. To do so, we construct a 3 year low-pass filtered tropically averaged SST signal

(“LPTropSST”) and compute the response to LPTropSST filtering in DFA3Ĥand GSPEĤ in

Fig. 5.5. The first row of this figure is similar to Fig.5.2, showing that the DFA3̂H response

is robust to the low-pass filtering. The first and the second row of Fig. 5.5are also remarkably

similar, indicating that the tropical SST effect is in good agreement in the two methods.

5.5 Effect of volcanic eruptions

We return to the volcanic signature of̂H in the lower stratosphere. It has been shown theo-

retically that a sum of stochastic amplitude shocks decaying by a power law has a power law

spectrum (Parke, 1999). But the volcanically induced warming of the stratospheredecays ex-

ponentially in time (Robock, 2000) and so we cannot expect power-law behavior in temperature

except over a limited range of frequencies.

A simple model to capture the behavior is

dT

dt
= −1

τ
T + V (t) (5.1)

where T is temperature,τ is a relaxation time scale andV (t) is the volcanic forcing

(Stenchikov et al., 2006) (expressed as aerosol optical depth). Fig.5.6a shows one-year run-

ning mean air temperature anomalies in the tropical lower stratosphere obtained from the

GFDL AM2.1 Vol simulation (see Fig.5.1e), Fig.5.6b the solutions to (5.1) for various val-

ues ofτ , and Fig.5.6c the power spectra for the time series in Fig.5.6b. As the relaxation

time scale gets larger the power spectra saturate at lower frequencies, which would give rise to

larger estimates ofH. These power spectra demonstrate a combination of power-law behavior

between 6 months and 4-10 years and a flat spectrum at the lowest frequencies. When we
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Figure 5.6: (a) Air temperature anomalies at (Equator, 70hPa) from the AM2.1 Vol simulation.

The smooth red curve is a one year running average. The timingand the names of the major

volcanic eruptions are shown above the time axis. (b) Solutions to equation (5.1) for τ = 1

year (red curve), 3 (orange), 5 (green), and 10 years (blue).(c) Multitapered power spectra

of these solutions and their DFA3 Hurst exponent estimates.(d) The power spectrum of the

solution forτ = 1 with the weather noise superimposed on it. The best fit power-law curve

(line in log-log coordinates) is shown in brown. Panels (c-d) are plotted in log-log coordinates.
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repeat the same calculation for the volcanic forcing recordof the past 130 years the saturation

occurs at lower frequency (not shown).

The DFA3Ĥ for the solutions to (5.1) are labelled with colors corresponding to the spectra

in Fig. 5.6c. TheĤ values are so large because our simple model does not includeregular

weather noise, which boosts spectral power in high-frequencies and thus decreases theĤ. To

support this we have plotted the power spectrum of the solution to (5.1) for τ = 1 with the

weather noise superimposed on it. We employed the time series of air temperature monthly

mean anomalies at the equator at 70hPa obtained from the Climo simulation of GFDL AM2.1

that was forced with climatological SSTs and with time-independent radiative forcings. The

Hurst exponent estimate of this time series, obtained usingthe DFA3 method, is 0.97, which

agrees well with the values in the lower tropical stratosphere in Fig.5.1e.

5.6 Conclusions

To conclude, we find that zonal-mean air temperature on interannual to multi-decadal

timescales has a steep spectrum that might be modelled by power-law behavior in the tropi-

cal to low-extratropical troposphere and the tropical to subtropical stratosphere. Current gen-

eration climate models can capture these features and specialized simulations elucidate their

dynamics. We propose that the troposphericĤ signatures are linked to tropical SST variability

and that the lower stratospheriĉH signatures are linked to volcanic forcing. The link to tropi-

cal SST variability is clear in the NCEP/NCAR reanalysis. The largeĤ values in the tropical

upper troposphere in the ERA40 reanalysis appear to arise from data problems that mask the

connection to tropical SSTs. The ERA40H estimates also exhibit tropospheric maxima at

600S that appear related to other documented data assimilationissues.

This analysis points to problems in naively interpreting the Hurst exponent distribution as

an indicator of long-term memory in climate and care needs tobe taken to elucidate the physical

basis for a givenĤ feature. Data inhomogeneities affect many observational time series and
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can equally give rise to power-law behavior (Berton, 2004; Rust et al., 2008). Sometimes, such

as at 600S in the troposphere, it is immediately evident that there isa discrepancy to explain,

but at other times, such as in the tropical troposphere, the effort still needs to be made to test

the consistency of the power-law behavior under different physical hypotheses. We have found

that general circulation models provide a useful tool for such testing.

The frequent presence of power-law behavior, whatever its cause, suggests that statistical

testing for significant trends and periodicities should usepower-law noise models (seeSmith

(1993), Chapter3, and Section6.5) as well as AR1-models, particularly in the tropical upper

troposphere and lower stratosphere whereĤ is large and trend evaluation has proven difficult

(e.g.Santer et al., 2005). Power-law based confidence intervals are typically larger because

they assume more power at lower frequencies. For example, power-law based significance

testing has been applied to the problem of stratospheric ozone recovery in the presence of

significant stratospheric internal variability, and leadsto a lengthening of the projected time for

the detection of ozone recovery (Chapter3).



Chapter 6

Analysis of CMIP3 simulations

6.1 Introduction

In this chapter we study persistence and spectral power growth of the surface and free atmo-

sphere air temperature derived from several observationalproducts and CMIP3 climate model

simulations. The CMIP3 project provides an excellent opportunity for verification and gener-

alization of features and mechanisms found in individual observational data sets and models,

which were the subject of almost all previous climate persistence studies in climate literature

and Chapters4 and5. We compare the fidelity and the goodness-of-fit of the AR1 vs the power-

law model and show that they provide a lower and an upper boundfor climate persistence on

monthly to decadal time scales. We test the robustness of thepower-law fit by varying the

spectral range to which it was fitted and scenarios under which model simulations have been

performed. We provide a comparison with previously published results based on individual

climate model simulations and paleo reconstructions. The material in this chapter represents a

manuscript by Vyushin and Kushner in preparation for submission to Climate Dynamics.

116



CHAPTER 6. ANALYSIS OF CMIP3 SIMULATIONS 117

6.2 Data and Methods

In this chapter we use three observational products: the NCEP/NCAR reanalysis

(Kalnay and Coauthors, 1996), the ERA40 reanalysis (Uppala and Coauthors, 2005), and the

NASA GISS surface air temperature (Hansen et al., 1999). The GISS dataset combines ob-

servations of land meteorological stations and sea surfacetemperature data. It maps the

observations on a 2ox2o grid and smoothes them over 1200 km. We also employ the pre-

industrial control (picntrl) and the 20th century (20c3m) simulations of 17 atmosphere-

ocean coupled general circulation models from the CMIP3 database: CGCM3.1(T47),

CGCM3.1(T63), CSIRO-Mk3.0, CSIRO-Mk3.5, ECHAM5/MPI-OM,GFDL-CM2.0, GFDL-

CM2.1, GISS-AOM, GISS-EH, GISS-ER, MIROC3.2(medres), MIROC3.2(hires), MRI-

CGCM2.3.2, NCAR CCSM3.0, NCAR PCM, UKMO-HadCM3, UKMO-HadGEM1. We also

analyze 500 year longpicntrl simulations of six GCMs (CGCM3.1(T47), ECHAM5/MPI-OM,

GFDL-CM2.0, GFDL-CM2.1, GISS-ER, MIROC3.2(medres)).

For each scenario (picntrl or 20c3m) we have found it sufficient to use a single realization

from each model. For all the observational products we use the ERA40 period September 1957

to August 2002 and compare this to the20c3msimulation period 1955-1999 for the models. We

also use the longer20c3msimulation period 1900-1999. We note that for the20c3msimula-

tions all the models were forced by anthropogenically changing greenhouse gases and aerosols

and some models were also forced by changes in stratosphericozone, solar radiation and vol-

canic aerosols. Model details have been documented previously (e.g.Santer et al., 2005) and

can also be found on theCMIP3 web-site. The seasonal cycle and its first three harmonics are

filtered out from all time series. In addition, we have filtered out the effect of the QBO from

reanalysis zonal mean air temperature following the methodology described in Section3.3.1,

because none of the CMIP3 models simulates this phenomenon.

We estimate the Hurst exponent by means of detrended fluctuation analysis of the third

order (DFA3) (Kantelhardt et al., 2001). DFA3 filters out local polynomial trends up to the

second order (Kantelhardt et al., 2001) and therefore typically is not sensitive to human induced

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
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secular climate change effects, such as surface warming or stratospheric temperature changes

forced by ozone depletion and a subsequent recovery (see Section 2.2.2and4.4). We have

shown in Section2.3 that DFA is one of the most robust Hurst exponent estimators,but we

have verified the results presented in this chapter by means of the Gaussian Semiparametric

Estimator (seeRobinson(1995a) and Section2.2.1), which gives results consistent with DFA

provided periodic components and anthropogenically induced trends have been filtered out

and equivalent frequency ranges have been used (see Chapter4). The lag-one autocorrelation

coefficient is estimated by the Yule-Walker method and has been verified by a maximum-

likelihood fitting of the AR1 spectral density (see Eq.1.3) to the periodogram (Beran, 1994).

We have already discussed the uncertainty of Hurst exponentestimates in Chapter2.

We recall that unfortunately there is no analytical description of DFA Ĥ properties, but

Monte-Carlo simulations demonstrate that it seems to be approximately normally distributed

(Rybski and Bunde, 2009) and that for the frequency range of 18 months to 45 years for 45

year long monthly time seriesσ(Ĥ) ≈ 0.075 for DFA3 vs≈ 0.12 for GSPE (see Section2.3).

For the frequency range of 5 to 45 years Monte-Carlo simulations show thatσ(Ĥ) ≈ 0.14 for

DFA3 andσ(Ĥ) ≈ 0.27 for GSPE.

6.3 Results for the surface air temperature

6.3.1 Time aggregation effect

The ability of climate models to reproduce many aspects of the observed climate variability

(e.g.Randall and Coauthors, 2007) helps to answer the question of whether spectral power-

law behaviour is an appropriate representation of climate variability. In this subsection we

compare the relative validity of the AR1 and power-law statistical models for SAT. We will

return to this question again in subsection6.3.4. Here we will address this question without

actually fitting a power-law to power spectrum.

Our comparison exploits the distinctive behaviour of the AR1 and power-law models under
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temporal aggregationas is done when, for example, creating an annual mean time series based

on January to December averages of a monthly mean time series. We define the temporally

aggregated time series

X
(T )
j =

1

T

T
∑

i=1

Xi+T (j−1), j = 1, 2, . . . , T ≥ 1. (6.1)

whereXi, i = 1, 2, . . . is the original time series. In this notation,X
(12)
1 would be the

first value of an annual mean time series aggregated from the monthly mean time series

{X1, . . . , X12, X13, . . .}. Under temporal aggregation, for an AR1 time series with lag-one

autocorrelationφ, the temporally aggregated time series has lag-one autocorrelation

AR1: φ(T ) =
φ(1 − φT )2

T (1 − φ2) − 2φ(1 − φT )
, 0 ≤ φ ≤ 1 (6.2)

In (6.2), φ(T ) = 0 whenφ = 0, φ(T ) → 1 asφ → 1−, andφ(T ) < φ for 0 < φ < 1. The shape

of φ(T ) as a function ofφ is shown by the red curves in Fig.6.1.

By contrast, temporal aggregation has no impact on a power-law stochastic process. More

precisely, for a second order self-similar process, which can be regarded as the ultimate case

of a power-law stochastic process, we find (Cox, 1984; Taqqu, 2002)

Power-law: φ(T ) = φ, 0 ≤ φ ≤ 1, T ≥ 1. (6.3)

This property, that the autocorrelation is independent of time aggregation, is certainly rather

counterintuitive for climate processes.

Eqns. (6.2) and (6.3) suggest a simple, and to our knowledge novel, test of the relative valid-

ity of the AR1 and power-law models: we examine the behaviourof the lag-one autocorrelation

under temporal aggregation in comparison with these equations. The results for the SAT from

the CMIP3 simulations are the most informative and are shownin Fig. 6.1. Comparison to

observations is not straightforward and will be discussed at the end of this subsection.

Figs.6.1a-c are scatter plots of the CMIP3 ensemble mean annual vs monthly autocorrela-

tions (φ(12) vs φ) for the linearly detrended SAT anomalies. Each point in these scatter plots
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(b) 17 GCMs 20c3m (1901−2000)
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(c) 6 GCMs picntrl (500y)
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(d) 6 GCMs picntrl (500y)
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Figure 6.1: a) Scatter plot ofφ(12), which is the lag-one autocorrelation for the annual mean

time series, vsφ, which is the lag-one autocorrelation for the monthly mean time series, for the

linearly detrended SAT. The autocorrelations are ensembleaveraged across thepicntrl simula-

tions of the 17 CMIP3 models. The blue line representsφ(12) = φ from (6.3) for the power-law

statistical model; the red line representsφ(12) as a function ofφ from (6.2) for the AR1 sta-

tistical model. The dots are colour coded by region: “cyan”:North Atlantic; “violet”: North

Pacific; “yellow”: Main Development Region (MDR); “green”:Southern Ocean; “orange”:

Maritime Continent; “maroon”: Arctic; “navy”: Antarctica; “black”: the rest. b) As in a), for

the20c3msimulations. c) As in a), for the 500 yearpicntrl simulations of the 6 CMIP3 models.

d) As in c), for the decadal versus annual mean time series. Note the different scales used in d).

The regions have the following boundaries: the North Atlantic (308◦E-350◦E, 40◦N-60◦N), the

North Pacific (149◦E-230◦E, 20◦N-57◦N), the Southern Ocean (0◦E-360◦E, 40◦S-65◦S), MDR

(299◦E-332◦E, 5◦N-22◦N), the Maritime Continent (98◦E-158◦E, 5◦S-5◦N).
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represents a grid point on the Earth surface with colour coding for different regions (see the

figure caption). The red and blue lines represent (6.2) and (6.3) respectively. Figs.6.1a and b

demonstrate the results for the 100 year longpicntrl and20c3msimulations, with the ensemble

mean including the 17 GCMs in those simulations. The annual autocorrelations are slightly

larger for the20c3mscenario, but otherwise the two plots look quite similar. This suggests that

beyond the influence of trends the origins of climate persistence on monthly to inter-annual

time scales are internally generated rather than externally forced.

To verify the robustness of this analysis we repeat it for thesix 500 year longpicntrl simu-

lations and plot the results in Fig.6.1c, which also resembles Figs.6.1a,b. Finally, we use these

long integrations to compare decadal-mean and annual-meanautocorrelations (i.e.φ(10) vsφ).

Qualitatively this panel is similar to the first three, but the correlations are reduced overall on

decadal scales.

In all four panels most of the points lie below the blue line and above the red line. Therefore,

for the simulations, the AR1 model provides a lower bound andthe power-law model an upper

bound for climate persistence on intra-annual to inter-decadal time scales. The points from the

Arctic are located closely to the blue lineφ(12) = φ in Figs.6.1a-c; strikingly, for the Arctic

points, the annual mean time series has a similar lag-one autocorrelation to the monthly mean

time series. But this behaviour, for which we have no simple explanation, does not extend to

decadal means: most of the Arctic points fall below the blue line in Fig.6.1d.

We have produced similar scatter plots for the SAT from the observational products; these

are not shown. Although these plots are noisy due to a reducedensemble averaging effect,

qualitatively they look similar to Fig.6.1 with a majority of the points located between the

two curves. However there are noticeably more points located above the blue line and less

dependence between annual and monthly autocorrelations, i.e. coloured regions tend to be

organized in vertical stripes. This suggests that further study, involving a closer comparison

between observations and simulations at individual points, is needed to determine if subannual

time scale persistence is an effective predictor of annual to decadal scale persistence.
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The fact that the AR1 and power-law models provide bounds forclimate per-

sistence on intra-annual to inter-decadal time scales and that the current stan-

dard practice in climate science is dealing only with the first of these bounds

(e.g. Intergovernmental Panel on Climate Change, 2007; World Meteorological Organization,

2007) motivates us to consider in details the second bound.

