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One of the main problems in statistical climatology is to tomct a parsimonious model of
natural climate variability. Such a model serves for instaas a null hypothesis for detection
of human induced climate changes and of periodic climateadsy Fitting this model to various
climatic time series also helps to infer the origins of uhgeg temporal variability and to
cross validate it between different data sets. We consliuse of a spectral power-law
model in this role for the surface temperature, for the frieeospheric air temperature of the
troposphere and stratosphere, and for the total ozonet, fieslay down a methodological
foundation for our work. We compare two variants of five diffiet power-law fitting methods
by means of Monte-Carlo simulations and their applicatmoliserved air temperature. Then
using the best two methods we fit the power-law model to sevbiservational products and
climate model simulations. We make use of specialized gbimersc general circulation model
simulations and of the simulations of the Coupled Modelrrdgenparison Project 3 (CMIP3).
The specialized simulations allow us to explain the povaeré¢xponent spatial distribution and
to account for discrepancies in scaling behaviour betwé@areht observational products. We
find that most of the pre-industrial control and 20th centmgdel simulations capture many
aspects of the observed horizontal and vertical distoutif the power-law exponents. At the
surface, regions with robust power-law exponents — theiNattantic, the North Pacific, and
the Southern Ocean — coincide with regions with strong idesradal variability. In the free

atmosphere, the large power-law exponents are detectedrualato decadal time scales in



the tropical and subtropical troposphere and stratospfiéespectral steepness in the former
is explained by its strong coupling to the surface and in &ltkieit by its sensitivity to volcanic
aerosols. However power-law behaviour in the tropics anthénfree atmosphere saturates
on multi-decadal timescales. We propose a novel diagntségaluate the relative goodness-
of-fit of the autoregressive model of the first order (AR1) dhd power-law model. The
collective behaviour of CMIP3 simulations appears to fafivibeen the two statistical models.
Our results suggest that the power-law model should senanagpper bound and the AR1
model should serve as a lower bound for climate persistemoeamthly to decadal time scales.
On the applied side we find that the presence of power-lawnderal variability increases
the uncertainty on the long-term total ozone trend in thetivon Hemisphere high latitudes
attributable to anthropogenic chlorine by about a factdr.6f and lengthens the expected time

to detect ozone recovery by a similar amount.
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Chapter 1

Introduction

All models are wrong, but some are useful.

George E. P. Box

1.1 Characteristics of natural climate variability

Climate variability on interannual to multi-decadal tineakes involves a mix of anthropogeni-
cally and naturally generated variabilit{gley and Raper1990. There are two main ap-
proaches to model climate variability in modern climateeace: physical and statistical. The
first one is based on the fundamental laws of physics, chemgsology, and biology, such as
the laws of hydrodynamics, radiative heat transfer, cadyare, etc. These laws are written
in a form of partial or ordinary differential equations, glipd with initial and boundary con-
ditions, and solved using various numerical schemes onrsogputers. Roughly speaking,
these equations combined with a computer code for theitisalare called climate models.
The physical approach provides a huge amount of informathoyut climate variability, but
it is very complicated, because it involves numerous imténg physical processes and their

parameters, some of which are poorly constrained by obsengor scientific understanding.

Text that appears in non-black fonts is hyperlinked, eitbex cross-reference in the thesis or a URL, in the
electronic version of the thesis.



CHAPTER 1. INTRODUCTION 2

An alternative and complementary approach is to use staishodels for description of
climate variability. This approach is phenomenologica, iit does not have to be based on
the fundamental laws of nature. Statistical models invauielatively few parameters, fitted
to observed data or to climate model output, provide a comparsimonious”) description
of large data arrays. In climate science statistical modedsmainly used for assessment, in-
terpretation, and comparison of various observationadpects and climate model simulations.
They are also extensively used for forecasting, but as palgibased models are getting more

mature they achieve a similar skill to statistical modelthis kind of application.

The main focus of this thesis are two statistical modelsrilesg natural climate variabil-
ity. By means of these two models we will attempt to get nevigims into climate dynamics
and provide new ways for its assessment. The developmeuatbfconceptual, but at the same
time very practically important, statistical models is @essary step for construction of a the-
ory of climate variability. During our study of the statrséi models of climate variability we
will employ multiple simulations of physical climate modeis nice tools for testing various
hypotheses about the origins of climate variability. There we will demonstrate that both

approaches, physical and statistical, are mutually beakfic

Climate variability can be decomposed into three partserirdl climate variability, natu-
rally forced, and anthropogenically forced variabilityhélinternal climate variability is gen-
erated by climatic processes at various time scales, engosgtheric convection and breezes
on hourly scales, baroclinic life cycles on daily scalesyidar modes on weekly scales, mon-
soons and midlatitude air-mixed ocean layer interactiamsnonthly scales, quasi-biennial
oscillation (QBO) and El Nifio Southern Oscillation (ENS@) annual scales, thermoha-
line circulation variability on decadal scales, interans with biosphere on centennial scales,
glacial dynamics on millennial scales, etc. The naturatifgs are solar and volcanic forc-
ings. The latter can be considered as a stochastic forciagalthe stochastic nature of the
location, size and frequency of climate affecting volcamiaptions. The effect of the solar

forcing on the atmospheric air temperature in the 20th egrituweak and highly debated
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(e.g.Benestad and Schmid2009. Here for simplicity we regard the solar forcing effect on
interannual to multidecadal time scales as stochastimadth some of its components might
be quasi-deterministic, e.g. the so called 11 year soldecys combination of internal and

naturally forced climate variability is called naturalrokte variability. The anthropogenically

forced climate variability is deterministic and is not ofrpary interest in this thesis.

Natural climate variability can be characterized by theferal spectral density of either
observed/reconstructed climatic time series after filgganthropogenically induced changes
if necessary or of climate model simulations forced by exenatural forcings. Very often
it is useful to represent the spectral density with a simpjgaximate statistical model. This
kind of model, which is statistically parsimonious in thaése that it uses a small number of
parameters, provides input to studies of trend and peiitgdietection, climate predictability,
extreme value statistics, etc. An advantage of a parsinnsrstatistical model is that it is
relatively easy to compare a few parameters, that this nabends on, across different data
sets and, as we do in this thesis, to look at the geographigbdion of such parameters. A
disadvantage of a complex statistical model, i.e. a modil many parameters, is that in case
some of its parameters turn out to be useless their onlytaffe¢o increase the probability of
error generation. In addition, if a model becomes too datiaii.e. the data are overfit, then

there might be no ability to generalize it.