6.3.2 Spatial patterns

We start our analysis of the power-law spectral approximation with an analysis of the Hurst

exponent spatial distribution for the observed and simulated SAT for the second half of the

20th century. We first estimateH for the time scale range of 18 months to 45 years, which

was the time scale range of focus in Chapter5. Fig. 6.2a showsĤ of SAT calculated for the

ERA40, NCEP/NCAR, and GISS datasets, and then averaged together. We refer to averaging

the spatial distribution of̂H over different datasets or simulations as “ensemble” averaging.

(The GISS SAT is spatially complete northward of 50◦S; poleward of 50◦S only the ERA40

and NCEP/NCAR data figure in the ensemble average). We generally see larger values of̂H

at lower latitudes than at higher latitudes, and larger values ofĤ over ocean than over land.

We see a gradient in tropical Pacific and Atlantic oceans withlarger values in the western

part of each basin. Separate local maxima can be found in the North Pacific, North Atlantic

and extratropical Southern Ocean. The main features in the average can be found in each

observational product (see also Fig.6.3).

Figs.6.2b and6.2c show the 18m-45ŷH for the model ensemble mean20c3mandpicntrl

SAT. (A single 45 year segment was used for each model). The fields are smoother than in

Fig. 6.2a, primarily because of the ensemble averaging across the 17models. The main fea-

tures of the three panels agree, with significant discrepancies in parts of the Indian Ocean and

in the southwestern Pacific, wherêH for the observations is greater than that for the simula-

tions. Recall that for DFA3 for the frequency range of 18 months to 45 yearsσ(Ĥ) ≈ 0.075.

Assuming thatĤ for different climate models are not correlated, the standard deviation of the
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17 models’ ensemble mean̂H is σ(ĤCMIP3) ≈ 0.075/
√

17 ≈ 0.02. It is harder to justify a

similar assumption for the observational products and thuswe obtain only a lower bound on

σ(ĤObs) ≈ 0.075/
√

3 ≈ 0.04. Assuming independence of the observed and simulatedĤ we

haveσ(ĤObs − ĤCMIP3) =

√

σ(ĤObs)2 + σ(ĤCMIP3)2 = σ(Ĥ)
√

1/3 + 1/17 ≈ 0.05. Thus

we can consider the differences between the observed and simulatedĤ for the 18 months to

45 years range as approximately significant at the2σ level if they are greater than 0.1. (For the

frequency range of 5 to 45 years this threshold is 0.17.) Therefore as a rule of thumb, values

of Ĥ, when the observations and CMIP3 models are compared in Fig.6.2, should not be con-

sidered significantly different when they differ by only a single contour level. More detailed

regional comparisons between the models and observations will be done below in relation to

Fig. 6.3.

The results for the20c3mandpicntrl simulations are very similar, which underlines the ori-

gins of the spectral power increase with decreasing frequencies, characterized byH, in internal

climate dynamics and which also suggests a minor role of natural external forcings (solar and

volcanic) for the inter-annual and decadal SAT variability. This conclusion applies to regions

where the climate models and the observations agree. The anthropogenic forcings obviously

boost power in low-frequencies, but firstly their effects are filtered out by DFA3 and secondly

they should be modeled deterministically, rather than stochastically, and therefore are not of

interest in our study. We have also compared the spatial distribution of theĤ for the20c3m

simulations which included natural forcings with those which did not. A significant difference

between these two types of the simulations is found only overthe Maritime Continent (not

shown), where the simulations with natural forcings demonstrate largerĤ and which will be

discussed below. The origin of this effect remains unknown and requires an additional research.

For the CMIP3 simulations, we can also test the sensitivity of Ĥ to the low-frequency

cutoff by shifting it from 45 to 100 years. The results for the20c3msimulations for the time

scale range of 18 months to 100 years, corresponding to simulations from 1900-1999, are

shown in Fig.6.2d. The averagêH decreases somewhat over this time scale range, indicating
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Figure 6.2: The DFA3 Hurst exponent estimates ensemble averaged across the NCEP/NCAR

reanalysis, ERA40 reanalysis, and GISS SAT (a,e) and the 17 CMIP3 models (b-d,f-h). In

the ensemble average, first thêH is estimated for each observational product/model and then

averaged across the observational products/models. The 18months to 45 years time scale range

is used for estimation ofH in (a-c), 18 months to 100 years in (d), 5 to 45 years in (e-g), and 5

to 100 years in (h).
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a somewhat shallower slope. We have repeated this for 100 year long picntrl runs from the

17 GCMs identified in Section6.2 and 500 year longpicntrl runs from the 6 GCMs set;̂H

is almost indistinguishable in these cases. The similaritybetween Figs.6.2c and6.2d, which

also holds for individual models, suggest that the main features of theĤ distribution can be

extracted from 50 years of data. This implies that the current observational record is sufficiently

long to characterizeH on annual to multidecadal time scales in regions where the climate

models and the observations agree.

Although theĤ distribution appears robust to changes in the low-frequency cutoff, it is

quite sensitive to changes in the high frequency cutoff. Such a sensitivity was previously

noticed byFraedrich and Blender(2003); Blender and Fraedrich(2003); Blender et al.(2006),

who showed that in climate simulations the spectral slopes in the tropical ocean were sensitive

to where the high frequency cutoff is located. The right handcolumn of Fig.6.2is the same as

the left hand column of Fig.6.2, but with the short time scale cutoff changed from 18 months

to 5 years. In the observed SAT, a sharp drop inĤ occurs in the eastern tropical Pacific and

Atlantic and in the central Indian ocean (see Fig.6.2e). In the eastern Pacific,̂H < 0.5,

indicating positive spectral slope over the 5 to 45 years time scale range. The higĥH values

remain robust over the extratropical oceans.

In the CMIP3 models (Figs.6.2f-h), Ĥ is also sensitive to the high-frequency cutoff. The

large drops inĤ over the eastern tropical Pacific and Atlantic are seen as in observations,

thus cross-validating the observational finding. But the overall Ĥ for this lower frequency

band is biased low compared to the observations, particularly in the Southern Hemisphere,

tropical Atlantic and over the Maritime Continent.Kravtsov and Spannagle(2008) have doc-

umented discrepancies between the multidecadal variability of regionally averaged observed

and CMIP3-simulated SAT. Thus some of the regions for which they found that the models

noticeably underestimate natural climate variability, for instance the tropical Atlantic, are the

regions of significant disagreement between the observed and modeledĤ (see Figs.6.2e-h).

Kravtsov and Spannagle(2008) suggest that these discrepancies might be related to inabil-
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ity of the CMIP3 ensemble mean to reproduce the observed Atlantic Multidecadal Variability

(AMV). We will return to one of these discrepancies during discussion of Fig.6.3e. Ĥ in

Figs.6.2g-h is insensitive to the character of the external forcings, to the shift of the low fre-

quency cutoff from 45 to 100 years, and to the shift of the highfrequency cutoff from 5 to 7

years (not shown).

The spatial distributions of the CMIP3 model and observational ensemble mean of the

monthly SAT lag-one autocorrelation (not shown) are qualitatively similar to the correspond-

ing spatial distributions of thêH estimated for the range of 18 months to 45 years. The same is

true for the spatial distributions of the annual SAT lag-oneautocorrelation (not shown) and the

Ĥ estimated for the range of 5 to 45 years. This fact probably means that a) different climate

processes are dominant at different time scales, because the estimates of the memory parame-

ters,φ̂ andĤ, depend on the aggregation time scale and the high-frequency cutoff respectively,

and b) the lag-one autocorrelation and the Hurst exponent provide different viewpoints on the

same phenomenon.

The comparison between the models and observations in Fig.6.2is incomplete because the

model ensemble mean does not always represent individual models and because the confidence

in estimates ofH varies among regions and decreases for narrower frequency ranges. To

assist in making a more informative comparison we present inFig. 6.3 the averageĤ over

several regions, grouped by frequency range, and within each range split into individualpicntrl

simulations, observational products, and individual20c3msimulations. The boundaries of the

regions are listed in the caption of Fig.6.1.

The confidence intervals were obtained in the following way.Firstly, for each time scale

range we calculated the standard deviation of DFA3H estimate (averaged across values of

H between 0.4 and 1.1),σ(Ĥ), using 8x10,000 synthetic time series as in Section2.3. We

averaged across the several values ofH because it has been shown (e.g.Taqqu et al., 1995) that

σ(Ĥ) very weakly depends onH. Secondly, in order to take into account the effect of spatial

averaging we dividedσ(Ĥ) by the square root of the number of grid points in each region
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(e) Maritime Continent
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Figure 6.3: The averages of the DFA3̂H for the various regions and time scale ranges. For

the first four time scale ranges the left column represents the results for thepicntrl and the

right column for the20c3msimulations. The observations are shown in between those two

columns. The averaged̂H for the GISS SAT is not estimated for the Southern Ocean due to

its poor coverage. For the 20 to 500 years range onlypicntrl simulations of the six climate

models are available. The horizontal dashed lines demonstrate the2σ confidence intervals for

theĤ = 1/2. The confidence intervals for̂H > 1/2 are roughly similar. See the text for their

description. The region boundaries are given in the captionof Fig. 6.1.



CHAPTER 6. ANALYSIS OF CMIP3 SIMULATIONS 128

divided by zonal and meridional decorrelation scales of SAT. In this procedure we made rough

assumptions that temperature spatial correlations decay exponentially and that decorrelation

scales of SAT are equal to decorrelation scales ofH. We also roughly assumed that the zonal

(meridional) decorrelation scale is equal to 3 (2) grid points, which approximately corresponds

to 9◦ (5◦) (Molinari and Festa, 2000; Romanou et al., 2006). The obtained effective standard

deviations ofĤ were multiplied by±2, added to 1/2, and plotted as horizontal dashed lines in

Fig. 6.3.

For the North Atlantic, the models have just slightly largerestimates ofH than the obser-

vational products, with CSIRO-Mk3.0 and NCAR CCSM3.0 having the largest estimates and

NCAR PCM, GISS-EH, GISS-ER having the smallest estimates. TheĤ for the North Atlantic

are robust to changes of the high and low-frequency cutoffs within the 18 months to 100 years

time scale range. The spectral power grows at a slower rate onmultidecadal to centennial time

scales for thepicntrl simulations as demonstrated by the smallerĤ for the 20 to 500 years

range.

The models show even better agreement with the observational products over the North

Pacific, with GFDL-CM2.0 and MIROC3.2(medres) at the top andNCAR PCM, GISS-EH

and MIROC3.2(hires) at the bottom of the modelĤ distribution. Here the estimates for the 5

years cutoff are somewhat smaller than for the 18 months cutoff. The distributions of thêH for

the Southern Ocean have a similar spread to the North Pacific,despite larger area, with GISS-

AOM being always at the top and GISS-EH, NCAR CCSM3.0, and CSIRO-Mk3.5 typically at

the bottom. The agreement with the reanalyses is also quite good. As for the North Pacific the

Ĥ with the 5 years high-frequency cutoff are slightly less than those for the 18 months cutoff.

The spreads over the North Pacific and the Southern Ocean are smaller than the spread over

the North Atlantic at least partially due to larger areas of the former regions as reflected by the

narrower confidence intervals.

As discussed before in the context of Fig.6.2, Ĥ is very sensitive to the high-frequency

cutoff on time scales between 18 months and 100 years in the tropics, identified by the Main
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Development Region (Northern Tropical Atlantic) and the Maritime Continent in Fig.6.3.

Fig. 6.3d demonstrates a drop of the model ensemble meanĤ from about 0.9 (strong long-

memory) for the 18 months high-frequency cutoff to about 0.65 (weak long-memory) for the

5 years cutoff. The observational products show a smaller drop (from 0.95 to 0.85) and strong

long-memory for both cutoffs, which is consistent with conclusions ofKravtsov and Spannagle

(2008) that CMIP3 models underestimate natural multidecadal climate variability in the Main

Development Region. The spread between the models in the tropics is larger than over the

extratropical oceans, which perhaps represents the consequence of inconsistency in represent-

ing interannual (multidecadal) variability related to ENSO (AMV) among the models (e.g.

AchutaRao and Sperber, 2006; Kravtsov and Spannagle, 2008) as well as relatively small ar-

eas of the considered in Fig.6.3d,e regions and strong spatial correlations in those regions

(Molinari and Festa, 2000; Romanou et al., 2006).

The Maritime Continent has a similar spread between the models as the Main Develop-

ment Region but a smaller drop in thêH for the 5 years high-frequency cutoff. However it

exhibits the largest spread between the observational products, especially for the 5 to 45 years

range. For this range there is also a large disagreement between the models and observations

in the two considered tropical regions. For the Maritime Continent the disagreement could be

related to data inhomogeneities in the observations or problems with reanalyses models’ pa-

rameterizations, which are probably manifested in the large spread between different products

for the 5 to 45 years range, and difficulties in modelling thisregion (see e.g.Neale and Slingo,

2003). In addition, the Maritime Continent is the only region in Fig. 6.3 for which the model

meanĤ for the 20c3msimulations (the right column for the first four time scale ranges in

Fig. 6.3) is consistently larger than for thepicntrl simulations (the left column). This might be

a regional effect of natural forcings: those models whose20c3msimulations included natural

forcings demonstrated a consistently largerĤ over the Maritime Continent than those whose

simulations did not include natural forcings (not shown).

The model ensemble mean̂H based on thepicntrl simulations for the 20 to 500 years range
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is about 0.5 for the two tropical regions, which contradictsto the results ofHuybers and Curry

(2006), who found significantly steeper slopes for this time scalerange in paleo-proxies. For

the MDR and the Maritime Continent MIROC3.2(medres) and GISS-EH almost always show

the highest exponents and NCAR CCSM3.0 and NCAR PCM the lowest. This might be related

to the frequency and the amplitude of the ENSO peak in the corresponding model power spectra

(see e.g.AchutaRao and Sperber, 2006).

One of the open questions in climate science is the interaction between the tropical Pacific

and the extratropical North Pacific. There are at least two possible hypotheses for generating

interdecadal variability in the North Pacific. The first one proposes that this variability is gen-

erated locally by coupled atmosphere-ocean feedbacks (e.g. Latif and Barnett, 1996). The sec-

ond hypothesis suggests that it is forced by a tropical multidecadal variability (e.g.Deser et al.,

2004). The values of the CMIP3̂H for the 5 to 100 years ranges are typically higher for the

North Pacific than for the Maritime Continent and especiallyfor the Nino3 region (not shown).

This fact underlines the importance of extratropical dynamics for generating or at least mod-

ulating the interdecadal variability in the North Pacific, provided the CMIP3 models correctly

capture this variability.

6.3.3 Comparison to previously published results

Our results for the CMIP3 simulations are largely consistent with previously published re-

sults, to within methodological differences. For example,the results for the 18 months

to 45 years time scale range are within the error bars of thosefor 1 to 5 year time

scale range for the NCEP/NCAR reanalysis and 1 to 15 year timescale range for a

1000 year long ECHAM4/HOPE control run and IS92a (business as usual) global warm-

ing runs of HADCM3 and ECHAM4/OPYC reported byFraedrich and Blender(2003);

Blender and Fraedrich(2003). In addition our results for the 5 to 45 years time scale range

seem to be consistent in the extratropics with the ones for the 5 to 40 year time scale range

for a 10,000 year long run of CSIRO-Mk2 analyzed byBlender et al.(2006). In the tropics



CHAPTER 6. ANALYSIS OF CMIP3 SIMULATIONS 131

their H estimates are larger than ours, especially over the tropical Pacific and Atlantic. The

Ĥ for the 18-220 years time scale range for a 1000 year long control run of ECHO-G model

studied byRybski et al.(2008) are consistent with our results for the 20 to 500 years time scale

range, except in two regions. In the North AtlanticRybski et al.(2008) report the values of

Ĥ > 0.72 and in the Southern Ocean their values are somewhat consistent with the anoma-

lous results we get for GFDL-CM2.0.Rybski et al.(2008)’s results agree with the results of

Fraedrich and Blender(2003) for the 15 to 150 year time scale range of the ECHAM4/HOPE

1000 year long control run. We note thatFraedrich and Blender(2003); Blender and Fraedrich

(2003); Blender et al.(2006); Rybski et al.(2008) used DFA2 in their studies. The models they

analyzed belong to the previous generation and are not part of the CMIP3 archive.

A linear regression of a logarithmically binned logarithm of a multitaper spectral estimator

against a logarithm of the frequency was employed byHuybers and Curry(2006) to estimate

H. We have found that theirH estimates for the NCEP/NCAR reanalysis for the 2 month to

30 year time scale range are larger than ours over the tropical oceans because of the smaller

high-frequency cutoff they implement (comparison not shown). As we have shown above

and as can be seen in figures ofFraedrich and Blender(2003); Blender and Fraedrich(2003);

Blender et al.(2006), theĤ over the tropical oceans is larger for smaller high-frequency cutoff

time scale.

Although the simulated and observed̂H agree over large regions on annual-to-decadal

timescales, we find suggestions that the simulatedĤ is consistently smaller than observed on

multidecadal to centennial time scales. In particular, forthe time scale range of 20 to 500 years

theĤ is typically between 0.5 and 0.7 for the extratropical oceans according to the six models’

picntrl simulations, which manifests weak long-memory behaviour on those time scales. But

paleo-climate reconstructions consistently exhibit large H on these time scales. For example,

Pelletier(1997) reportedĤ = 0.75 for the Vostok Antarctic ice core on the time scale range

between several decades and several millennia,Blender et al.(2006) estimated thêH = 0.7

for GRIP and theĤ = 0.84 for GISP2 Greenland ice cores for the range between around 30
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and 1000 years, andRybski et al.(2006) showed that various reconstruction of the Northern

Hemisphere SAT havêH > 0.8 for the range between a decade and several hundred years.

Huybers and Curry(2006) demonstrated a transition from the values ofĤ below 1.0 to values

greater than 1.0 at around a 100 years time scale for several paleo-proxies.Pelletier(1997) also

documented such a transition for the Vostok Antarctic ice core, but at around the several thou-

sand years time scale. There are several processes missing from thepicntrl, such as the natural

radiative forcings (solar and volcanic), glacial dynamics, and interactions with the biosphere,

which might boost theH in the simulations. For now, we conclude that these simulations

provide a lower bound forH on multidecadal, centennial, and longer time scales. However

potential problems with paleo-climate reconstructions, such as data inhomogeneities, which

could increase low-frequency time series variability and thereforeH, cannot be completely

excluded.

6.3.4 Goodness of fit tests of power-law and AR1 models

We now compare the performance of the AR1 vs power-law model in terms of a spectral

goodness-of-fit test (Milhoj, 1981; Beran, 1992). This test estimates a standardized overall

measure of the discrepancy between the periodogram and the fitted spectrum (e.g. AR1 or

power-law). The spectral goodness-of-fit test also provides an approximate p-value, i.e. the

probability of obtaining a deviation from the fitted spectrum at least as extreme as the one

that was actually observed.Percival et al.(2001) applied this test to North Pacific atmospheric

variability and found that neither model was clearly superior. Their conclusion was that the

observational record was too short to distinguish between the two models. In contrast, we

applied this test to the three century Central England Temperature time series in Section1.1

and foundp = 0.67 for the power-law model andp = 0.2 for the AR1 model, which favors the

power-law model as a significantly superior fit to this time series.

Here we extend these results by applying the spectral goodness-of-fit test to SAT in the

CMIP3. The power-law fit to the periodogram is based on GSPE and the AR1 spectral density
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Figure 6.4: The spectral goodness-of-fit test p-value for the power-law fit minus the p-value

for the AR1 fit for the20c3mCMIP3 simulations. Panel (a) shows the results for the monthly

means and (b) for the annual means. The time scale range of 18 months to 100 years have

been used for the power-law fitting in panel (a) and 2 to 100 years in (b). All the available

frequencies, 1/(2 months) to 1/(100 years) in panel (a) and 1/(2 years) to 1/(100 years) in panel

(b), have been employed for fitting the AR1. The results have been averaged across the 17

CMIP3 climate models. The power-law fit is superior (inferior) in the red (blue) areas.

is also fitted to the periodogram using a maximum-likelihoodapproach (Section6.2). Here

we use GSPE, because in contrast to DFA it allows us to use all available frequencies. (DFA3

has a limitation that its short time scale cutoff should be greater or equal than 18 time units

(see Section2.2.2).) In Fig. 6.4a, we fit the AR1 model to the linearly detrended20c3mSAT,

calculatepAR1 for the AR1 model for each grid point and each GCM, and take themodel

ensemble mean. We calculate the ensemble averageppower−law in a similar way for the 18

months to 100 years power-law model and plot in Fig.6.4a the differenceppower−law − pAR1.

We see that this difference is positive almost everywhere, especially over the extratropical

oceans. Thus the spectral goodness-of-fit test favors the power-law model in this application or

in other words the power-law model is more strongly supported by the data under consideration

than the AR1 model.

But we note in Fig.6.4a that there is an inconsistency in the time scale range used in fitting
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the two models: the AR1 model is fit from 2 months to 100 years, while the power-law model

is fit from 18 months to 100 years. We considered this example because it is a standard prac-

tice, for instance in studies of total ozone trends (see e.g.World Meteorological Organization,

2007), to fit the AR1 model to monthly mean residuals of a regression model. Fig.6.4a con-

firms conclusions of Chapter3 that the power-law model fitted at low-frequencies providesa

better or similar quality fit at low-frequencies than the AR1model fitted to all available fre-

quencies and thus the former is preferable for trend confidence intervals estimation. When we

use consistent frequency ranges, which puts the two statistical models on an equal footing, the

results change. In particular, if we fit the two models to the linearly detrendedannual mean

SAT time series over the same time scale range of 2 to 100 years, the two models show equal

performance for the20c3m(Fig. 6.4b) and thepicntrl (not shown). This approach is consis-

tent with previous applications of such comparisons (e.g.Percival et al., 2001). The similar

performance of the two models, when consistent frequency ranges are used, meshes with the

qualitative impression from Fig.6.1, which shows that persistence in SAT falls about midway

between the AR1 and power-law models. This behaviour extends similarly to other time scale

ranges and to thepicntrl integrations, including the decadal-to-centennial rangein the 500 year

longpicntrl integrations (not shown).

In summary, from the temporal aggregation analysis (Fig.6.1) and the spectral goodness-

of-fit test (Fig.6.4), we have reached a key conclusion: there is no objective evidence that the

power-law model is superior to the AR1 model in the CMIP3 simulations on interannual to

multidecadal timescales. Instead, we see a behaviour in thesimulations that falls between the

two statistical models, showing that neither provides a complete description of natural climate

variability. This opens a possibility that high order models, e.g. autoregressive models of order

greater than one, might provide a better fit. The significanceof the above mentioned conclu-

sions depends in part on the match between the simulations and observations. In our evaluation,

the models do sufficiently well in regions like the North Pacific and the North Atlantic to trust

that this conclusion would also apply to the real climate system. Thus, Percival et al.’s (2001)
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conclusion that AR1 and power-law models perform comparably for the North Pacific circula-

tion might not depend on the length of the observed record buton the fundamental character of

natural climate variability in that region. But this conclusion could very well change on longer

time scales as Earth System models are developed that properly capture biosphere-climate and

cryosphere variability, given the evidence of power-law like behaviour in paleo reconstructions

(e.g.Pelletier, 1997; Huybers and Curry, 2006).

6.4 Results for the free atmosphere air temperature

In Chapters4 and5 we analyzed observed and simulated zonal mean free atmospheric temper-

atureĤ for the time scale range of 18 months to 45 years; the simulations in Chapter5 included

specialized atmospheric general circulation model simulations and the CMIP3 simulations. In

this section, we further explore the CMIP3 simulations, in the context of the findings of the

previous section.

The first row of Fig.6.5 plots theĤ for zonal mean air temperature for the time scale

range of 18 months to 100 years. Panel (a) is similar to Fig.5.1f, which showed the results

for the20c3msimulations for the range of 18 months to 45 years. This is consistent with the

results for the SAT, which are robust to the low-frequency cutoff shift from 45 to 100 years.

The tropospheric part of thêH distribution for thepicntrl simulations (Fig.6.5b) is similar to

Fig. 6.5a. This agrees with the conclusions of Chapter5 that the tropospheric structure of the

Ĥ is caused by the internally generated tropical SST variability.

The tropical lower stratosphere maximum in̂H was shown by means of linear regression

in Section4.4 and by a volcanic forcing GCM simulation in Section5.2 to be caused by the

volcanic forcing. The same general effect is found in the CMIP3 models: we plot in panel

(c) the difference between thêH for the nine20c3msimulations that had historical volcanic

forcing and the eight20c3msimulations that did not. This difference resembles the response

of the atmospheric GCM experiment forced by climatologicalSSTs and a historical volcanic
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Figure 6.5: The DFA3 Hurst exponent estimates for the 17 CMIP3 models (a,b,d,e). ThêH

is estimated for each model first and then averaged across themodels. The 18 months to 100

years time scale range is used for estimation ofH in (a-c), 5 to 100 years range in (d-f). Panels

(c) and (f) show the difference of thêH between nine models with and eight models without

historical volcanic forcings.

forcing seen in Fig.5.1e.

As for the SAT we test the sensitivity of the estimatedH to a change of the high-frequency

cutoff from 18 months to 5 years. The results are shown in the second row of Fig.6.5. One

can immediately notice a large drop of thêH in the tropical troposphere for both scenarios

(see also Fig.6.6e). In principle such a drop could be anticipated given the results for the

SAT for this time scale range, which show the values of the ensemble meanĤ < 0.7 in the

tropics (see Fig.6.2h and Fig.6.3d,e), and the conclusions of Chapter5 that the tropospheric

distribution of theĤ is controlled by the tropical SSTs. The difference of theĤ for the range

of 5 to 100 years between simulations with and without volcanic forcings (see Fig.6.5f) is

slightly weaker (larger) in the stratosphere (troposphere) than in Fig.6.5c (see also Fig.6.6b).
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(b) Lower Stratosphere 30S−30N

H

18
m

−
45

y

5y
−

45
y

18
m

−
10

0y

5y
−

10
0y

20
y−

50
0y

0.
4

0.
6

0.
8

1
0.

3
0.

5
0.

7
0.

9
1.

1

(c) Lower Stratosphere 30N−90N
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(d) Troposphere 90S−30S
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(e) Troposphere 30S−30N
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(f) Troposphere 30N−90N
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Figure 6.6: As Fig.6.3, but for the six regions in the free atmosphere. For the confidence

intervals estimation we roughly assumed that the meridional (vertical) decorrelation scale is

equal to 2 (4) grid points.

The stratospheric response is again consistent with the volcanic forcing GCM simulation in

Section5.2. However the tropospheric response is somewhat different from what we expected

based on the linear regression and on the atmospheric GCM simulation results. Because almost

all the CMIP3 GCMs that included historical volcanic forcings also included historical solar

forcings, the tropospheric response could be related at least partially to the latter, but more spe-

cific studies are needed to identify the possible link. As forthe SAT, the spatial distributions of

the corresponding monthly and annual lag-one autocorrelation for the zonal mean air temper-

ature are qualitatively similar to the first and second row ofFig. 6.5respectively and therefore

we do not show them.

We find the format of Fig.6.3 useful for model and data intercomparison and apply it
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to study the spatial distribution of thêH for the zonal mean air temperature (see Fig.6.6).

We split the area of our study into six regions: the extratropical Southern Hemisphere tropo-

sphere (90oS-30oS, 1000hPa-100hPa), the tropical troposphere (30oS-30oN, 1000hPa-100hPa),

the extratropical Northern Hemisphere troposphere (30oN-90oN, 1000hPa-100hPa), and three

regions with the same latitude boundaries, but between 100 and 10hPa in the lower strato-

sphere. Together with the models we plot the results for the NCEP/NCAR and ERA40 reanal-

yses for two time scale ranges. In contrast to Fig.6.3 the right columns for the first four time

scales ranges, corresponding to the20c3mscenario, show larger values than the left columns

(picntrl scenario) for all regions with the exception of the southerntroposphere extratropics.

That is, the natural radiative forcings affectĤ more strongly in the free atmosphere than at

the surface. Inconsistencies in these forcings might explain why the simulatedĤ exhibits a

large spread in the20c3msimulations. Also in contrast to the SAT results there is much less

agreement between the reanalyses and the models, especially in the data poor regions. For

instance the reanalyseŝH are noticeably larger than any GCM for both time scale rangesin the

Southern Hemisphere extratropics and than almost all GCMs for the 5 to 45 years range for the

tropical and the Northern Hemisphere stratosphere.

In those cases when reanalysisĤ is significantly larger than the modelŝH we have found

that there are often data inhomogeneities in the reanalysis; such inhomogeneities tend to in-

creaseĤ (seeBerton(2004); Rust et al.(2008) and Section5.3). For instance, in the tropical

lower stratosphere the NCEP/NCAR reanalysisĤ for the 5 to 45 years range is much larger

than that of ERA40 and all the models probably due to discontinuities in this product around

1979 related to the inclusion of satellite data (see e.g.Pawson and Fiorino, 1999). In any case,

the large values of̂H manifest the presence of low-frequency variability, either natural or in-

duced by data inhomogeneities, which makes the task of trenddetection more difficult, for

instance in the tropics (see e.g.Santer et al., 2005). The tropics are data poor and hard to

model (see e.g.Neale and Slingo, 2003) and thus the largest spread between the models and

between the two reanalyses in the free atmosphere and at the surface is found there.
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Overall the models’Ĥ are between 0.4 and 0.8 for the extratropics, but vary a lot inthe

tropics. The models that are consistent with the reanalysesin the tropical lower stratosphere

for the 18 months to 45 years range (see Fig.6.6b) are the models which include historical

volcanic forcings. These models also have noticeably larger Ĥ values for the20c3mthan for

picntrl simulations for the 18 months to 100 years and 5 to 100 years ranges in agreement

with Fig. 6.5f. One the largest spreads between the models is found in the tropical troposphere

for the 20 to 500 years range for thepicntrl simulations, although in the tropical stratosphere

all the six models cluster narrowly around 0.5 for this time scale range. Some of the models

are consistently at the top or at the bottom of theĤ distribution. Thus MIROC3.2(medres)

is usually the model with the largest values ofĤ. The two versions of the Canadian model

typically have one of the lowest values of̂H in the extratropical lower stratosphere. GFDL-

CM2.0 has one of the largest values in the extratropical troposphere. Probably due to their

local sensitivity to the radiative forcings some of the models, for instance NCAR CCSM3.0 in

the southern extratropical troposphere, have one of the lowestĤ for thepicntrl scenario, but

one of the largest for the20c3mscenario. It is also interesting that two versions of the same

model, for example MIROC3.2(medres) and MIROC3.2(hires),can be located at opposite ends

of the distribution for a particular region. Thus model resolution might exert a strong control

on annual to decadal scale variability.

6.5 Conclusions

In this work we have systematically studied the power-law approximation of the temporal

power spectrum of the surface and free atmosphere air temperature, characterized by the Hurst

exponent,H. We have analyzed several observational products (NCEP/NCAR and ERA40 re-

analyses and GISS SAT) and simulations under two scenarios of the 17 CMIP3 global climate

models. We have varied the time scales on which the power-lawwas fitted to the spectrum

from 18 months to 500 years. We have verified our results with an independent Hurst exponent
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estimation method.

At the surface for the time scale range of 18 months to 45 yearsall data sets show the largest

values of theĤ, i.e. the fastest rate of the spectral power buildup with decreasing frequency,

in the tropics. The values of thêH significantly larger than 0.5 (a flat spectrum case) are

observed mainly over the ocean in agreement with other studies (Fraedrich and Blender, 2003;

Blender and Fraedrich, 2003). The results remain robust when we increase the low-frequency

cutoff from 45 to 100 years, but changing the high-frequencycutoff from 18 months to 5

years leads to a significant drop in̂H to Ĥ < 0.7 everywhere but three regions: the North

Atlantic, the North Pacific and the Southern Ocean. These regions were also identified in the

previous case studies of specific models, scenarios, and Hurst exponent estimation methods

(Fraedrich and Blender, 2003; Blender and Fraedrich, 2003; Blender et al., 2006; Rybski et al.,

2008).