A parsimonious statistical model should be distinguishednfa parsimonious physical
model. The principle of parsimony or Occam’s razor prineipl physics and in science in
general is often a subjective matter that depends on thégmnodnd the user’s prior knowledge
and way of thinking. For example, itis commonly accepted lihaar models are simpler than
nonlinear models. Thus given a linear and a nonlinear madeth depend on the same num-
ber of parameters and provide equally good explanationdta,dhe linear model would most
typically be chosen. Although, one can imagine an individu@o dealt only with nonlinear
models in his/her entire life. Because this individual hasferent than commonly accepted

Occam’s razor, he/she would choose the nonlinear modekastst simple theory for given
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data. In this thesis we will mainly rely on the principle oésstical parsimony, in particular
because of its more rigorous formulation. However statidlly parsimonious models might be
insightful for construction of parsimonious (low-ordetysical climate models for explana-
tion and prediction of climate variability and change.

The best known statistically parsimonious approximationdiscrete climatic time se-
ries is the autoregressive model of the first order (AR1),clwhivas theoretically justified
by Hasselmanr{1976. It is based on an idea of temporal scale separation betaeesnic
and atmospheric dynamics and on their linear interactionHasselmann’s (1976) model a
fast stochastic (weather-noise) atmospheric variahidlityes slow damped components of the
climate system such as the ocean.

Autoregressive models belong to a class of Markov modelsa dontinuous time frame-
work the AR1 model might be written as a linear stochastitedi#ntial equation of the first

order. In discrete time it has a very simple form
M, = oM,y +e, o] <1, (1.1)

where¢ is a lag-one autocorrelation aagare white noise innovations. The AR1 process has

an exponentially decaying autocorrelation function (ACF)
Cam(t) =, o] <1, —oo <t < +o0. (1.2)

The shape of the AR1 model spectral density is

0.2

: A <172, (1.3)

Sar(N) = 1 —2¢cos(2mN) + @2’

where \ is the frequency, with\ = 1/2 corresponding to the Nyquist frequency, arfdis
proportional to the time series variance (see Brgpckwell and Davis1998. In typical ap-
plicationso? and ¢ are estimated from time series or from power spectrum (sgledensity
estimate) and used to test for the presence of significardagieror externally forced signals
(e.g.Ghil et al, 2002. In other applications (e.@Bretherton and Battistt000 the model is

taken as a simplified physical model to analyze climate bditp
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There are multiple ways to generalize the AR1 model, e.g. RK Model (e.gWunsch
2004, a multivariate AR1 model (e.d@arsugli and Battisti1998 Caballero et al.2002, a
sum of several independent AR1 models (€ganger 1980 Maraun et al.2004). Let us
consider the most straightforward and therefore the mgstiao of these generalizations, i.e.
the ARK model (see e.ddrockwell and Davis1998 von Storch and Zwiersl999. The au-
toregressive model of the K-th order for monthly mean terapee, M/;, might be written as
follows:

My = 1My + GoMy_—o + ...+ Qg My + &4, (1.4)

where ¢, are autoregressive coefficients such tiAdf is a stationary process (see e.g.
Brockwell and Davis1998 von Storch and Zwiersl999 ande; are white noise innovations

with variances?2. The spectral density of the ARK process is

g

Sarx(N) = 5. A< 1/2. (1.5)
1-— Zle o exp(—2mik\)

2
€

It is easy to see thafarx (A) — const as\ — 0.

ARK models are used much more rarely in climate science tha®R1 model. We will
consider fitting ARK models to a particular climatic timeissra few pages below. Another
generalization of the AR1 model, a sum of several multiseéd®d models, is considered in
Section6.6.

The spectral densit$ 4z:(\) scales as\~? at high-frequencies and then, as well as the
spectral density of an ARK model, saturates to a constaravatffiequencies. But this be-
haviour is not always observed. Recent research has padutiegotential limitations of the
AR1 model (e.gHall and Manabgl997 Schneider and Fa2007). Also many studies in the
past two decades (e.gloomfield 1992 Pelletier 1997 Tsonis et al. 1999 Eichner et al.
2003 Fraedrich and BlendeR003 Vyushin et al, 2004 Huybers and Curry2006 have re-
ported that the power spectra of various climatic time sedi@ not seem to saturate but keep
growing at low-frequencies, although with slope shallottan—2.

A recently well developed mathematical theory of long-racgrrelated (LRC) processes
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(also known as long-range dependent or long-memory presggsovides a nice framework
for modelling or at least constraining the temporal vatigbof such time series. This theory

describes stochastic processes for which the ACF decagbralgally:
Cpp(t) =alt] 2, 1/2<H <1, |t| >, (1.6)

whereH is the “Hurst exponent”, named after the British hydrologrgho first observed this
phenomenon while studying the Nile rivefirst 1951). It can be shown that the spectral den-
sity of such processes increases by the power-law with dsitrg frequency (see e.aqqu
2002

Spp(A) = b, 0 <A < Apign < 1/2, (1.7)

whereb represents the overall spectral power ang, is a high-frequency cutoff = 1/2
corresponds to a white-noise or short-memory spectrumrand 1 corresponds to al/ f”
noise spectrum. Power-law variability represents temsmaling behaviour without a char-
acteristic timescale. In this formulation fay;,;, < 1/2 the power-law model is less parsimo-
nious than the AR1 model, because it has one extra paramgigr,Statistically speaking, the
power-law model is a semi-parametric model, because iribesctime series only partially (in
our case its low-frequency variability), whereas the AR1delas formally a full parametric
model. Although implicitly the AR1 model is also semi-pastnic, because, as we will show
below, it depends on time series aggregation time scaleyhether monthly, annual, decadal
or whatever means are considered, which is somewhat sitithe high-frequency cutoff pa-
rameter. However in some applications, such as trend detgsee e.gSmith 1993, only the
low-frequency variability is important, which motivatdsetuse of a semi-parametric model,
because for instance a full parametric model might be sglyaffected by the high-frequency
variability. It has been shown Bgranger(1980; Caballero et al(2002; Maraun et al(2004)
that various generalizations of the AR1 model can approtarttee power-law model for fre-
guency ranges which exclude the zero frequency.