The results for the pre-industrial control and the 20th century simulations are remarkably

similar, which points to internal climate mechanisms generating the growth of the spectral

power on annual to multidecadal time scales at the surface. We think these mechanisms might

be related to positive climate feedbacks, such as a wind-stress curl feedback in the North Pa-

cific, which have been shown to increase the power in low-frequencies (Schneider et al., 2002).

For the range of 20 to 500 years thêH lies between 0.5 and 0.7 for thepicntrl simulations

even in the North Atlantic, the North Pacific and the SouthernOcean, which corresponds to

an absent or to a weak long-memory behaviour. However the results for paleo-proxies, cover-

ing several past centuries and millennia, show the values ofĤ greater than 0.7 for decadal to

centennial time scales. Provided decadal to centennial variability in the paleo-proxies is reli-

able, this indicates that either other missing mechanisms,possibly solar and volcanic forcings,

glacial dynamics, interactions with the biosphere, or other unknown physical processes, have

stronger input to the spectral power growth on centennial scales or that the representation of

certain processes in the studied GCMs is deficient. More detailed studies, (e.g.Zhu et al., 2006;

Zhu and Jungclaus, 2008), of the mechanisms responsible for this growth in specific regions
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for specific time scales are definitely needed, because they will reveal the origins of natural

climate variability, which is often underestimated.

We have compared the validity of the power-law vs the AR1 model and their goodness-

of-fit for the SAT time series. We have introduced a new methodfor time series model val-

idation based on temporal aggregation. We have found that the estimates are clustered be-

tween the two statistical model predictions, which firstly means that neither model fits the

time series perfectly on monthly to inter-decadal time scales, and secondly means that the

power-law model might serve as an upper bound and the AR1 model as a lower bound on

SAT persistence. This is an important conclusion for trend detection, because typically trend

confidence interval (CI) and therefore trend significance inclimate research is estimated solely

under the AR1 model assumption for the residuals (see e.g.Trenberth and Coauthors, 2007;

World Meteorological Organization, 2007) and thus is probably underestimated.

For illustration we estimate the linear trend CI for the GISSNorthern Hemisphere land

SAT annual mean anomalies (Hansen et al., 2001), which is the third item in Table 3.2 in

(Trenberth and Coauthors, 2007), for the period 1901-2005. Our autocorrelation estimate for

the linear trend residuals iŝφ = 0.63, whereas GSPÊH = 0.95 in case all the available fre-

quencies, 1/(2 years) to 1/(105 years), are used for the power-law fit. Based on these numbers

our estimate of the trend 90% CI is±0.24oC per century for the AR1 and±0.42oC per century

for the power-law model. The IPCC estimate of the 90% AR1 CI is±0.25oC per century.

Therefore the power-law CI is almost two times larger than the AR1 CI. The GISS Northern

Hemisphere land SAT linear trend, which IPCC estimate is 0.83◦C per century, is significant

even relative to the power-law CI. However this might not be the case for other climatic time

series.

We have also employed both statistical models in stratospheric ozone

trend analysis in Chapter3. We thus recommend that power-law based

CI be included along with AR1 based CI in trend detection work. For

this purpose we have developed the open-source R package, PowerSpectrum,
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http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum0.3.tar.gz. The

package also provides various estimators of power and cross-spectrum with their CIs, several

estimators ofH, the spectral goodness-of-fit test, Monte-Carlo tests of the Hurst exponent

estimators and the goodness-of-fit test, etc. The above mentioned concerns about the ubiquity

of the AR1 model in climate research are also related to predictability studies (e.g.Boer, 2004)

and extreme value statistics (e.g.Bunde et al., 2005).

We have also applied the spectral goodness-of-fit test (Beran, 1992) to compare the per-

formance of the power-law vs the AR1 model. This test favoursthe power-law model when

the two models are compared over a low-frequency range to which the power-law model is

specifically fitted and the AR1 model is fitted to all the available frequencies. Thus the spectral

goodness-of-fit test supports the suggestion that a trend CIshould be estimated using the power-

law model, because for its estimation only a low-frequency behaviour is important (Smith,

1993). However when both time series models are fitted to and compared over all the available

frequencies they score equally, which is consistent with the results of the novel method for time

series model validation we have described above.

In Chapter5 we showed using specialized simulations of a GFDL atmospheric model that

steep power-spectra for the 18 months to 45 years range are produced in the tropical tropo-

sphere by the internal atmosphere-ocean interaction and inthe tropical lower stratosphere by

the volcanic eruptions. In the extratropical atmosphere the spectra were found to be relatively

flat. The analysis of the tropospheric and lower stratospheric zonal mean temperature derived

from the CMIP3 simulations confirms the robustness of our previous findings. However it is

established that for the range of 5 to 100 years the Hurst exponents noticeably decrease in

the tropics. The distributions of the CMIP3 Hurst exponentsfor this time scale range in the

tropical stratosphere and troposphere (shown in Fig.6.6b and e) are similar to the distribution

for the same range for the Main Development Region and the Maritime Continent (shown in

Fig. 6.3d,e). All these distributions exhibit a large spread with some of the models being close

to or even lower than 1/2 and others significantly larger than1/2. This spread, a disagreement

http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum_0.3.tar.gz
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between the CMIP3 models with the observations and paleo-proxies, and presence of possible

data inhomogeneities in the latter prevent us from making a final conclusion about spectral

power build up on decadal to centennial time scales in the tropics. However in the strato-

sphere for the 20 to 500 years range almost all of the six CMIP3GCMs with 500 year long

pre-industrial control simulations demonstrate approximately flat spectra.

Comparison of the area averaged Hurst exponent estimates reveals discrepancies between

the reanalyses and between the reanalyses and the climate model simulations, especially in

the data poor Southern Hemisphere. It underlines again thatthe Hurst exponent analysis is

also a useful tool for cross validation of low-frequency variability in different data sets (see

Section5.3).

6.6 Appendix A: A combination of multiscale AR1 models

Everything should be made as simple as possible, but not simpler.

Albert Einstein

In Section1.1we considered a generalization of the AR1 model, an autoregressive model

of the K-th order. Another approach to generalize the AR1 model is to combine several AR1

models operating at different time scales. Let us consider an example of such model with three

components:

Mt = Xt + Y[t/12] + Z[t/120], (6.4)

where square brackets denote rounding to the largest integer toward zero,Mt is a time series

of monthly means,Xt, Yt, andZt are independent AR1 models describing subannual, annual,

and decadal and longer scales variability respectively andsatisfying the following conditions:

12
∑

t=1

Xi+t = 0,

10
∑

t=1

Yi+t = 0, i ≥ 0,

Xt = φXXt−1 + εt,
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Yt = φY Yt−1 + ηt,

Zt = φZZt−1 + ξt,

whereφX , φY , φZ are time scale specific autoregressive coefficients andεt, ηt, ξt are indepen-

dent white noise innovations. We call this model a combination of multiscale AR1 models. Due

to the independence of the individual AR1 models we get the following variance partitioning

between time scales:

σ2
M = σ2

X + σ2
Y + σ2

Z .

The idea behind this model is that in general climate processes with different decorrela-

tion scales operate at different time scales. In Section1.1 we showed that the decorrelation

time scale estimated for the CET monthly mean anomalies is 3 months and for the annual

mean anomalies is 3 years. This fact motivates the usage of the combination of the multiscale

AR1 models, which explicitly resolves several decorrelation time scales. Thus, in contrast

to an ARK model, the decorrelation time scale for the annual means of the combination of

multiscale AR1 models described above is independent of thedecorrelation time scale for the

corresponding monthly means.

Let us illustrate the combination of multiscale AR1 models by fitting it to the Central Eng-

land Temperature (CET, 1659-1958) anomalies introduced inSection1.1. Fig. 6.7 is Fig. 1.2

with the spectral density of the combination of multiscale AR1 models shown by the orange

curves.

Qualitatively the spectral density of the combination of multiscale AR1 models gives the

best fit to the CET monthly mean anomalies power spectrum among the four considered sta-

tistical models (see Fig.6.7). It is arguably also the most physically motivated model among

these four. However for the case of the CET monthly mean anomalies it depends on the six

parameters, three autoregressive coefficients and three innovation variances, in contrast to two

parameters for the AR1 and the power-law.

The spectral densities of the combination of the multiscaleAR1 models and of the power-

law model, shown by the orange and blue curves respectively in Fig. 6.7b, are obtained just
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Figure 6.7:As Fig. 1.2 but with the spectral density of the combination of multiscale AR1 models

shown by the orange curves.

by truncating time scales shorter than 2 years from the corresponding spectral densities shown

in Fig. 6.7a. Thus the advantage of the last two models is that in contrast to the AR1 and

the best fit autoregressive model they do not have to be refitted each time the aggregation

time scale is increased and therefore they better capture the overall power spectrum shape.

Barsugli and Battisti(1998) obtained a spectrum qualitatively similar to the orange curve in

Fig. 6.7b for the atmospheric component of a bivariate AR1 model representing atmosphere-

ocean coupling, which is another way to generalize a univariate AR1 model.



Chapter 7

Conclusions

7.1 Summary

In this thesis we considered several statistical models describing natural climate variability.

Most of our attention was focused on the two models, AR1 and power-law. The AR1 model

is the most widely used statistical model for natural climate variability and it is the current cli-

mate science standard. However recently many studies reported a buildup of spectral power at

low-frequencies of climatic time series, which cannot be captured by the AR1 model, because

its spectral density saturates at low-frequencies. On the other hand, also recently a theory of

power-law stochastic processes have been developed (see Chapter2). This theory, also known

as the theory of long-range correlated, long-range dependent, or long-memory processes, de-

scribes stochastic processes whose autocorrelation function decays algebraically for large time

lags, or equivalently whose spectral density increases by apower-law at low-frequencies.

A key difference between a power-law stochastic process andan autoregressive process of

any finite order is that the former has an unbounded increasing by a power-law near the origin

spectral density, whereas the spectral density of the latter saturates to a constant near the ori-

gin. Because the most low-frequency part of climate spectrum will always remain unobserved,

due to a finite period of the Earth existence, for many applications, e.g. trend detection, it is

146
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necessary to make an assumption about spectral behaviour near the origin. Thus autoregres-

sive and power-law stochastic processes, both of which belong to a class of weakly stationary

stochastic processes, provide two extreme cases of such assumption. Currently, in particular

owing to the Hasselmann’s theory, the assumption that climate spectrum saturates to a con-

stant near the origin prevails in climate science, which is reflected in ubiquitous usage of the

AR1 model. This assumption is relatively more optimistic orless conservative compared to

the power-law assumption, because it makes a detection of anexternally forced trend, such as

a recent anthropogenic warming, relatively more probable.For example, under the residuals’

spectrum saturation assumption the number of years required to detect an observed trend is typ-

ically lower than under the power-law assumption (see Chapter3 and Section6.5). By making

a more conservative assumption that the observed spectral power buildup at low-frequencies

of climatic time series continues to the zero frequency and that this buildup might be well

approximated by a power-law, one can make use of the theory oflong-range correlated pro-

cesses. In this thesis we have tested this assumption by performing exploratory data analysis

of the surface and free atmosphere air temperature and of thetotal ozone.

We have shown that climatic time series cannot be perfectly described neither by autore-

gressive nor by power-law processes. The reality is more complicated than these time se-

ries models. However we demonstrated that the AR1 and the power-law models provide

parsimonious lower and upper bounds on climate persistenceon monthly to decadal time

scales (see Chapter6). Thus our advice to researchers studying climate change isto es-

timate statistical significance of an observed trend using the conservative assumption that

the spectral density of the residuals increases by a power-law down to the zero frequency,

i.e. to use the upper bound on climate persistence for trend testing as it was done in Chap-

ter 3. This precaution would help to prevent a spurious or at leastpremature trend detec-

tion, such as the detection of a positive trend in the North Atlantic Oscillation index in the

second half of the 20th century, which later changed the sign. Trend confidence intervals

and the number of years required to detect an observed trend based on the power-law as-
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sumption can be estimated with the help of the open source R package, PowerSpectrum,

http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum0.3.tar.gz, that I have

developed during my Ph.D. study in collaboration with a summer student. This package in-

cludes many useful functions for spectral time series analysis, Hurst exponent estimation,

Monte-Carlo benchmarking, etc. Most of the figures in the thesis have been produced us-

ing the PowerSpectrum package. Additional details about the PowerSpectrum can be found in

AppendixB.

In addition to the conservative trend testing power-law spectral fit can be successfully used

for intercomparison of temporal variability for a specifiedfrequency range in different obser-

vational products and climate model simulations as we demonstrated in Chapter5. Due to the

power-law model parsimony it is easy to compare spatial distribution of its parameters esti-

mates, e.g. of the Hurst exponent, which characterizes spectral power buildup, across different

data sets and to identify potential inconsistencies at different time scales. Also power-law

spectral approximations might be insightful for construction of low order conceptual climate

models and a general theory of climate variability. Below weoverview the results of individual

thesis chapters.

In Chapter2 we tested two variants of five different power-law exponent estimators. We

performed the method intercomparison because most of the previous studies (see TableA.1 for

their list) usually employed only one estimator and did not cross validate their results. We found

that the methods give consistent estimates provided equal frequency ranges have been used and

“contaminating” components such as long-term trends and periodic signals have been filtered

out. As a result we chose the two best methods, namely Detrended Fluctuation Analysis of

the third order and Gaussian Semiparametric Estimator. We recommend always to use at least

two Hurst exponent estimators, especially the DFA and Gaussian Semiparametric Estimator,

choose equivalent frequency ranges (time scales), and to filter out known climate signals, such

as trend, Quasi-Biennial Oscillation, and El Niño-Southern Oscillation, which might be present

in time series under study. Ideally different estimators should give similar estimates, otherwise

http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum_0.3.tar.gz
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more care is needed to understand and eliminate the discrepancies.

In Chapter3 we studied the uncertainty of total ozone trends and the timerequired to detect

total ozone recovery. We found that the power-law approximation is especially appropriate to

describe the residuals of a multilinear regression model for the total ozone temporal variability

in the subtropics and the Northern Hemisphere high latitudes. In Chapter3 we also showed that

although spatial averaging decreases the variance of climate noise and conserves the magnitude

of a signal it also increases the strength of the serial correlations in the noise, which partially

mitigates the benefits of spatial averaging for trend detection. Our results demonstrated that

the power-law based trend confidence intervals are wider than the AR1 ones by about 50% in

the Northern Hemisphere high latitudes, which lengthens the amount of time to detect the total

ozone recovery in that region by a similar value. We identified that the most optimal place for

the detection of total ozone recovery is the Southern Hemisphere high latitudes and especially

the area over the South Atlantic, where the total ozone residuals might be very well described

by the AR1 model and a positive trend is strong. In that regionthe total ozone recovery will be

already detected in the next decade.

In Chapters4 and5 we applied the two best methods identified in Chapter2 to the zonal

mean tropospheric and stratospheric air temperature derived from two reanalyses, specialized

general circulation model simulations, and CMIP3 simulations. We found that steep spectra are

concentrated in tropical and subtropical regions on annualto decadal time scales. It was also

established that the Hurst exponent estimates for the zonally averaged temperature are larger in

the subtropics and low-extratropics than the zonally averaged Hurst exponent estimates for in-

dividual grid point time series. Comparison between the reanalyses and the model simulations

with various forcings demonstrated that the spectral powerbuildup on annual to decadal time

scales in the troposphere is caused by an atmosphere-ocean interaction, and in the stratosphere

by volcanic forcing. A mismatch between the spatial distributions of the power-law exponents

of the reanalyses and the model simulations allowed us to identify data inhomogeneities in one

of the reanalyses. This example demonstrated the potentialof power-law analysis for cross-
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validation of low-frequency variability in different datasets, which so far has been mainly

limited in the climate literature to comparison of linear trend and variance estimates and eye-

balling temporal evolution of time series. The analysis of the power-law exponents estimated

on decadal to centennial time scales using the CMIP3 simulations showed that the tropospheric

and stratospheric air temperature spectra saturate on those time scales (see Chapter6). There-

fore under the condition that the CMIP3 models correctly capture the natural climate variability

on decadal to centennial time scales, the assumption that the spectral power buildup continues

to zero frequency is violated. However the power-law approximation can still be used as a

conservative and parsimonious upper bound on the temporal spectrum of natural climate vari-

ability.

In Chapter6 we studied spectral properties of the surface air temperature from three ob-

servational products and 17 coupled atmosphere-ocean climate models. On annual to decadal

time scales the steepest spectra were found in the tropics. However on longer time scales the

tropical spectra become flat or even decreasing with decreasing frequency. This fact and the

conclusions of Chapter5, that the tropical sea surface temperature controls the steepness of

the tropical troposphere temperature spectra, explain thesaturation of the tropical troposphere

temperature spectra on multidecadal time scales. The overall spatial distribution of the power-

law exponent for the surface air temperature is similar for the pre-industrial control and 20th

century simulations after removing anthropogenically induced trends, which points to internal

origins of the spectral power growth on annual to multidecadal time scales. We found that there

are three regions at the Earth surface, the North Atlantic, North Pacific, and Southern Ocean,

where the spectral slopes seem to be robust on time scales from 18 months to 100 years. The

long pre-industrial control simulations demonstrated that even in these regions the slopes be-

come shallower on multidecadal to centennial scales, in contrast to paleo-proxies from the same

regions. Therefore the situation on multidecadal to centennial scales is not completely clear,

because natural radiative forcing not present in the pre-industrial control simulations might

play an important role in boosting the spectral power on those scales, or the current generation
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of climate models might not capture certain physical mechanisms and feedbacks.

The goodness of fit test demonstrated that in general the AR1 and power-law models pro-

vide equally good fits to the power spectra of the simulated surface air temperature, although

the power-law outperforms AR1 on certain time scales in certain regions. A novel diagnostic

developed in Chapter6 confirmed these results by showing that natural climate variability at

the Earth’s surface as represented by the CMIP3 simulationsfalls between these two statistical

models and that the power-law model gives an upper bound for climate persistence, whereas the

AR1 model gives a lower bound. Our conclusion is that the power-law might serve as the best

parsimonious fit for climate spectra for certain frequency ranges and in certain geographical

locations, but in general it serves as an upper bound.

7.2 Potential Future Research

Our work raises several questions that merit further study:

• Analysis at a regional scale.In my thesis we performed analysis at the spatial scale of

each individual grid point. However, often in climate research regionally and globally

averaged time series are considered, for instance in climate change detection and attri-

bution studies (e.g.Zwiers and Zhang, 2003). Thus it seems relevant to apply the meth-

ods of observations and GCMs simulations intercomparison from Chapter6 to regional

averages. This will help to evaluate GCMs ability to simulate the observed natural cli-

mate variability, to detect discrepancies between observational products, and ultimately

to properly estimate the uncertainty of an observed and simulated anthropogenic climate

change. Other measures or indices of large spatial scale variability are the projections

of the leading EOFs and several first spherical harmonics. The spectral power growth of

such indices derived from observations and GCMs simulations could also be estimated

and compared in a useful way.
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• Understanding the spectral power growth over the extratropical oceans. One of

the main questions left unanswered in my thesis is the physical origins of the spec-

tral power growth in the extratropical oceans.Pelletier(1997); Fraedrich et al.(2004);

Dommenget and Latif(2008) proposed simple one dimensional stochastic models based

on vertical diffusion to explain this phenomenon. However Ido not think that the compli-

cated dynamics of the extratropical oceans can be realistically captured by simple diffu-

sion. I presume that a more promising approach would be to show how specific feedbacks

increase spectral power at specific frequency ranges. Examples of such studies are the

analysis of Kuroshio-Oyashio extension region SST interaction with the North Pacific

Ekman pumping (Schneider et al., 2002) and the study of the subpolar gyre coupling

with the meridional overturning circulation in the North Atlantic (Zhu and Jungclaus,

2008). Each of the above mentioned studies employed single GCMs,therefore it would

be interesting to check the robustness of their results, e.g. to verify that other GCMs

reproduce these mechanisms. In case the mechanisms will turn out to be robust the next

step would be to investigate a possibility of their generalization. The search for dy-

namical mechanisms generating spectral power growth in theSouthern Ocean is another

potential line of future research.

• Effect of long-range correlations on the distribution of extremes. Humankind and

ecosystems are conceivably more susceptible to changes in extreme temperature and

precipitation than to changes in their means. A research on the effect of long-range cor-

relations on the distribution of the extremes has been conducted only in the past decade

(e.g. Bunde et al., 2005; Zorita et al., 2008). It was shown that long-range correlated

time series have stronger clustering of extreme events, i.e. one extreme event is typi-

cally followed by a series of others, which makes their impact more severe compared to

the case when they are spread out in time. Therefore it is veryimportant to apply the

recently developed theory to extreme temperature and precipitation events, especially

those which we expect later in the century.
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• Characteristic time scales and testing applicability of the fluctuation-dissipation

theorem to climate. Recently it was suggested that a fluctuation-dissipation relation-

ship (Leith, 1975) exists in idealized GCMs (Ring and Plumb, 2008; Gerber and Polvani,

2009) and CMIP3 simulations of the Southern Annular Mode (Gerber et al., 2008). It

was shown that the simulated annular modes with longer time scales exhibit stronger

response to anthropogenic forcing in agreement with this relation (Gerber and Polvani,

2009). The fluctuation-dissipation theorem is based on two key assumptions: (a) the

response of a system to an external perturbation can be effectively linearized; (b) the

response can be decomposed into a finite number of modes (Leith, 1975). As a result

of these assumptions the autocorrelation function of such system asymptotically should

decay exponentially. However in this thesis we have shown that an exponential decay

generally provides just a lower bound on the climate persistence. In other words the

characteristic time scales estimated using daily data are typically lower that the charac-

teristic time scales estimated using annual data and thus itis incorrect to make inferences

about decadal or longer time scale trends from daily persistence. Therefore application

of the fluctuation-dissipation theorem is probably limitedto idealized GCMs and cli-

mate phenomena, which have a well defined characteristic time scale. Obviously, a solid

justification of the above arguments requires additional research.

• Analysis of other climate variables. Air temperature and total ozone have been an-

alyzed in my thesis. However systematic analysis of temporal spectral characteristics

of other climate variables, such as winds, geopotential height, and water vapour, also

has a large theoretical and practical importance. For the analysis of these variables one

can make use of reanalysis products, CMIP3 simulations as well as simulations of cou-

pled chemistry-climate models from the Chemistry-ClimateModel Validation Activity

(CCMVal) archive (Eyring and Coauthors, 2006).
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• Resolving a potential inconsistency between total ozone and air temperature spec-

tral behaviour in the Northern Hemisphere polar stratosphere. We have shown in

Chapter3 that the Northern Hemisphere high latitudes is one of the places where to-

tal ozone residuals obtained after filtering of the seasonalcycle, QBO, solar flux, and

EESC trend demonstrate spectral power growth on interannual to decadal time scales.

On the other hand two reanalysis products and all climate model simulations we ana-

lyzed in Chapters 4-6 indicate that air temperature residual spectra are flat in the ex-

tratropical lower stratosphere and upper troposphere on those time scales. However

Randel and Cobb(1994) showed that total ozone and temperature residuals averaged

between 150 and 50 hPa have correlations between 0.2-0.5 in the Northern Hemisphere

extratropics for the period 1979-1992. Therefore there is apotential disagreement be-

tween relatively steep ozone spectra and flat temperature spectra. To understand this

disagreement one can analyze CCMVal simulations, which have more realistic represen-

tation of stratospheric ozone and temperature temporal variability than CMIP3 models.

• Understanding a disagreement between climate model simulations and paleo-

proxies. In Chapter6 we have documented that pre-industrial control CMIP3 simula-

tions systematically underestimate the Hurst exponents found for various reconstructions

of the past millennium surface air temperature on multidecadal to centennial time scales.

There are indications that at least a part of this discrepancy could be explained by the

influence of solar and volcanic forcings (Rybski et al., 2008). Thus it seems to be use-

ful to compare spectral behaviour of different climate models forced by natural radiative

forcings for the past millennium or two. Additionally, it isinteresting to compare the

simulations of those models with and without carbon cycle feedback, which also might

boost spectral power on multidecadal to centennial time scales.



Appendix A

A list of temporal power-law analysis

studies related to climate

Table A.1: The list of several Hurst exponent estimation studies of climatic variables. See

Chapter2 for the description of the methods.

Variable Method Range H value Reference

Nile river yearly

minimal water levels
R/S

one decade

– several

centuries

H ≈ 0.94 Hurst(1951)

Globally averaged

SAT

Whittle

estimator

(ARFIMA)

2 days – 18

years

H = 0.828 ±

0.003

Haslett and Raftery

(1989)

Globally averaged

SAT

Whittle

estimator

(ARFIMA)

2 – 130 years
H = 0.92 or

H = 0.75
Bloomfield(1992)
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Table A.1: (continued)

Variable Method Range H value Reference

Globally averaged

SAT, US averaged

SAT, CET

GPHE and

GSPE like

several years

– several

centuries

0.55 < H < 0.9 Smith(1993)

Relative air humid-

ity at Balaton
GPHE

2 days – 3

years
H ≈ 0.8

Vattay and Harnos

(1994)

TOPEX/POSEIDON

sea surface height
GPHE like

several days –

2 years
H ≈ 1.0

Wunsch and Stammer

(1995)

Rainfall data from 6

Italian sites

5 different

estimators

several months

– several cen-

turies

0.45 ≤ H ≤ 0.8
Montanari et al.

(1996)

Globally averaged

continental and mar-

itime SAT, Vostok

ice cores

GPHE like

several days –

several hun-

dred thousand

years

0.5 ≤ H ≤ 1.5 Pelletier(1997)

14 station SAT FA, DFA1

one week

– several

decades

H ≈ 0.65
Koscielny-Bunde et al.

(1998)

NCEP/NCAR

reanalysis geopo-

tential height at

500hPa

FA
one week – 10

years
0.48 ≤ H < 0.9 Tsonis et al.(1999)

NAO SLP index
MTM

GPHE
2 – 133 years H = 0.61 Wunsch(1999)
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Table A.1: (continued)

Variable Method Range H value Reference

NAO SLP index

Whittle

estimator

(FAR)

2 – 135 years H = 0.63
Stephenson et al.

(2000)

NP index and Sitka

SST

Whittle like

estimator

(FAR)

2 – 100 and 2

– 168 years

H = 0.67 and

H = 0.74
Percival et al.(2001)

22 station and 6

HadCM2 grid point

precipitation

Aggregated

variance
2 – 22 years 0.2 < H < 1.0

Tomsett and Toumi

(2001)

three station total

ozone records
R/S 2 – 1000 days H ≈ 0.78 Toumi et al.(2001)

40 US and 7 Eu-

ropean station SAT,

pressure, humidity,

precipitation

R/S, GPHE

like, DFA1

10 days – sev-

eral decades

0.55 ≤ H ≤

0.71

Weber and Talkner

(2001)

6 station SAT and 7

GCMs

FA, DFA1-

DFA5

one year – sev-

eral decades
0.5 ≤ H ≤ 0.8

Govindan et al.

(2002)

Idealized GCM

zonal wind PC
DFA1 1 – 25 years

H = 0.67 and

H = 0.74
Müller et al.(2002)

95 station SAT DFA0-3
10 days – sev-

eral decades
0.5 < H < 1.0 Eichner et al.(2003)
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Table A.1: (continued)

Variable Method Range H value Reference

CRU,

NCEP/NCAR,

HADCM3 and

ECHAM4/OPYC

SAT

DFA2
1–5 and 1–15

years
0.3 ≤ H < 1.4

Fraedrich and Blender

(2003);

Blender and Fraedrich

(2003)

384 western US sta-

tion SAT
DFA1

several months

– several

decades

0.5 ≤ H ≤ 0.74 Kurnaz(2004)

16 ground based

station SAT, 16

SSTs, 10 scenarios

of NCAR PCM

DFA2

several months

– several

decades

0.5 < H < 1.0 Vyushin et al.(2004)

Sea level pressure

and sea level at Tri-

este

FA
10 days – 16

years

H = 0.58 and

H = 0.7
Beretta et al.(2005)

GRIP and GISP2

Greenland ice cores
DFA2

30 – 1000

years

H = 0.7 and

H = 0.84
Blender et al.(2006)

NCEP/NCAR re-

analysis and various

SAT proxies

MTM

GPHE

several days –

several hun-

dred thousand

years

0.68 ≤ H ≤

1.32

Huybers and Curry

(2006)

9431 station SAT DFA2
18 days – 5

years
0.55 < H < 1.0 Kiraly et al. (2006)
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Table A.1: (continued)

Variable Method Range H value Reference

Northern Hemi-

sphere SAT recon-

structions

DFA2

one decade

– several

centuries

0.82 ≤ H ≤

1.04
Rybski et al.(2006)

ECHAM5/MPIOM

and GFDL CM2.1

Atlantic MOC

GPHE like

and DFA2

2 months –

500 years

various power-

law regimes are

identified

Zhu et al.(2006)

Relative humidity

from 73 Chinese

stations

DFA1
10 days – sev-

eral years
H ≈ 0.75 Chen et al.(2007)

TOMS/SBUV

merged total ozone

GPHE and

GSPE
1 – 27 years 0.45 < H < 1.1 Vyushin et al.(2007)

1000y control and

historical simula-

tions of ECHO-G

DFA2
several years –

two centuries
0.4 < H < 1.1 Rybski et al.(2008)

SeaWiFS chloro-

phyll measurements
DFA1

several weeks

– more than

two years

0.5 ≤ H ≤ 1.2 Zhan(2008)

ERA40 and

NCEP/NCAR

reanalyses FAAT

two vari-

ants of 5

different

estimators

18 months –

45 years
0.4 ≤ H ≤ 1.1

Vyushin and Kushner

(2009)
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Table A.1: (continued)

Variable Method Range H value Reference

ERA40 and

NCEP/NCAR

reanalyses and

specialized GCM

simulations FAAT

DFA3 and

GSPE

18 months –

45 years
0.4 ≤ H ≤ 1.05 Vyushin et al.(2009)

ERA40 and

NCEP/NCAR

reanalyses, GISS

SAT, and 17 CMIP3

GCMs SAT and

FAAT

DFA3 and

GSPE

18 months –

500 years
0.2 < H < 1.1

Vyushin and Kushner

(2010)
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cse Cross Spectrum Estimate Object

Description

Cross spectrum estimate object is generated by the cross spectrum estimation function cs.mtm and
can be visualized using plot function which actually calls plot.cse.

Value

An object of class cse has the following properties:

frequency a vector of frequencies.
cross.spectrum

a multitaper cross-spectrum estimate.

coherence a multitaper spectral coherence estimate.

coherence.ci a jackknifed spectral coherence standard deviation estimate.

amplitude a multitaper amplitude spectrum estimate.

phase a multitaper phase spectrum estimate.

phase.ci a jackknifed phase spectrum standard deviation estimate.

ntaper a number of tapers used in the spectrum estimate.
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series a name of the time series.

taper The data taper used

weight The spectrum weighting used

method the type of spectrum estimation method used, in this case Multitaper.

call a matched call.

See Also

cs.mtm, plot.cse, ps.mtm

cs.mtm Multitaper Cross-Spectrum Estimator

Description

This function estimates the cross-spectrum of two given time series using K tapers [1-5]. The
DPSS tapers can be used with the adaptive or simple uniform weighting [1,5]. The "sine" tapers are
implemented only with the uniform weighting [4]. cs.mtm outputs spectral coherence, amplitude
spectrum, and phase spectrum estimates and their standard deviations obtained using a jackknife
method [2-3]. The output can be visualized using plot function which actually calls plot.cse.

Usage

cs.mtm(x, y, dt = c("dpss", "sine"), wt = c("adapt", "uniform"),
K = 3, cl = 0.95, isc.cl = c(0.1,0.5,0.9), verbose = TRUE,
na.action = na.fail, demean = TRUE, series = NULL, ...)

Arguments

x a vector containing a uniformly sampled real valued time series.

y a vector containing a uniformly sampled real valued time series.

dt a data taper to be used. If equals to either "dpss" or "sine" then the appropriate
taper will be created by a call to dpss.taper or sine.taper respectively.
If of class dpss.taper or sine.taper or a matrix of size NxK where N is
the input time series length and K is the number of tapers then dt will be used
directly.

wt a weighting to use during spectrum estimation. If dt is a "sine" taper or a NxK
matrix it will be forced to use uniform weighting. In case of the "dpss" taper the
adaptive weighting (see [1,5]) can also be used.