One important point, which some researchers miss, is thgttange correlations necessar-
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ily lead to temporal power-law behaviour, but not the othaywaround. Temporal power-law
behaviour could be caused by either the Joseph effect, vdoctes from the Old Testament
story about Joseph, where Egypt would experience seveis pédeast followed by seven
years of famine, and represents long-range correlatiangieoNoah effect, which refers to
another Old Testament story when the God caused it to rain tigoEarth for forty days and
forty nights, and represents fat (power-law) tails of theentying probability density func-
tion (Mandelbrot and Wallis1968. A simple test to distinguish between these two effects
is to compare the Hurst exponent estimates for the origindlfar a shuffled version of the
time series. Because shuffling destroys serial correlateord preserves the distribution, it
removes the Joseph effect, but leaves the Noah effect. Ib&éa@s shown in several studies
(e.g.von Storch and Zwierd 999 that surface temperature and total ozone (with monthly and
coarser temporal aggregation), which are two of the threabies we focus on here, are ap-
proximately normally distributed in time. Thus, their pati@l power-law behaviour should
be attributed to long-range correlations — the Joseph tef@ansistently, we have found that
when we randomize in time the time series of surface temperairee atmosphere air temper-
ature, and total ozone, the resulting estimate# @re not distinguishable from 1/2, to within
the confidence of oufl estimation techniques (not shown). This points to the atisehthe
Noah effect. The next question is if an observed Josephteff@hysical or an artefact of data
inhomogeneities, which, as we will discuss, are known tad leapower-law behaviour (see

Berton(2004); Rust et al(2008 and Chapteb of the thesis).

Power-law behaviour has been reported in globally and hgmeiscally averaged surface
air temperatureRloomfield 1992 Gil-Alana, 2009, station surface air temperatuieg(letier
1997, geopotential height at 500hPaspnis et al. 1999, temperature paleo climate proxies
(Pelletier 1997 Huybers and Curry2006 and many other studies (see Tabld for a more
complete historical list of relevant studies). Howeveryoalfew of these studies have per-
formed quantitative tests to determine if the power-law elasl superior to the AR1 model.

Those who haveStephenson et al200Q Percival et al.2007) find that both models demon-
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strate similar scores for the goodness-of-fit tests emploBeth Stephenson et a(2000 and
Percival et al.(2001) conclude that century long time series are not long enoogtidarly
demonstrate the superiority of one model over the otheronitrast, in most of the empirical
power-law model studies in all fields including climate e the only criteria used to test the
validity of the power-law model is the fact that the estintakéurst exponent is significantly
greater than 1/2 (e.yVillinger et al, 1999. We will start with this somewhat naive assump-
tion in Chapter3 and then progress to more sophisticated approaches togilisgth between

time series models in Chaptér

With the discussion of parsimony in mind, we base much of owalyesis in this
thesis on the AR1 and the power-law model for the followingsens: (a) they are
the most parsimonious red-noise models (a process with aeplew spectrum some-
times is also called a pink noise); (b) they give a lower and ugper bound on
climate persistence (see Chaptéy, (c) at the moment the AR1 is the most com-
monly used climate noise model, for instance it is extemgivesed in the two most
influential recent climate assessmenistgrgovernmental Panel on Climate Chan@®07,
World Meteorological Organizatior2007); (d) the power-law model is probably the second
most cited statistical model of natural climate variabi(éee TabléA.1). Unlike some of the
literature cited in Tablé\.1, nowhere in the thesis do we claim that power-law behavisur i
universal on all time scales. Instead, we 3¢ (\) to provide a sense of how quickly power
builds towards lower frequencies on annual to multidecadales. Regions whetd = 0.5
(the flat spectrum limit) might be well described by eithercalp while regions wherd? is

closer to 1 (the / f limit) are candidates for true power-law behaviour.

In this thesis we will mainly use temperature variabilityépresent climate variability. We
employ temperature because it is probably the best obsamadlyy constrained and physically
understood climate variable. To set the stage for our aisadyshe modern temperature record,
we would like to start with Figl.1, which is Fig. 2 inHuybers and Curry2006. It shows

a compilation of power spectra of various temperature @s;goredominately derived from
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paleo-proxies. The time scales extend from two days to akliendred thousand years. The
extratropical records have larger variance than the tedpiges. It can be argued that the power
spectra shown in FidL.1 have at least three scaling (power-law like) regimes: sabak from
one year to about hundred years, and longer than hundresl. ylaahis thesis we mainly deal

with the second regime.

Huybers and Currf2006 suggested that the scaling regime on scales longer than hun
dred years could be related to the Milankovitch cycles. Harv@ne can imagine a simpler
world without the Milankovitch cycles. What would the povwggectrum of temperature be in
such a world? Would it saturate at low frequencies or wouidaintain the slope (in log-log
coordinates) inferred for the annual-to-centennial baAd?his stage of the climate science
development we can not definitely answer these questions. hiard to separate the effect
of the Milankovitch cycles from the internal climate varigly in existing paleo records (e.g.
Wunsch 2004 and there is not yet enough trust in climate model paleo lsitiauns. Therefore
we should consider both of the above mentioned possilsiitiethe unobserved low frequency

part of the spectrum, which are the limits stationary tinmeesemight tend to.

Answers to the above questions are essential for trend tatecThe assumption that
climatic power spectra saturate after a certain low freques the current standard practice
(e.g. Intergovernmental Panel on Climate Chang@07 World Meteorological Organizatign
2007. However many studies, which reported power-law like @ase of temperature power
spectra, in particular Figl.1, shed doubt on this assumption. Alternatively, if one waats
stay on a conservative side, i.e. to assume a strong natumalte variability, the assumption
that temperature power spectra increase by a power-lavegsdncy tends to zero is not un-
reasonable. In this case the power-law fit obtained usingrebd variability on interannual to
multidecadal time scales can be extrapolated to zero frexyusy keeping the Hurst exponent
constant. Apart from trend detection a power-law fit to a gfeftequency range is useful as a
parsimonious tool for intercomparison of temporal vatigbon specific time scales between

different observational products and climate model sitmuhs (see Chapters 5-6).
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Figure 1.1:(Adopted fromHuybers and Curry2006§) A combination of spectral estimates obtained using in-
strumental and proxy records of surface temperature viityaand insolation at 65N. The more-energetic spec-
tral estimate is from high-latitude continental recordd &me less-energetic estimate from tropical sea surface
temperatures. Highlatitude spectra are estimated frord Biaylor and GISP2 ice-cor@®0; Vostok and Dome

C ice-coredD; Donard lake varve thickness; Central England Tempegatunrd a Climate Research Unit's (CRU)
instrumental compilation. From low latitudes ODP846 masediment-core alkenones; W167-79, OCE205-103,
EW9209-1, ODP677 and ODP927 calc#&0; PL07-39 and TR163-19 Mg/Ca; ODP658 foram assemblages;
Rarotonga coral Sr/Ca; and the Climate Analysis Center dRid {Dstrumental compilations are used. Temper-
ature spectral estimates from records of the same data tgpmraraged together. Power-law estimates between
1.1-100 and 100-15,000 year periods are listed along watindstrd errors and indicated by the dashed lines. The
sum of the power-laws fitted to the long- and short-periodiconim are indicated by the black curve. The vertical
line-segment indicates the approximate 95% confidencevadtevhere the circle indicates the background level.