K a number of tapers to be used.

cl a confidence level used for power spectrum confidence intervals estimation.

isc.cl a confidence level for independent time series coherence confidence intervals
estimation.

verbose a logical flag. If TRUE (the default), prints information while executing.
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na.action function to be called to handle missing values.

demean a logical flag. If TRUE (the default), the mean value of x is set to 0.

series a name for the series. Default: c(deparse(substitute(x)), deparse(substitute(y))).

... Additional arguments passed to either dpss.taper or sine.taper, the
most useful of which is K, the number of data tapers to use.

Value

An object of class cse with the following values set:

frequency a vector of frequencies.
cross.spectrum

a multitaper cross-spectrum estimate.

coherence a multitaper spectral coherence estimate.

coherence.ci a jackknifed spectral coherence standard deviation estimate.

amplitude a multitaper amplitude spectrum estimate.

phase a multitaper phase spectrum estimate.

phase.ci a jackknifed phase spectrum standard deviation estimate.

ntaper a number of tapers used in the spectrum estimate.

series a name of the time series.

taper a data taper used

weight a spectrum weighting used

method a type of spectrum estimation method used, in this case Multitaper.

call the matched call for cs.mtm.

References

[1] D.J. Thomson (1982), Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055-1096.

[2] D.J. Thomson and A. D. Chave (1991), Jackknifed error estimates for spectra, coherences,
and transfer functions, in Advances in Spectrum Analysis and Array Processing, S. Haykin, Ed.
Englewood Cliffs, NJ: Prentice-Hall, vol. 1, ch. 2, pp. 58–113.

[3] F.L. Vernon et al. (1991), Coherence of seismic body waves from local events as measured by a
small-aperture array, J. Geophys. Res. 96, 11981-11996.

[4] K. S. Riedel and A. Sidorenko (1995), Minimum bias multiple taper spectral estimation, IEEE
Transactions on Signal Processing 43, 188-195.

[5] D.J. Thomson, L.J. Lanzerotti, F.L. Vernon, M.R. Lessard, and L.T.P. Smith (2007), Solar Modal
Structure of the Engineering Environment, Proc. IEEE 95, 1085-1132.

See Also

plot.cse, dpss.taper, sine.taper, ps.mtm
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Examples

library(PowerSpectrum)
Period = seq((1856-1659+1), length(CET_1659_2008))
CET_1856_2008 = CET_1659_2008[Period]
x = cs.mtm(CET_1856_2008, AMO_1856_2008)
plot(x)

data.update Climatic Time Series Update

Description

This procedure downloads recent updates of most of the climatic time series included into the pack-
age. It can also save these time series in corresponding rda (R-Data) files in a local folder.

Usage

data.update(save = FALSE)

Arguments

save a logical flag. If TRUE, the downloaded climatic time series are saved in corre-
sponding rda (R-Data) files in a local folder. The default is FALSE.

See Also

ps.data

dfa.ffe Detrended Fluctuation Analysis

Description

Detrended Fluctuation Analysis (DFA) was originally proposed in [1] and is described in details
in [2]. It works as follows. In the beginning a cumulative sum time series is generated from the
original time series. It might be thought as a random walk which increments are equal to the values
of the original time series. Then the cumulative time series is split into segments of size s and is
approximated in the least squares sense in each segment by a polynomial of a certain order. In
most cases order is chosen between 1 and 5. The standard deviation of the best fit residuals is
calculated for each segment and then averaged over all segments. Let’s call this value F (s). After
that the segment size is increased and the above described procedure is repeated. Therefore for each
value of s we obtain a corresponding value F (s), which is called fluctuation function. This function
estimates F (s).

In case time series autocorrelation function decays as at2H−2 when t → ∞ or equivalently its
spectral density increases as bλ1−2H when λ → 0 its fluctuation function F (s) scales as rsH (see
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[3,4]). Thus to extract the Hurst exponent F (s) could be regressed against a straight line in log-log
coordinates from the lower scale L to the maximum scale M (as in [1,2]). This regression is done
by the dfa.lse function.

The output can be visualized using plot function which actually calls plot.ffe.

Usage

dfa.ffe(x, order = 1, verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL, ...)

Arguments

x a vector containing a uniformly sampled real valued time series.

order an order of the polynomials used in local detrending. It should be between 1 and
5.

verbose a logical flag. If TRUE (the default), prints information while executing.

na.action a function to be called to handle missing values.

series a name for the time series. Default: deparse(substitute(x)).

demean a logical flag. If TRUE (the default), the mean value of x is set to 0.

...

Value

an object of class ffe with the following values set:

fluctuation a fluctuation function.

scale a vector of scales.

order the order of the polynomials used in local detrending.

method a fluctuation function estimation method used, in this case "Detrended Fluctua-
tion Analysis".

series a name of the time series. Default: deparse(substitute(x)).

call the matched call to dfa.ffe

References

[1] C. Peng, C., S. Buldyrev, A. Goldberger, S. Havlin, M. Simons, and H. Stanley (1993), Finite-
size effects on long-range correlations: Implications for analyzing dna sequences, Phys. Rev. E 47,
3730–3733.

[2] J. Kantelhardt, E. Koscielny-Bunde, H. Rego, S. Havlin, and A. Bunde (2001), Detecting long-
range correlations with detrended fluctuation analysis, Physica A 295, 441–454.

[3] M. Taqqu, V. Teverovsky, and W. Willinger (1995), Estimators for long-range dependence: an
empirical study, Fractals 3, 785–798.

[4] C. Heneghan and G. McDarby (2000), Establishing the relation between detrended fluctuation
analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 62, 6103–6110.
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See Also

ffe, dfa.lse, plot.ffe

Examples

library(PowerSpectrum)
x = dfa.ffe(CET_1659_2008)
plot(x)

dfa.lse Detrended Fluctuation Analysis

Description

Detrended Fluctuation Analysis (DFA) was originally proposed in [1] and is described in details
in [2]. It works as follows. In the beginning a cumulative sum time series is generated from the
original time series. It might be thought as a random walk which increments are equal to the values
of the original time series. Then the cumulative time series is split into segments of size s and is
approximated in the least squares sense in each segment by a polynomial of a certain order. In most
cases order is chosen between 1 and 5. The standard deviation of the best fit residuals is calculated
for each segment and then averaged over all segments. Let’s call this value F (s). After that the
segment size is increased and the above described procedure is repeated. Therefore for each value
of s we obtain a corresponding value F (s), which is called fluctuation function. F (s) is estimated
by dfa.ffe.

In case time series autocorrelation function decays as at2H−2 when t → ∞ or equivalently its
spectral density increases as bλ1−2H when λ → 0 its fluctuation function F (s) scales as rsH

(see [3,4]). Thus to extract the Hurst exponent F (s) is regressed against a straight line in log-log
coordinates from the lower scale L to the maximum scale M (as in [1,2]). This regression is done
by this function.

The output can be visualized using plot function which actually calls plot.ffe.

Usage

dfa.lse(x, L = (3*x$order+9), M = round(x$scale[length(x$scale)]/4),
verbose = TRUE, ffe = NULL, ...)

Arguments

x an object of class ffe

L a lower scale cut off.

M an upper scale cut off.

verbose a logical flag. If TRUE (the default), prints information while executing.

ffe the ffe object used

...



8 dfa.lse

Value

An object of class tdhee with the following values set

H an estimate of the Hurst exponent.

stdH a standard deviation of the estimator of H.

r a fluctuation function scaling factor from F (s) ∼ rsH .

q q = log(r).

stdq a standard deviation of the estimate of q.

L a lower scale cut off.

M an upper scale cut off.

ffe the name of the ffe object used. Default: deparse(substitute(x)).

method a Hurst exponent estimation method used, in this case "Least Squares Estimate".

call the matched call to dfa.lse

Note

stdH and stdq are estimated using a crude assumption that the residuals of the linear regression of
a DFA curve in log-log coordinates are independent and normally distributed. Thus these values just
give an idea about the true uncertainties. Unfortunately the theory that would describe distributions
of stdH and stdq is still missing.

References

[1] C. Peng, C., S. Buldyrev, A. Goldberger, S. Havlin, M. Simons, and H. Stanley (1993), Finite-
size effects on long-range correlations: Implications for analyzing dna sequences, Phys. Rev. E 47,
3730–3733.

[2] J. Kantelhardt, E. Koscielny-Bunde, H. Rego, S. Havlin, and A. Bunde (2001), Detecting long-
range correlations with detrended fluctuation analysis, Physica A 295, 441–454.

[3] M. Taqqu, V. Teverovsky, and W. Willinger (1995), Estimators for long-range dependence: an
empirical study, Fractals 3, 785–798.

[4] C. Heneghan and G. McDarby (2000), Establishing the relation between detrended fluctuation
analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 62, 6103–6110.

See Also

dfa.ffe, ffe, tdhee, plot.ffe

Examples

library(PowerSpectrum)
cet.dfa.ffe <- dfa.ffe(CET_1659_2008)
cet.dfa.lse <- dfa.lse(cet.dfa.ffe)
plot(cet.dfa.ffe,h=cet.dfa.lse)
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dpss.taper Computing Thomson’s Spectral Multitapers by Inverse Iteration

Description

The following function links the subroutines in "bell-p-w.o" to an R function in order to compute
discrete prolate spheroidal sequences (dpss)

Usage

dpss.taper(n, K = 3, nmax = 2^(ceiling(log(n, 2))), ...)

Arguments

n length of data taper(s)

K number of data tapers

nmax maximum possible taper length, necessary for FORTRAN code

...

Details

Spectral estimation using a set of orthogonal tapers is becoming widely used and appreciated in sci-
entific research. It produces direct spectral estimates with more than 2 df at each Fourier frequency,
resulting in spectral estimators with reduced variance. Computation of the orthogonal tapers from
the basic defining equation is difficult, however, due to the instability of the calculations – the
eigenproblem is very poorly conditioned. In this article the severe numerical instability problems
are illustrated and then a technique for stable calculation of the tapers – namely, inverse iteration
– is described. Each iteration involves the solution of a matrix equation. Because the matrix has
Toeplitz form, the Levinson recursions are used to rapidly solve the matrix equation. FORTRAN
code for this method is available through the Statlib archive. An alternative stable method is also
briefly reviewed.

Value

an object of class dpss.taper with the following properties:

eigenvectors matrix of data tapers (cols = tapers)

eigenvalues eigenvalue associated with each data taper

Author(s)

B. Whitcher, modified by J. Mayer
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References

B. Bell, D. B. Percival, and A. T. Walden (1993) Calculating Thomson’s spectral multitapers by
inverse iteration, Journal of Computational and Graphical Statistics, 2, No. 1, 119-130.

Percival, D. B. and A. T. Walden (1993) Spectral Estimation for Physical Applications: Multitaper
and Conventional Univariate Techniques, Cambridge University Press.

See Also

sine.taper.

ffe Fluctuation Function Estimate Object

Description

Fluctuation function estimate object is generated by dfa.ffe and is used as an input into dfa.lse.
The ffe object can be visualized using plot function which actually calls plot.ffe.

Value

An object of class ffe has the following properties:

fluctuation a fluctuation function.

scale a vector of scales.

order the order of the polynomials used in local detrending.

method a fluctuation function estimation method used.

series a name of the time series.

call a matched call.

See Also

dfa.ffe, dfa.lse, plot.ffe
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gfit.test Test of the goodness-of-fit tests

Description

This functions performs a Monte-Carlo kind of test of the two goodness-of-fit tests, Ljung-Box (see
pmt.test) and spectral density (see sdf.test) tests [1-2]. It generates s time series of length
n using a power law and an AR(1) models. Then it fits the power law time series by an AR(1)
model and the AR(1) time series by a power law model and estimates the probability of rejecting
the null hypothesis of a "true" model by the two goodness-of-fit tests. The gfit.test replicates
the procedure described in [2] using functions implemented in this R package.

Usage

gfit.test(H = 0.8, phi = 0.5, sd.fd.res = 1, sd.ar.res = 1,
lfc = 0, hfc =2, s = 100, n = seq(400,2000,100),
verbose = TRUE, plot = TRUE)

Arguments

H a Hurst exponent value to be tested.
phi a lag one autocorrelation value to be tested.
sd.fd.res the standard deviation of the fractionally differenced process.
sd.ar.res the standard deviation of the AR(1) process.
lfc a number of the lowest Fourier frequences trimmed. Used in sdf.test only.
hfc a lower scale cut off. Thus M=trunc(n[i]/hfc). Used in sdf.test only.
s the number of samples to average over.
n a vector of time series lengths.
verbose a logical flag. If TRUE (the default), prints information while executing.
plot a logical value for whether or not to plot the results. Default: TRUE.

Value

A list of class Gtest with the following elements:

p An array of probabilities of rejecting the null hypothesis that a fitted model
(AR(1) or Power Law) is adequate for a realization of a process (Power Law
or AR(1)) using the Ljung-Box and Spectral density tests. The output can be
visualized using plot function which actually calls plot.gfit.test.

References

[1] J. Beran (1992), A Goodness-of-Fit Test for Time Series with Long Range Dependence, J.R.
Statis. Soc. B 54, 749-760.

[2] D.B. Percival, J.E. Overland, and H.O. Mofjeld (2001), Interpretation of North Pacific Variabil-
ity as a Short- and Long-Memory Process, J. Climate 14, 4545-4559.
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See Also

pmt.test, sdf.test

Examples

library(PowerSpectrum)
gfit.test(s=10, n = seq(400,1000,100))

hurst.conv Test of the Hurst exponent estimators convergence

Description

This function estimates the biases of a given list of the Hurst exponent estimators for a given set of
time series lengths for a fixed value ofH . Synthetic time series are generated using ARFIMA(0,H−
0.5,0) model (fracdiff.sim function from fracdiff package). Results can be nicely plotted
using the plot function.

Usage

hurst.conv(H = 0.8, T = seq(270,910,by=90), s = 100, order = 3,
lfc = 0, hfc = 18, methods = c("dfa.lse", "pgram.gphe",
"mtm.gphe", "pgram.gspe", "mtm.gspe"),
verbose = TRUE, plot = TRUE, ...)

Arguments

H a value of the Hurst exponent to be tested, where 0 < H < 2.

T a vector of time series lengths.

s a number of samples to use.

order the order of the polynomials used in local detrending in DFA

lfc a number of the lowest Fourier frequences trimmed. In case lfc=0 then dfa.M=T[i],
otherwise ps.L=lfc and dfa.M=round(T[i]/lfc).

hfc a lower scale cut off. Thus dfa.L=hfc and ps.M=trunc(T[i]/hfc).

methods a character string list specifying the methods for the Hurst exponent estimation.
Default: c("dfa", "pgramgphe", "mtmgphe", "pgramgspe", "mtmgspe").

verbose a logical flag. If TRUE (the default), prints information while executing.

plot a logical value for whether or not to plot the results. Default: TRUE.

... Additional arguments passed to any of dfa.ffe, dfa.lse, ps.pgram, ps.mtm,
ps.gphe, ps.gspe and plot. Note: Neither m (dfa.lse) nor M (ps.gphe
and ps.gspe) should be set since they depend on the length of the time series
and are therefore generated accordingly.
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Value

A list of class Hconv with the following elements:

H a true value of the Hurst exponent tested.

T a vector of time series lengths.

methods a character string list specifying the methods for the Hurst exponent estimation.

bH a bias of the estimated H. It is a matrix of size length(methods)xlength(T)
which (i, j) element is equal to the bias of the method number i for the time se-
ries length number j.

Note

To get a clear distinction between the different methods set s at least equal to 1000.

See Also

dfa.ffe, ps.pgram, ps.mtm, ps.gphe, ps.gspe, plot.Hconv

Examples

library(PowerSpectrum)
hurst.conv(s=10)

hurst.test Test of the Hurst exponent estimators bias and standard deviation

Description

This function generates s time series of length n using ARFIMA(0,H−0.5,0) model (fracdiff.sim
function from fracdiff package) for a vector of the values of H and calculate the bias and the stan-
dard deviation for a given list of the Hurst exponent estimators.