The mark at 1/(100 years) indicates the region mid-way betvtkee annual and Milankovitch periods.
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One of the statistical characteristics of a time seriessiglécorrelation time scale, which

might be defined as follows

m:/mmmm (1.8)

[e.e]

where(C'(t) is a process autocorrelation function. Ho8is a continuous version of Eq. 17.5

in von Storch and Zwierg1999. Stochastic processes can be classified as short-memory
and long-memory processes. A short-memory process, ftarios an ARK process, has a
summable ACF and therefore a finite decorrelation time scllecontrast, the integral of a
long-memory process ACF diverges, e.g. in the @daée ~ 1?72, 1/2 < H < 1 for large

t, and therefore its decorrelation time scale is undefinedisTim the case an ARK model is
fitted to a particular time series its decorrelation timdecan be estimated using the ARK

model autocorrelation function, i.e.

m:/m@M@w (1.9)

This approach for decorrelation time scale estimation iggested, for instance, in
Bretherton et al(1999; von Storch and Zwier§1999. The ARK model decorrelation time
scale is unique, i.e. if the model was fitted to a time serieaafthlymeans and the decorrela-
tion time scale is estimated using the model autocorreldtiaction to be equal, for example,
to 24 months, then the decorrelation time scale foraimeualmeans of this time series should
be equal to 2 years according to the ARK model. We will appty¢bncept of decorrelation
time scale to a particular climatic time series below.

Let us illustrate an application of the ARK model togethethwthe two limiting cases,
the AR1 and the power-law, by fitting the three models to thatimy mean Central England
Temperature (CET) anomalies time series (1659-1958). kereonsider only the first 300
years of the CET record in order to avoid the effect of antbggmic components, because our
focus is on natural climate variability.

In Fig. 1.2a we plot a multitaper spectrum estimator of the CET monthdamanomalies

(black curve) together with the three fits to the spectrurhigTigure and much of the analysis
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Figure 1.2:Central England Temperature (CET, 1659-1958) (a) montldgms and (b) annual means
power spectrum estimators and their approximations. Thekbturve is a 5 sine tapers multitaper
power spectrum estimator (Secti@®.1). The red solid (dashed) curve is a spectral density of the
AR1 model fitted, using a maximum likelihood algorithm, t@t@ET monthly (annual) means time
series. The green solid (dashed) curve is a spectral desfsihe best fitted, according to the Akaike
information criteria, autoregressive model (AR6 for mdythnd AR4 for annual means) to the CET
monthly (annual) means time series. The power-law fit, egoh using the Geweke-Porter-Hudak
Estimator (see SectioR.2.1) applied to the monthly means, is shown by the blue line. Tiextsal
density of the AR1 model fitted to the decadal means is showthéprange curve in panel (b). The
blue curve is the same in both plots. Also included are nuwakagstimates for the AR1 parameter
and its standard deviationl(¢) (see Section 9.8 d?ercival and Walder1993 and the Hurst exponent
estimateH and its standard deviatiosrd(ﬁ) (seeMcCoy et al, 1998. The spectral and power-law

estimators are described in Sectb.

in this thesis have been produced using an open-sourceg®dRawerSpectrum, that | have

developed using the R statistical language during my Phudlyswith the help of undergrad-
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uate student Josh Mayer. A manual for this package is indludéhe thesis as AppendB.)
The methods employed in Fig.2 are specified in the caption and the power-law fit and mul-
titaper methods will be described in ChapferFig. 1.2a demonstrates that the AR1 spectral
density overestimates the CET power spectrum at high-énecjes and underestimates it at
low-frequencies, whereas the power-law, which also depentl on two parameters as does

the AR1, does a much better job.

According to the Akaike information criteria the best fit ketCET monthly mean anoma-
lies among autoregressive models is given by the ARG, wipeltsal density is shown by the
green solid curve in Figl.2a. It better approximates the CET spectrum than the AR1,tbut i
still underestimates it on time scales longer than 20 yeale decorrelation time scale for
the CET monthly mean anomalies estimated according to thaitten given by the Eql.9is

equal to 3 months (the estimated AR6 autocorrelation fonds nonnegative everywhere).

Let us now see what happens to the three models during thaticanfrom the monthly
to annual means. The power spectrum of the CET annual meatattisd in Fig.1.2b by the
solid black curve. According to the AR1 model fitted the CETminby mean anomalies the
year-to-year autocorrelation should be equal ti26 + 0.003 (see Sectiorb.3.1for details).
Instead, the estimated year-to-year autocorrelatior s+ 0.06, i.e. about seven times larger.
To obtain a reasonable fit for the annual means using the ARdehame has to fit it again.
The spectral density of the newly fitted AR1 model is shownim E.2b by the dashed red
curve. (We plot the spectral densities of the AR1 and the fite8RK model for the CET
annual means by the dashed curves to underline the factbse fits are obtained by direct
fitting to the annual means). As for the monthly means the Afecsal density overestimates

a high-frequency and underestimates a low frequency paneaspectrum.

Akaike information criteria chooses the AR4 as the best fibgressive model for the
CET annual means. Its spectral density is shown by the dagfeeth curve in Figl.2b. It
is probably the best fit for the CET annual means power specamnong the three models.

The decorrelation time scale estimated using the AR4 mattiedi fio the CET annual means is
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equal to 3 years (the estimated AR4 autocorrelation funds@lso nonnegative everywhere)
in contrast to the 3 months estimated using the monthly mémis fact hints that presumably
different physics work on monthly and annual time scales @entral England and that the
ARK model cannot capture the dependence of the decorrelétite scale on the temporal
aggregation scale (the AR6 model fitted to the monthly meagdigted that the annual means

should be uncorrelated).

The spectral density of the power-law model, shown by the lourve in Fig.1.2o, is
obtained just by truncating time scales shorter than 2 ykans the corresponding spectral
density shown in Figl.2a. Thus an advantage of this model is that in contrast to the &Rl
the best fit autoregressive model it does not have to be teétieh time the aggregation time

scale is increased and therefore it better captures thalbpewer spectrum shape.

Bloomfield and Nychkg1992 compared the estimated linear trend confidence intervals
based on white noise, AR1, AR2, ARS8, power-law, and two warsiof Wigley and Raper
(1990 analytically solvable energy balance model for globallgraged annual mean surface
air temperature anomalies time series. They found thatstmates based on the ARS8, power-
law model, and a multibox energy balance model are closedo ether and about four times
greater than the white noise based confidence interval ang &% greater than the AR1 and
AR2 estimates. However the estimated trend was statistsighificant relatively to any of the
above mentioned confidence intervals. We will develop tleasdofBloomfield and Nychka
(1992 and apply them to a problem of ozone recovery detection iap@hr3. Estimates for
a globally averaged surface air temperature will be updateidcompared to those reported in

Intergovernmental Panel on Climate Chai{@@07) in Section6.5.

We have also fitted the AR1 model to the CET decadal meangeéttral density is shown
by the orange curve in Fid..2b. It closely follows the spectral density of the AR4 modeéfit
to the annual means. Therefore for the CET record the ARligies\a good fit to the spectrum
only for the decadal means and it could be used, under thengsisun of the CET spectrum

saturation near zero frequency, as a noise model for detectia trend in the decadal means.
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Given this background, we will make the working assumptimotigh much of the thesis
that the atmospheric general circulation might be well abtarized by power-law behaviour
on interannual and longer time scales. We will revisit tlestamption in Chaptes, in which
we will return to the question of the goodness of fit of eactistiaal model for observed and

simulated climate variability.

Unlike the Hasselmann model, the power-law model, whiclicetgs temporal scaling be-
haviour rather than dependence on any particular timegdtaseno simple established physical
interpretation. The possible origins of the power-law $ggdehaviour (also called/ f”
noise), which might be relevant to climate on annual to aamtd time scales, are: aggrega-
tion of multiple scalesGranger 198Q Caballero et a).2002, in particular in self-organized
criticality type modelsRios and Zhangl999 Maslov et al, 1999, stochastically forced diffu-
sion equationsRelletier 2002 Fraedrich et a).2004 Dommenget and Lati2008, nonlinear
stochastic differential equationslgidenov and Kozhevnikoy200Q Kaulakys and Alaburda
2009, a sum of slowly decaying intermittent shock3ofk, 1984 Parke 1999 Mandelbrot
2003, point processes Davidsen and Schuster2002 Kaulakys et al. 2005, chaotic
Hamiltonian dynamics Geisel et al. 1987 Zaslavsky 2002, intermittent nonlinear maps
(Barenco and Arrowsmiti2004 Miyaguchi and Aizawa2007), etc. By the aggregation of
multiple scales we mean that various physical processdashvilave a wide range of charac-
teristic time scales and which comprise an internal clinvaigability, can generate a power-
law like spectrum for a wide range of frequencies. We havearatnated an example of such

mechanism above for the CET record.

One way to introduce multiple time scales into the climatstay is through a vertical
diffusion of the ocean temperatur®@ommenget and Latif2008 coupled a comprehensive
atmospheric GCM to a simple ocean model mainly representédeovertical diffusion equa-
tion. Thus their global climate model (ECHAM5-0OZ) can be gbly approximated by the

following equation

ar

CE = —’)/SW«fT—i- szzT+€surf7 (110)
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Figure 1.3: (Courtesy of Dietmar Dommenget) The mean specaf observed (black curve)
and simulated (green and cyan curves) midlatitudinal S$he.spectrum is averaged over all
grid points in the North Pacific and North Atlantic Oceansamsn 30N and 55N. The red

curve shows the spectral density of a fitted to the obsema#dr1 process.

whereT is an upper ocean layer temperaturés the heat capacity of the ocean layey,,  is
the damping coefficient;, is the exponentially decreasing with depth diffusion coedfit, and
esurf IS the atmospheric white noise forcing. The spectrum of datitdde sea surface temper-
ature (SST) from an ECHAM5-0Z 800 year long simulation isvghan Fig. 1.3together with
the spectrum of observations and its AR1 fit and the spectnertfCC models mean. (We will
discuss the analysis of the IPCC simulations in Cha@feAll the spectra but the AR1 grow
with the decreasing frequency at all time scales. In coptthe AR1 spectrum saturates to a
constant after several years, which is consistent with émabiour of mixed layer ocean mod-

els coupled to an atmosphere, but inconsistent with thevib@inaof dynamical ocean models



CHAPTER 1. INTRODUCTION 17

(Dommenget and Lati2002.

While the previous discussion briefly touches on some of yimanhical factors that might
underlie power-law like behaviour in climate, the purpo$ehis thesis is not to develop a
detailed dynamical theory of such behaviour. Instead, cainrpurpose is to test the robust-
ness of spectral slope estimation techniques and to usedbkerobust techniques to estimate

spectral slopes in observations and simulations.

Here we provide a brief overview of the thesis structure. fbflewing two sections of the
Introduction provide a literature and applications ovewiln Chapte we lay down theoret-
ical and methodological foundations for our work. In partés we compare two variants of
five different Hurst exponent estimators by means of MordeldCsimulations. Chapteralso
describes analysis related to trend detection. Ch&udeals with understanding and quantifi-
cation of low-frequency variability in total ozone. It dekes a multilinear regression model
for the total ozone variability and measures the spectesmsiess of the model residuals us-
ing Hurst exponent estimates obtained by two methods. Tihesetestimates are employed
to calculate the confidence intervals for the observed teertithe number of years required
to detect this trend, which represents an important apmicaf the power-law analysis. The
Hurst exponent based confidence intervals are comparee tstahdard for climate literature
AR1 based confidence intervals and shown to be more conserykrger). In Chapted,
which begins the main focus of the thesis, we switch fromltotane to reanalysis free at-
mosphere air temperature (FAAT) and compare the five Husbreent estimators described
in Chapter2. We find that the estimators agree provided equal frequesmoges are chosen
and known high-frequency climate signals, such as the duasnial oscillation, are filtered
out. In Chaptedd we also compare the Hurst exponents for the zonally averagegm-
perature with the zonally averaged Hurst exponents esuifatr each grid point time series.
Chapter5 focuses on physical mechanisms giving rise to the FAAT spepbwer buildup at
low-frequencies. It compares the results for reanalys#s seiveral specialized simulations of