Usage

hurst.test(H = seq(0.5,1.1,by=0.1), T = 540, s = 100, order=3, lfc=0,
hfc=18, methods = c("dfa.lse","pgram.gphe","mtm.gphe",
"pgram.gspe","mtm.gspe"), verbose = TRUE, plot = TRUE, ...)

Arguments

H a vector of the Hurst exponent values to be tested, where 0 < H[∗] < 2.

methods a character string list specifying the methods for the Hurst exponent estimation.
By default it includes all the supported methods.

T a length of the time series to use.

s a number of samples to use.

order the order of the polynomials used in local detrending in DFA
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lfc a number of the lowest Fourier frequences trimmed. Thus ps.L=lfc and dfa.M=round(T[i]/lfc).
In case lfc=0 then dfa.M=T[i].

hfc a lower scale cut off. Thus dfa.L=hfc and ps.M=trunc(T[i]/hfc).

verbose a logical flag. If TRUE (the default), prints information while executing.

plot a logical value for whether or not to plot the results. Default: TRUE.

... Additional arguments passed to any of dfa.ffe, dfa.lse, ps.pgram, ps.mtm,
ps.gphe, ps.gspe and plot.

Value

A list of class Htest with the following elements:

H a vector of the true values of the Hurst exponent tested.

bH a bias of the estimated H. It is a matrix of size length(methods)xlength(H)
which (i, j) element is equal to the bias of the method number i for the true value
of H number j.

sdH a standard deviation of the estimated H. It has the same structure as bH.

Note

To get a clear distinction between the different methods set s at least equal to 1000.

See Also

dfa.ffe, ps.pgram, ps.mtm, ps.gphe, ps.gspe, plot.Htest

Examples

library(PowerSpectrum)
hurst.test(s=10)

plot.cse Function for plotting objects of class cse

Description

This function plots spectral coherence, amplitude spectrum, and phase spectrum estimated by the
multitaper method for two time series. It takes as input an object of class cse, which can be
generated, for instance, by the cs.mtm function.

Usage

## S3 method for class 'cse':
plot(x, type = "o", main = rep(NULL,3), xlab = rep(NULL,3),

ylab = rep(NULL,3), plot.ci = TRUE, ...)
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Arguments

x an object of class cse.
type a type of curve used in the plot. See type option of the plot function.
main a main title of the plot.
xlab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
plot.ci a logical flag. If TRUE (the default), include confidence intervals in plot
... Additional arguments passed to plot.

See Also

cs.mtm

Examples

library(PowerSpectrum)
Period = seq((1856-1658), length(CET_1659_2008))
CET_1856_2008 = CET_1659_2008[Period]
x <- cs.mtm(CET_1856_2008, AMO_1856_2008)
plot(x)

plot.ffe Visualisation of Detrended Fluctuation Analysis

Description

Function for plotting objects of class ffe generated by the PowerSpectrum package.

Usage

## S3 method for class 'ffe':
plot(x, h = NULL, plot.ci = TRUE, type = "o", xlim = NULL,

ylim = NULL, main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x an object of class ffe.
h optional object of class tdhee. It could be generated by dfa.lse. Adds a

fitted power law spectral density to the plot.
plot.ci a logical value for whether or not to plot confidence intervals for a fluctuation

function approximation. Default: TRUE.
type a type of curve used in the plot. See type option of the plot function.
xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.
main a main title for the plot.
xlab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
...
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See Also

dfa.ffe

Examples

library(PowerSpectrum)
cet.dfa <- dfa.ffe(CET_1659_2008)
plot(cet.dfa)

plot.Gtest Plot of the goodness-of-fit tests results

Description

Function for plotting objects of class Gtest generated by gfit.test.

Usage

## S3 method for class 'Gtest':
plot(x, ...)

Arguments

x an object of class Gtest generated by gfit.test.

...

See Also

gfit.test

Examples

library(PowerSpectrum)
Gtest <- gfit.test(s=10, n = seq(400,1000,100), plot = FALSE)
plot(Gtest)
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plot.Hconv Plot of the Hurst exponent estimators convergence test

Description

Function for plotting objects of class H.conv generated by hurst.conv.

Usage

## S3 method for class 'Hconv':
plot(x, plot.color = TRUE, ...)

Arguments

x an object of class Hconv generated by hurst.conv.
plot.color a logical value for whether or not to plot with color. Default: TRUE.
...

See Also

hurst.conv

Examples

library(PowerSpectrum)
conv <- hurst.conv(s=10, plot = FALSE)
plot(conv)

plot.Htest Plot of the Hurst exponent estimators bias and standard deviation test

Description

This function plots objects of class Htest generated by hurst.test.

Usage

## S3 method for class 'Htest':
plot(x, plot.panel = 2, plot.color = TRUE, ...)

Arguments

x an object of class Htest generated by hurst.test.
plot.panel an integer value of 1 or 2, determining whether to make a one panel or two panel

plot. Default: 2.
plot.color a logical value for whether or not to plot with color. Default: TRUE.
...
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See Also

hurst.test

Examples

library(PowerSpectrum)
test <- hurst.test(s=10, plot = FALSE)
plot(test)

plot.pse Function for plotting objects of class pse, generated by the Power-
Spectrum package.

Description

This function produces a plot of a power spectrum estimate and its approximations.

Usage

## S3 method for class 'pse':
plot(x, ar = NULL, h = NULL, plot.ci = TRUE, plot.are.ci = TRUE,

type = "o", xlim = NULL, ylim = NULL, main = NULL, xlab = NULL,
ylab = NULL, xaxt="s", ...)

Arguments

x an object of class pse.

ar optional object of class sdare. It could be generated by ps.ar1. Adds a fitted
AR1 spectral density to the plot.

h optional object of class sdhee. It could be generated by ps.gphe or ps.gspe.
Adds a fitted power law spectral density to the plot.

plot.ci a logical flag. If TRUE (the default), plot power spectrum confidence intervals

plot.are.ci a logical flag. If TRUE (the default), plot AR1 fit confidence intervals

type a type of curve used in the plot. See type option of the plot function.

xlim, ylim Numeric vectors of length 2, giving the x and y coordinates ranges.

main a main title of the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

xaxt a character which specifies the x axis type. Specifying "n" suppresses plotting
of the axis. The default value is "s".

...

See Also

ps.pgram, ps.mtm, ps.gphe, ps.gspe
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Examples

library(PowerSpectrum)
pse = ps.pgram(CET_1659_2008)
sdare = ps.ar1(pse)
sdhee = ps.gphe(pse)
plot(pse, sdare, sdhee)

pmt.test Portmanteau tests

Description

The portmanteau test is designed to see if the sample autocorrelations of the residuals for lags
t =1,..,lag is consistent with a hypothesis of zero mean white noise, where "lag" is taken to be
relatively small in relation to the sample size N. Here we consider two variations on the portmanteau
test, namely, the Box-Pierce test statistic and the Ljung-Box-Pierce test statistic [1]. pmt.test
estimates the residuals for a given sample and a given model, AR1 or power law, and then calls
Box.text function, which is a standard R function.

Usage

pmt.test(x, m, lag = max(10,round(length(x)/20)),
type = c("Ljung-Box","Box-Pierce"),
na.action = na.fail, demean = TRUE,
series = NULL)

Arguments

x a vector containing a uniformly sampled real valued time series.

m an object of class sdhee (generated by ps.gphe or ps.gspe) or sdare
(generated by ps.ar1)

lag a maximum autocorrelation function time lag.

type test type, "Ljung-Box" or "Box-Pierce".

na.action a function to be called to handle missing values.

demean a logical flag. If TRUE (the default), the mean value of x is set to 0.

series a name for the series. Default: deparse(substitute(x)).

Value

Bt an output of the Box.text function.

model a character string specifying the fitted model.

References

[1] D.B. Percival, J.E. Overland, and H.O. Mofjeld (2001), Interpretation of North Pacific Variabil-
ity as a Short- and Long-Memory Process, J. Climate 14, 4545–4559.
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See Also

sdf.test

Examples

library(PowerSpectrum)
h <- ps.gspe(ps.mtm(hadcrut3gl_1850_2008))
pmt.test(hadcrut3gl_1850_2008, m=h)

ps.ar1 Spectral Domain Lag One Autocorrelation (AR1) Estimator

Description

Spectral domain lag one autocorrelation coefficient estimate object is obtained by fitting the spec-
tral density of AR1 process to an estimate of the power spectrum. It outputs an object of type
sdare, which serves as an input into a goodness-of-fit test (sdf.test), a linear trend test
(trend.test), and ps.plot.

Usage

ps.ar1(x, method = c("mle", "lse"), verbose = TRUE, pse = NULL, ...)

Arguments

x an object of class pse, output from either ps.pgram or ps.mtm.

method the method used to estimate the lag one autocorrelation coefficient

verbose a logical flag. If TRUE (the default), prints information while executing.

pse the name of the pse object. Default: deparse(substitute(x)).

...

Value

An object of class sdare with the following values set:

phi an estimate of the lag one autocorrelation coefficient.

sdphi a standard deviation of the estimator of phi.

pse the name of the pse object used.

method a lag one autocorrelation estimation method used.

call the matched call to ps.ar1

See Also

sdare, sdf.test, trend.test
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Examples

library(PowerSpectrum)
ps.ar1(ps.pgram(AMO_1856_2008))

ps.data Climatic Time Series

Description

The list of climatic time series included into the package is shown below. Most of these time series
can be updated using data.update.

AMO_1.1856_7.2009 - monthly data of Atlantic Multidecadal Oscillation index
http://www.cdc.noaa.gov/Timeseries/AMO/.

AMO_1856_2008 - annual data of Atlantic Multidecadal Oscillation index.

CET_1.1659_7.2009 - monthly data of Central England Temperature
http://hadobs.metoffice.com/hadcet/.

CET_1659_2008 - annual data of Central England Temperature.

crutem3gl_1.1850_6.2009 - Land Surface Temperature Anomalies (Global, monthly means)
http://www.cru.uea.ac.uk/cru/data/temperature/

crutem3gl_1850_2008 - Land Surface Temperature Anomalies (Global, annual means)

crutem3nh_1.1850_6.2009 - Land Surface Temperature Anomalies (Northern Hemisphere,
monthly means)

crutem3nh_1850_2008 - Land Surface Temperature Anomalies (Northern Hemisphere, an-
nual means)

crutem3sh_1.1850_6.2009 - Land Surface Temperature Anomalies (Southern Hemisphere,
monthly means)

crutem3sh_1850_2008 - Land Surface Temperature Anomalies (Southern Hemisphere, an-
nual means)

Donard_752_1992 - Donard Lake (Baffin Island) summer temperature reconstruction based on
lake varve thickness
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/paleolimnology/northamerica/canada/baffin/donard_2001.txt

giss_ghcn_gl_1.1880_12.2008 - GISS Global Temperature Anomalies (base period: 1951-
1980, monthly means). Sources: GHCN (meteorological stations only)
http://data.giss.nasa.gov/gistemp/



22 ps.data

giss_ghcn_gl_1880_2008 - GISS Global Temperature Anomalies (base period: 1951-1980,
annual means). Sources: GHCN (meteorological stations only)

giss_ghcn_nh_1.1880_12.2008 - GISS Northern Hemisphere Temperature Anomalies (base
period: 1951-1980, monthly means). Sources: GHCN (meteorological stations only)

giss_ghcn_nh_1880_2008 - GISS Northern Hemisphere Temperature Anomalies (base pe-
riod: 1951-1980, annual means). Sources: GHCN (meteorological stations only)

giss_ghcn_sh_1.1880_12.2008 - GISS Southern Hemisphere Temperature Anomalies (base
period: 1951-1980, monthly means). Sources: GHCN (meteorological stations only)

giss_ghcn_sh_1880_2008 - GISS Southern Hemisphere Temperature Anomalies (base pe-
riod: 1951-1980, monthly means). Sources: GHCN (meteorological stations only)

giss_ghcn_sst_gl_1.1880_12.2008 - GISS Global Temperature Anomalies (base period:
1951-1980, monthly means). Sources: GHCN + SST.

giss_ghcn_sst_gl_1880_2008 - GISS Global Temperature Anomalies (base period: 1951-
1980, annual means). Sources: GHCN + SST.

giss_ghcn_sst_nh_1.1880_12.2008 - GISS Northern Hemisphere Temperature Anoma-
lies (base period: 1951-1980, monthly means). Sources: GHCN + SST.

giss_ghcn_sst_nh_1880_2008 - GISS Northern Hemisphere Temperature Anomalies (base
period: 1951-1980, annual means). Sources: GHCN + SST.

giss_ghcn_sst_sh_1.1880_12.2008 - GISS Southern Hemisphere Temperature Anoma-
lies (base period: 1951-1980, monthly means). Sources: GHCN + SST.

giss_ghcn_sst_sh_1880_2008 - GISS Southern Hemisphere Temperature Anomalies (base
period: 1951-1980, monthly means). Sources: GHCN + SST.

hadcrut3gl_1.1850_6.2009 - Combined Land and Marine Surface Temperature Anoma-
lies (Global, monthly means)
http://www.cru.uea.ac.uk/cru/data/temperature/

hadcrut3gl_1850_2008 - Combined Land and Marine Surface Temperature Anomalies (Global,
annual means)

hadcrut3nh_1.1850_6.2009 - Combined Land and Marine Surface Temperature Anoma-
lies (Northern Hemisphere, monthly means)

hadcrut3nh_1850_2008 - Combined Land and Marine Surface Temperature Anomalies (North-
ern Hemisphere, annual means)

hadcrut3sh_1.1850_6.2009 - Combined Land and Marine Surface Temperature Anoma-
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lies (Southern Hemisphere, monthly means)

hadcrut3sh_1850_2008 - Combined Land and Marine Surface Temperature Anomalies (South-
ern Hemisphere, annual means)

NAO_DJFM_Hurrell_1864_2008 - Jim Hurrell’s winter (December through March) index of
the NAO based on the difference of normalized sea level pressure (SLP) between Lisbon, Portugal
and Stykkisholmur/Reykjavik, Iceland
http://www.cgd.ucar.edu/cas/jhurrell/Data/naodjfmindex.asc.

PDO_1.1900_6.2009 - monthly data of Pacific Decadal Oscillation index
http://www.jisao.washington.edu/pdo/.

PDO_1900_2008 - annual data of Pacific Decadal Oscillation index

Rarotonga_1726_1996 - annual data of Rarotonga coral Sr/Ca SST reconstruction
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/coral/east_pacific/rarotonga_sr-ca.txt.

See Also

data.update

pse Power Spectrum Estimate Object

Description

Power spectrum estimate object is generated by power spectrum estimation functions (ps.pgram,
ps.mtm) and serves as an input into a goodness-of-fit test (sdf.test) and functions estimating
power spectrum approximations (ps.ar1, ps.gphe, ps.gspe).

Value

An object of class pse has the following properties:

frequency a vector of frequencies.

spectrum a power spectrum estimate.

spectrum.ci an asymptotic in case of the periodogram or a jackknifed in case of the multita-
per confidence interval for the power spectrum estimate.

cl a confidence level used for power spectrum confidence interval estimation.

ntaper a number of tapers used in the spectrum estimate.

taper The data taper used

weight The spectrum weighting used

series a name of the time series.

method a spectrum estimation method used.

call a matched call for ps.mtm.
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See Also

ps.pgram, ps.mtm, sdf.test, ps.ar1, ps.gphe, ps.gspe

ps.gphe Geweke-Porter-Hudak Estimator

Description

Geweke-Porter-Hudak Estimator (GPHE) is a linear fit of the time series power spectrum in log-
log coordinates within a given frequency bandwidth. GPHE estimates the Hurst exponent together
with its confidence intervals and a scaling factor b by fitting function f(λ) = b|λ|1−2H to a low-
frequency part of the time series power spectrum by the least squares method. GPHE was originally
proposed in [1] and rigorously justified in [2] and [3] for the case of the periodogram and in [4] for
the multitaper.

Usage

ps.gphe(x, L = 0, M = length(f), calcSD = FALSE,
verbose = TRUE, pse = NULL, ...)

Arguments

x an object of class pse, output from either ps.pgram or ps.mtm.

L a number of the lowest Fourier frequences trimmed.

M a number of the highest Fourier frequency used.

calcSD a logical flag. If TRUE, calculates the standard deviations (see equation (11)
in [4]) for the estimates of H and c = log(b) . It is a time consuming option.
Default: FALSE.

verbose a logical flag. If TRUE (the default), prints information while executing.

pse the name of the pse object. Default: deparse(substitute(x)).