an atmospheric GCM and shows that the high valugs oh annual to decadal time scales are
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caused by atmosphere-ocean interaction in the tropigadshere and by volcanic aerosols in
the tropical and subtropical stratosphere. The influendat inhomogeneities, for instance in
the tropical upper troposphere and the southern midla#poin FAAT spectrum steepness and
the benefits of power-law analysis for their detection amadyneral low-frequency variability
cross-validation are also presented in ChapteBurface air temperature derived from obser-
vational products and 17 climate models from the Coupled élldctercomparison Project 3
archive is analysed in Chaptér We compare the Hurst exponent estimates for the observed
and simulated temperature for various climate scenaeosporal scales, and geographical re-
gions. As mentioned above, in Chapéwe also evaluate the relative goodness-of-fit of the
AR1 and power-law models. The results demonstrate thaeteworld seems to fall between
the AR1 and power-law statistical models. Chagteummarizes and discusses main findings
and describes future work. Appendixlists previous studies related to the power-analysis of
temporal climate variability. AppendiR is a manual of the PowerSpectrum package.

Most of the results described in my thesis have been alreadyished. Thus the
results of Chapter3 have been published inVyushinetal, 2007, of Chapter4 in
(Vyushin and Kushnge2009, and of Chapteb in (Vyushin et al,2009. Appendix B of Chap-
ter 3 has been submitted for publication in theurnal of Geophysical Research: Atmospheres

Chapter6 represents a manuscript in preparation.

1.2 Literature Review

In the past half a century there were more than a thousandpapenathematics, physics,
statistics, Earth and life sciences, social sciences,neegng, etc. dealing with the phe-
nomenon of temporal power-law behaviour. The web%8ibliography on 1/f Noise”at-

tempts to collect all of them. In this Section, we review tteistical climatology literature on
this topic, which involves a range of methods that often @lewnconsistent results. For refer-

ence, we provide in Tabl&.1 a list of several studies in which temporal power-law bebawi
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has been quantified. The columns of the table specify ardlegables, estimation methods,
the time scale range for which the Hurst exponent was esatrange of estimated, and

a reference.

It can be noticed from Tabla.1 that the analysis originally started from studies of indi-
vidual time series and progressed to studies of hundredsitdis time series and of gridded
data sets of individual observational products and climatelels and then to intercomparison
of multiple observational products with climate model enb&es. However only a few studies
used more than one estimation method and varied frequenggesa Detrended Fluctuation
Analysis (DFA) seems to be the most popular estimation nigthepecially in the past 15
years. The majority of the papers is devoted to surface ipégature (SAT) followed by pre-
cipitation, humidity and sea level pressure. Connectiaitis tlve previous studies will be made

throughout the thesis.

The first three articlesBloomfield 1992 Bloomfield and Nychkal1992 Smith 1993,
which studied temporal power-law spectral behaviour in 8Ad its impact on trend detection,
did not attract much attention in the climate community. yifeeind that, although a confidence
interval of a linear trend in globally averaged SAT is wideder a power-law assumption for
the residuals, the observed 20th century trend is stillisggmt under this assumption. These
articles had relatively little impact, perhaps becausé firelings merely reinforced previous

results.

Several subsequent papers (eRPglletier 1997 Koscielny-Bunde et al.1998 focused
on the power-law behaviour of SAT from station records andtafstic ice cores.
Koscielny-Bunde et a[1998 made a serious claim, a so-called “universality hyposiethat
all SAT time series have the same Hurst exponent equal ta OI6& claim was based on
the analysis of just 14 stations, most of which were locatedoastal areas in midlatitudes.
Govindan et al(2002, who questioned the fidelity of general circulation modwishe basis
of their inability to reproduce the power-law behaviour irstation SAT time series, stimu-

lated some controversy. The climate models showed an absétang-range correlations, i.e.
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H = 0.5, while all the stations hadl ~ 0.65. Global warming contrarians attracted attention
to this article (e.ghttp://www.heartland.orgRichard Lindzen’s talks) by using it in their cri-
tique of climate models, all of which attributed the surfa@aming of the second half of the

20th century to anthropogenic emissions.

Using NCEP/NCAR reanalysis SAT and simulations of two clienamodels
Fraedrich and Blende(2003 and Blender and Fraedric2003 showed that the “uni-
versality hypothesis” is not valid. The Hurst exponent wagnid to be greater over ocean
than over land and therefore the comparison between individtations and nearest grid
points of coarsely resolved climate models is not fair, bheeahe latter does not necessarily
capture local climate conditions, especially in coastehar-raedrich and Blend€2003 and
Blender and FraedricfR003 also demonstrated that the large scale spatial Hurst expon
patterns are similar between the reanalysis and the madeisever they also oversimplified
the situation by stating thaf = 0.5 for inner continental sited/ = 0.65 for coastal stations,
andH = 1 over the oceanvyushin et al (2004 examined 20th century simulations of NCAR
PCM with 10 different combinations of anthropogenic anduratforcings. They concluded
that the simulations with a historical volcanic forcing yide model SATH close to the
observed ones over land and also increldsever ocean, whereas the simulations without the

volcanic forcing underestimaté everywhere.

Table A.1 also refers to several studies that show that the Hurst expagstimates for
observed SAT over land are likely affected by local condisiosuch as regional land surface
types, and by possible inhomogeneities present in the daiehner et al.(2003 analysed
around a hundred stations and found that most of the BAflues fall between 0.6 and 0.7.
Kurnaz (2004 studied 384 stations in the western US and foéihdstimates mainly between
0.55 and 0.65Kiraly et al. (2006 estimatedH for more than 9000 stations around the globe
and found most of the values between 0.6 and Rifaly et al. (2006 used shorter time scales
thanEichner et al(2003 andKurnaz (2004, which could lead to the higher estimates/of

None of the above mentioned station studies found a depeadditheH estimates on station
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distance to the nearest coast or on altitudkurnaz (2004 has noticed that at least a part
of the spatial variability off over the western US might be explained by local land surface
types. Rust et al.(2008 analysed SAT from 24 European stations before and afteoveng
detected data inhomogeneities caused, for instance, byaaten of the measurement station
or by installing a new type of shelter. They found that hommggtion typically leads to a
reduction of H estimates by 0.04-0.06. The sensitivity of the Hurst expbestimates for
observed SAT to local conditions and to possible data intgeneities makes it difficult for
the current generation of coarsely resolved global clinmtelels to reproduce the precise
spatial distribution off estimated for observed SAT.

Because of this controversy in the previous work in the fietel will focus in this thesis on
thelarge-scalepattern of theH distribution within observational products and climatedab
simulations. A well characterizefl distribution is required before any physical theory for the
H distribution can be developed. At the time we began this wwekencountered several open

guestions:

¢ How method-independent and roliuate the observed and simulated spatial patterns of
H for SAT? This general question might be broken into more ifipeguestions, such as

what is the sensitivity to:

— estimation methods, including the choice of a frequencgedor which the esti-
mation is performed?

— the choice of an observational product or a climate model?

— the presence of radiative forcings and internal climate@spduch as ENSO?

— the presence of data inhomogeneities?
e What is the statistical significance of differences betwesalts?

e What are the spatial patterns of the power-law exponentgiiaables other than SAT?

2In this thesis the word “robust” is used as a synonym of thedwstable” (insensitive to small perturbations)
and also as a synonym for “having a small variance” when ipfgiad to a statistical estimator.
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What is the ability of climate models to capture tHedistribution for various variables?

What are the underlying physical mechanisms leading to wthrof spectral power at

low-frequencies?

Is there a true scaling in the SAT or any other climate vae'alibmporal variability?

What are the implications of the fact that climate variabpesver spectra can be well

approximated by a power-law?

In this thesis we will try to answer some of these questions.

1.3 Applications

Temporal power-law behaviour characterization has ajréadn successfully applied to space-
time modeling of winds in Ireland for wind energy studi¢$aglett and Raftery1989, to
weather derivatives pricingC@aballero et a).2002, and to trend confidence interval estima-
tion (Smith (1993 and ChapteB of this thesis). Recently it has been shown numerically that
long-range correlations qualitatively affect extremeueastatistics, e.g. the distribution and
serial correlations of extreme events return intervale @g.Bunde et al. 2005. The first
applications of these results to climate have been repaiteddy (e.gZorita et al, 2008,
but many more are expected to appear. Such results and fdications are of significant
practical importance for national and regional policy, mhbealth, agriculture, industry, in-
frastructure, insurance, etc., because it can be arguéddbarate quantification of extreme
value statistics saves lives and money. Another field, wheveer-law spectral approximation
might be useful, is the studies of potential climate prehiity (e.g.Boer, 2004. Here we
will summarize some of the above mentioned applications.

Haslett and Raftery1989 used long-range temporal correlations to model wind vstoc
at 12 sites in Ireland, which allowed them to accuratelyneste the confidence intervals for

the annual mean generated wind energy. The basic idea isttie case that the time series
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Figure 1.4: (Courtesy of Rodrigo Caballero) Autocorrelatfunction for Los Angeles SAT
anomaly time series with the observed data (circles) andditshe ARFIMA(1,d,1) (solid

curve), AR3 (dashed curve) and AR20 (dotted curve) models.

autocorrelation function scales &' ~2 for large time lags then the standard error of the time
series sample mean scalessad®vV!~, whereo is the time series standard deviation avids
the time series length. For the conventional case of shertrony processes, e.g. white noise
or AR1, H = 1/2 and we get a conventional dependence on the inverse of tlaeestpot of
N. However, when{ > 1/2 the standard error of the sample mean decays slower\vitran

in the conventional case. Consequently it can be shownhbattandard error of a linear trend
superimposed on long-range correlated time series scates\& (see e.g.Smith (1993

and Sectior.4 of this thesis).

A weather derivative is a form of insurance against adveresather; a relatively cold win-

ter is an example of adverse weather for natural gas consyumbereas a relatively warm
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winter is adverse weather for natural gas suppliers. Toadfrweather related securities, in-
cluding weather derivatives, began around 1997 and acuptdi Weather Risk Management
Association reached a volume of around US$50 billion in 2006nsider a weather deriva-
tive based on heating degree days (HDD), which are defindd/a®; = max(7T* — T;,0),
whereT; is the averaged temperature on dand7™ is a threshold temperature, usually’C3
(Caballero et a).2002. The heating degree days index is defined as a sum of heagrgel
days over a certain period of lengh, i.e.
N
=Y HDD;

i=1

The most important term in weather derivative price is

5= / T QP

whereQ(1) is a given payout function anB(/) is the heating degree days index probability
density function. Assuming thdtis second order stationary and ti#{t/ ) is Gaussian we have
to estimate the mean and the standard deviatiahtofestimateS. The mean of is obtained
from the temperature climatology, whereas the equatiothistandard deviation dfis more
elaborate:

N

o7 = a%(N + QZ(N — k:)pk>,

k=1
whereos?. is the standard deviation ang is the autocorrelation function of the temperature
anomalies. Thus accurate estimation of the autocorre&ti® very important for accurate
pricing of weather derivatives. Underestimation of theoaatrelations leads to underestima-
tion of a weather derivative and to a potential loss for issies. Caballero et al(2002 found
that a statistical model with autocorrelation function agng asymptotically by a power-
law, namely an autoregressive fractionally integratedingpaverage (ARFIMA(L,1), Beran
1994 Taqqu 2002 better captures a slow decrease of the observed daily tatupe anoma-
lies autocorrelations than autoregressive models evemed?@th order and therefore provides
a more accurate estimate for a weather derivative price.xamele of such slow autocorrela-

tions decrease is demonstrated in Rigl It plots an estimate of the autocorrelation function
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for Los Angeles SAT daily mean anomalies and its three appratons. AR3 and AR20 inter-

polate the first three and twenty autocorrelations resgpalgtand then unsurprisingly quickly
decay to zero. In contrast, the ARFIMA{11) model, which is the ARMA(1,1) model forced
instead of white noise innovations by power-law innovadiarth the Hurst exponent equal to
d + 1/2, closely approximates the autocorrelation function oretsnales up to 90 days and
possibly longer.