...

Value

An object of class sdhee with the following values set:

H an estimate of the Hurst exponent.

sdH a standard deviation of the estimator of H (see equation (11) in [3]). GPHE only.

asdH an asymptotic value of the standard deviation of the estimator of H based on the
periodogram (see equation (7) on page 24 in [2] for GPHE and equation (4.1)
on page 1640 in [1] for GSPE).

b an estimate of the scaling factor b from f(λ) = bλ1−2H .

c c = log(b).

sdc a standard deviation of the estimator of c = log(b) (see equation (11) in [3]).
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L a number of the lowest Fourier frequences trimmed.

M a number of the highest Fourier frequency used.

psa a power spectrum approximation of the form bλ1−2H .

series a name of the time series.

method a Hurst exponent estimation method used.

call a matched call.

References

[1] J. Geweke and S. Porter-Hudak (1983), The estimation and application of long-memory time
series models, J. Time Series Anal. 4, 221–238.

[2] P.M. Robinson (1995), Log-periodogram regression of time series with long range dependence,
Ann. of Statist. 23, 1048–1072.

[3] C. Hurvich, R. Deo, and J. Brodsky (1998), The mean squared error of geweke and porter-
hudak’s estimator of the memory parameter of a long-memory time series, J. Time Series Anal. 19,
19–46, 10.1111/1467-9892.00075.

[4] E.J. McCoy, A.T. Walden, and D.B. Percival (1998), Multitaper Spectral Estimation of Power
Law Processes, IEEE Transactions on Signal Processing 46, 655–668.

See Also

pse, sdhee, ps.pgram, ps.mtm, ps.gspe

Examples

library(PowerSpectrum)
ps.gphe(ps.mtm(Donard_752_1992))

ps.gspe Gaussian Semiparametric Estimator

Description

Gaussian Semiparametric Estimator (GSPE) is a maximum likelihood fit of the time series power
spectrum within a given frequency bandwidth. GSPE estimates the Hurst exponent and a scaling
factor b by fitting the function f(λ) = b|λ|1−2H to a low-frequency part of the time series power
spectrum by the maximum likelihood method. It was originally proposed in [1] and rigorously
justified in [2].

Usage

ps.gspe(x, L = 0, M = length(f), interval = c(0,1.5),
verbose = TRUE, pse = NULL, ...)
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Arguments

x an object of class pse, output from either ps.pgram or ps.mtm.

L a number of the lowest Fourier frequences trimmed.

M a number of the highest Fourier frequency used.

interval an interval over which to estimate H .

verbose a logical flag. If TRUE (the default), prints information while executing.

pse the name of the pse object. Default: deparse(substitute(x)).

...

Value

An object of class sdhee with the following values set:

H an estimate of the Hurst exponent.

asdH an asymptotic value of the standard deviation of the estimator of H based on the
periodogram (see equation (7) on page 24 in [2] for GPHE and equation (4.1)
on page 1640 in [1] for GSPE).

b an estimate of the scaling factor b from f(λ) = bλ1−2H .

c c = log(b).

L a number of the lowest Fourier frequences trimmed.

M a number of the highest Fourier frequency used.

psa a power spectrum approximation of the form bλ1−2H .

series a name of the time series.

method a Hurst exponent estimation method used.

call a matched call.

References

[1] R. Fox and M. Taqqu (1988), Large sample properties of parameter estimates for strongly de-
pendent stationary gaussian time series, Ann. of Statist. 17, 1749–1766.

[2] P.M. Robinson (1995), Gaussian estimation of long range dependence, Ann. of Statist. 23,
1630–1661.

See Also

pse, sdhee, ps.pgram, ps.mtm, ps.gphe

Examples

library(PowerSpectrum)
ps.gspe(ps.mtm(AMO_1856_2008))
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ps.mtm Multitaper Spectrum Estimator

Description

Multitaper is an average of several direct spectrum estimators, which use a set of orthogonal tapers
(for details see [1-6]). The DPSS tapers can be used with the adaptive or simple uniform weighting
[1,3,6]. The "sine" tapers are implemented only with the uniform weighting [4]. Confidence inter-
vals are estimated using a jackknife method [2]. The output can be visualized using plot function
which actually calls plot.pse.

Usage

ps.mtm(x, dt = c("dpss", "sine"), wt = c("adapt", "uniform"),
K = 3, cl = 0.95, verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL, ...)

Arguments

x a vector containing a uniformly sampled real valued time series.

dt a data taper to be used. If equals to either "dpss" or "sine" then the appropriate
taper will be created by a call to dpss.taper or sine.taper respectively.
If of class dpss.taper or sine.taper or a matrix of size NxK where N is
the input time series length and K is the number of tapers then dt will be used
directly.

wt a weighting to use during spectrum estimation. If dt is a "sine" taper or a NxK
matrix it will be forced to use uniform weighting. In case of the "dpss" taper the
adaptive weighting (see [1,3,6]) can also be used.

K a number of tapers to be used.

cl a confidence level used for power spectrum confidence intervals estimation.

verbose a logical flag. If TRUE (the default), prints information while executing.

na.action function to be called to handle missing values.

demean a logical flag. If TRUE (the default), the mean value of x is set to 0.

series a name for the series. Default: deparse(substitute(x)).

... Additional arguments passed to either dpss.taper or sine.taper, the
most useful of which is K, the number of data tapers to use.

Value

An object of class pse with the following values set:

frequency a vector of frequencies.

spectrum a power spectrum estimate.

spectrum.ci a jackknifed confidence interval for the power spectrum estimate.



28 ps.pgram

cl a confidence level used for power spectrum confidence interval estimation.

ntaper a number of tapers used in the spectrum estimate.

taper The data taper used

weight The spectrum weighting used

series a name of the time series.

method a spectrum estimation method used.

call a matched call for ps.mtm.

References

[1] D.J. Thomson (1982), Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 1055-1096.

[2] D.J. Thomson and A. D. Chave (1991), Jackknifed error estimates for spectra, coherences,
and transfer functions, in Advances in Spectrum Analysis and Array Processing, S. Haykin, Ed.
Englewood Cliffs, NJ: Prentice-Hall, vol. 1, ch. 2, pp. 58-113.

[3] D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge
University Press, 611 pp.

[4] K.S. Riedel and A. Sidorenko (1995), Minimum bias multiple taper spectral estimation, IEEE
Transactions on Signal Processing, 43, 188-195.

[5] E.J. McCoy, A.T. Walden, and D.B. Percival (1998), Multitaper Spectral Estimation of Power
Law Processes, IEEE Transactions on Signal Processing, 46, 655-668.

[6] D.J. Thomson, L.J. Lanzerotti, F.L. Vernon, M.R. Lessard, and L.T.P. Smith (2007), Solar Modal
Structure of the Engineering Environment, Proc. IEEE, 95, 1085-1132.

See Also

pse, plot.pse, cs.mtm, ps.pgram

Examples

library(PowerSpectrum)
x = ps.mtm(Rarotonga_1726_1996)
plot(x)

ps.pgram Periodogram Spectrum Estimator

Description

Periodogram is the simplest power spectrum estimator (for details see [1]). It estimates the power
spectrum through the square of absolute value of discrete Fourier transform of the time series di-
vided by the time series length.
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Usage

ps.pgram(x, cl = 0.95, verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL, ...)

Arguments

x a vector containing a uniformly sampled real valued time series.

cl a confidence level used for power spectrum confidence intervals estimation.

verbose a logical flag. If TRUE (the default), prints information while executing.

na.action a function to be called to handle missing values.

demean a logical flag. If TRUE (the default), the mean value of "x" is set to 0.

series a name for the time series. Default: deparse(substitute(x)).

...

Value

An object of class pse with the following values set:

frequency a vector of frequencies.

spectrum a power spectrum estimate.

spectrum.ci an asymptotic confidence interval for the power spectrum estimate.

cl a confidence level used for power spectrum confidence interval estimation.

ntaper a number of tapers used in the spectrum estimate.

series a name of the time series.

method a spectrum estimation method used.

call a matched call for ps.pgram.

References

[1] D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge
University Press, 611 pp.

See Also

pse, ps.mtm, ps.gphe, ps.gspe

Examples

library(PowerSpectrum)
ps.pgram(AMO_1856_2008)
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sdare Spectral Domain Lag One Autocorrelation (AR1) Estimate Object

Description

Spectral domain lag one autocorrelation estimate object is generated by ps.ar1 by fitting the
spectral density of AR1 process to an estimate of the power spectrum. It serves as an input into a
goodness-of-fit test (sdf.test) and a linear trend test (trend.test).

Value

An object of class sdare has the following properties:

phi an estimate of the lag one autocorrelation coefficient.
sdphi a standard deviation of the estimator of phi.
pse the name of the pse object used.
method a lag one autocorrelation estimation method used.
call a matched call.

See Also

ps.ar1, sdf.test, trend.test

sdf.test Spectral Goodness-of-Fit Test

Description

This test compares a given estimate of the spectrum to the spectral density corresponding to a
fitted model, AR1 or a power law, in the frequency range specified by the indices L and M. The
null hypothesis is that the AR1 or the power law is a correct model for the given spectrum [1-2].
sdf.test outputs the spectral density of the fitted model, a test statistic and a p-value, which is
the smallest significance level for which we would end up rejecting the null hypothesis.

Usage

sdf.test(x, m, L = 0, M = length(x$frequency), verbose = TRUE)

Arguments

x an object of class pse. It could be generated by ps.pgram.
m an object of class sdhee (generated by ps.gphe or ps.gspe) or sdare

(generated by ps.ar1)
L a number of the lowest Fourier frequences trimmed.
M a number of the highest Fourier frequency used.
verbose a logical flag. If TRUE (the default), prints information while executing.
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Value

T the test statistic.

p the test p-value.

model a character string specifying the fitted model.

References

[1] J. Beran (1992), A Goodness-of-Fit Test for Time Series with Long Range Dependence, J. R.
Statis. Soc. B 54, 749–760.

[2] D.B. Percival, J.E. Overland, and H.O. Mofjeld (2001), Interpretation of North Pacific Variabil-
ity as a Short- and Long-Memory Process, J. Climate 14, 4545–4559.

See Also

pse, sdare, sdhee, pmt.test, ps.gphe, ps.gspe

Examples

library(PowerSpectrum)
pse = ps.pgram(Rarotonga_1726_1996)
sdare = ps.ar1(pse)
sdhee = ps.gspe(pse)
plot(pse, sdare, sdhee)
sdf.test(pse, m = sdare)
sdf.test(pse, m = sdhee)

sdhee Spectral Domain Hurst Exponent Estimate Object

Description

Hurst exponent estimate object is generated by Hurst exponent estimation functions (ps.gphe,
ps.gspe) and serves as an input into a goodness-of-fit test (sdf.test), a linear trend test
(trend.test), and ps.plot.

Value

An object of class sdhee has the following properties:

H an estimate of the Hurst exponent.

sdH a standard deviation of the estimator of H (see equation (11) in [3]). GPHE
only.

asdH an asymptotic value of the standard deviation of the estimator ofH based on the
periodogram (see equation (7) on page 24 in [2] for GPHE and equation (4.1)
on page 1640 in [1] for GSPE).

b an estimate of the scaling factor b from f(λ) = b|λ|1−2H .
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c c = log(b).

sdc a standard deviation of the estimator of c = log(b) (see equation (11) in [3]).
GPHE only.

L a number of the lowest Fourier frequences trimmed.

M a number of the highest Fourier frequency used.

series a name of the time series.

method a Hurst exponent estimation method used.

call a matched call.

References

[1] P.M. Robinson (1995), Gaussian estimation of long range dependence, Ann. of Statist. 23,
1630–1661.

[2] C. Hurvich, R. Deo, and J. Brodsky (1998), The mean squared error of Geweke and Porter-
Hudak’s estimator of the memory parameter of a long-memory time series, J. Time Series Anal. 19,
19–46, 10.1111/1467-9892.00075.

[3] E.J. McCoy, A.T. Walden, and D.B. Percival (1998), Multitaper Spectral Estimation of Power
Law Processes, IEEE Transactions on Signal Processing 46, 655–668.

See Also

ps.gphe, ps.gspe, sdf.test, trend.test

sine.taper Computing Sinusoidal Data Tapers

Description

Computes sinusoidal data tapers directly from equations.

Usage

sine.taper(n, K = 3, ...)

Arguments

n length of data taper(s)

K number of data tapers

...

Details

See reference.
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Value

an object of class sine.taper that is a vector or matrix of data tapers.

Author(s)

B. Whitcher, modified by J. Mayer

References

Riedel, K. S. and A. Sidorenko (1995) Minimum bias multiple taper spectral estimation, IEEE
Transactions on Signal Processing, 43, 188-195.

See Also

dpss.taper.

tdhee Time Domain Hurst Exponent Estimate Object

Description

Time domain Hurst exponent estimate object is generated by a time domain Hurst exponent estima-
tion function (dfa.lse).

Value

An object of class tdhee has the following properties:

H an estimate of the Hurst exponent.

sdH a standard deviation of the estimator of H .

r a fluctuation function scaling factor from F (s) ∼ rsH .

q q = log(r).

sdq a standard deviation of the estimate of q.

L a lower scale cut off.

M an upper scale cut off.

ffe the name of the ffe object used.

method a Hurst exponent estimation method used.

call a matched call.

See Also

dfa.ffe, dfa.lse, sdhee
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trend.test Univariate time series linear trend estimation and detection

Description

This function estimates a linear trend for a univariate time series using linear regression and then
estimates its confidence intervals relatively to three competing hypothesis regarding residuals’ au-
tocorrelation structure: white noise, AR(1), power law. The function also estimates the number of
data points (desired time series length) required to detect the observed trend for a given significance
level and a test power under each hypothesis.

Usage

trend.test(x, ar = NULL, h = NULL, a = 0.05, p = 0.5,
verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL)

Arguments

x a vector containing a uniformly sampled real valued time series.
ar optional object of class sdare. It could be generated by ps.ar1. Tests the

trend of AR(1) model.
h optional object of class sdhee. It could be generated by ps.gphe or ps.gspe.

Tests the trend of Power Law model.
a significance level
p power of the test specified for calculation of a number of data points required to

detect the observed trend
verbose a logical flag. If TRUE (the default), prints information while executing.
na.action function to be called to handle missing values.
demean a logical flag. If TRUE (the default), the mean value of x is set to 0.
series a name for the series. Default: deparse(substitute(x)).

Value

A list with the following elements:

intercept an intercept estimate.
trend a slope estimate.
sd a standard deviation of the linear trend residuals.
trend.est a matrix of size 3x2 which first column contains estimated confidence intervals

for the trend and the second column contains the number of data points required
to detect the estimated trend for the given power. The rows correspond to dif-
ferent assumptions about trend residuals autocorrelation structure. Thus the first
row corresponds to the case of white noise residuals, the second to AR1, and the
last one to power law.

length the length of the time seires
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Note

All periodical signals have to be removed from the time series prior to trend.test application!

References

[1] R.L. Smith (1993), Long-range dependence and global warming, In Statistics for the Environ-
ment (V. Barnett and F. Turkman, eds.), John Wiley, Chichester, 141–161.

[2] D. Vyushin, V. Fioletov, and T. Shepherd, (2007), Impact of long-range correlations on trend
detection in total ozone, J. Geophys. Res. 112, 10.1029/2006JD008168,
http://www.atmosp.physics.utoronto.ca/people/vyushin/Papers/Vyushin_
Fioletov_Shepherd_Trend_Detection_in_Total_Ozone.pdf.

See Also

sdare, sdhee, ps.pgram, ps.mtm, ps.gphe, ps.gspe

Examples

library(PowerSpectrum)
NAO = NAO_DJFM_Hurrell_1864_2008[seq((1946-1864+1),(1995-1864+1))]
plot(seq(1946,1995), NAO, type="o", xlab="")
NAOres = lm(NAO ~ seq(1,length(NAO)))$residuals
pse = ps.pgram(NAOres)
sdare = ps.ar1(pse)
sdhee = ps.gspe(pse)
tr = trend.test(NAO, ar=sdare, h=sdhee)
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