The idea of potential predictability was introduced to @dieresearch biyladden(1976
and later developed Ewiers (1987 andZwiers and Kharin1998. Boer (2004 considered
several definitions of potential climate predictabilityetbasic idea of which is the ratio of a
measure of the low-frequency variability to that of the tatamate time series variability, i.e.
p = o2 /a%. We recall that time series variance is equal to the integfritb spectral density.
Therefore using a power-law approximation for the spedkalsity we can rewrite the equation
for p in the following way

AL 1/2
p=( / DA AN /( / DA 2 AN),
—AL —1/2
where0 < A\, < 1/2is athreshold frequency between the low- and high-frequeadability.
Thus we get

p= (2)\L)2_2H.

In two limiting casesd = 1/2 and H = 1 we havep = 2\, andp = 1 respectively ang
monotonically increases withl between these values. This explains the similarity between
the spatial distribution of the estimates for surface air temperature shown in Fig. 5 from
Boer (2004 and of theH estimates shown in Chaptér More detailed connections between
potential climate predictability studies and power-lamp®ral behaviour are outside the scope

of the thesis and might be a subject of future research.



Chapter 2

Methodological Basis

2.1 Introduction to long-range correlated processes

The theory of stochastic processes with long-range caeclacrements was originated by
Kolmogorov in two short noteKlmogoroy 1940ab) during his studies of turbulence. The
seminal paper oMandelbrot and Nesgl969 developed many of their properties and intro-
duced the term “self-similar” to describe these processes.

There are at least two definitions of a self-similar procds® first one states that a real-

valued stochastic proce¥s= {Y'(¢) }+cr is self-similar with indexd > 0 if, for any a > 0,
{¥ (@t) hier = {a"Y () }rcr. (2.1)

where< denotes the equality of the finite-dimensional distribagidlagquy 2002. The Hurst
exponent,H, comes in as a fundamental parameter governing the scalopgies of a self-
similar stochastic process. In this thesis we use incresrara self-similar process for model-

ing low-frequency natural climate variability. The incrents are defined as follows
X;=Y,—-Y, 4, i€ (2.2)
The autocovariance of;

2
(k) = cov(Xi, Xipn) = %X k4 122 kP 4+ |k — 12|, kez, (2.3)

26
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whered? is the variance of(;, asymptotically decays by a power law (eBgran 1994
(k) ~ o H(2H — D|E*"72, as k — oo. (2.4)

The increments of a self-similar stochastic processlf@& < H < 1 have long-range cor-
related behavior, since(k) decays to 0 so slowly that - _ ~(k) diverges. In the case
{Y(t) }+cr is a Gaussian process and satisfieg)(it is called fractional Brownian motion and
the corresponding sequeng¥; };.; is called fractional Gaussian noise.

The second definition of a self-similar process states thsgcand order stationary se-
quence{ X, };cz with zero mean and finite variance is called second ordersgelfar if its
autocovariance function is equal to that of fractional Gaarsnoise (see EQR(3)). One useful
property of a second order self-similar process is thatute@orrelation function is invariant
to temporal aggregatiorCpx, 1984, e.g. its day to day autocorrelation is equal to month to
month autocorrelation, year to year autocorrelation, andrs We will use this property in
Chapter6 to compare the performance of two competing statisticaletsod

Physicists prefer to work with a spectral domain analog efahtocovariance function,
namely the spectral density, due to the superior statigirogperties of its estimates compared
to autocovariance estimates. The spectral density of ttrenment sequencé X}z, of a

self-similar process scales by a power law in the vicinityhaf origin
Sx(A) ~bA2E ) as A — 0. (2.5)

A stochastic process with such spectral density for alldesgies is called a “pink” noise or
1/f noise (more correctlyt/ f° noise) whenl /2 < H < 2. Note that in the casé&/ > 1
the variance of a process becomes infinite. In the ¢ase 1/2 and relation 2.5) holds for
all frequencies we get a flat spectral density, which coordp to a “white” noise process.
For H < 1/2 a1/ f” noise turns into a “blue” noise. The blue noise as: 0. Stochastic
processes witll/ < 1/2 are also called antipersistent.

Climatic time series usually have power spectrum (a sped#rmasity estimate) with more

complicated structure than that described by a single ptavefunction. However numerous
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studies in the past two decades have shown that on interatenc@ntennial time scales cli-
matic spectra often have a single scaling regime with< H < 1, i.e. either a flat spectrum
or a spectrum that corresponds to a class of long-rangelatteprocesses. The processes
which spectral density grows at high-frequencies and tla¢urates are called short-memory
processes. Thus at low-frequencies short-memory progesse- 1/2. Typically such pro-

cesses can be well modeled by conventional autoregressivimgiaverage (ARMA) models.

The next section provides an overview of statistical mesHod estimating the parameters
bandH for a given time series. In Secti@a3we describe and use Monte-Carlo benchmarking
to compare a suite of power-law estimation methods. Theigatbns of LRC behavior for
estimation of trend uncertainties and the number of yeadgtect a linear trend are mathemat-
ically described in SectioB.4. We provide a summary of this chapter in Sectbf The ma-
terial in this chapter has been published in the Journal opGgsical ResearcWfushin et al,

2007 and in the Journal of Climat&/¢ushin and Kushne009.

2.2 Description and Tests of Power-law Estimators

Many methods for estimating the Hurst exponé&nare documented in the literature and a sig-
nificant challenge in our analysis has been to reconciledherobust aspects of these methods.
In this and the following section we describe several of theuwented methods, develop some
variants of our own, and characterize them using Monteeda@hchmarking. In Chapters 4-
6, we will apply the methods to observed and simulated teatpex data. The methods are
summarized in Tabl2.1 They include time domain methods, and periodogram andtayosir
(spectral domain) methods. The Monte-Carlo benchmarkiiigshhow that all the methods
agree reasonably well for simulated pure power-law stddhpsocesses. But when we apply
the methods to observed data in Chagteve will find that the methods are sensitive in various

ways to the range of frequencies chosen and the filteringexpfd the time series.
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Table 2.1: The Hurst exponent estimation methods congiderde thesis. HF stands for high

frequency and LF for low frequency.

Method HF cutoff LF cutoff Remark

DFA(t) Sehort=18mM Stong=11Yy Kantelhardt et al(2007)
DFA(a) Sehort=18mM Slong=45Y Vyushin and Kushne{2009
GPHE(t) Anigh=1/18m | Ao, =1/15y ( = 2) Robinson(1995H
GPHE(a) Ahigh=1/18M| A\, =1/45y ( = 0) Hurvich et al.(1998
MTM GPHE(t) | Auign=1/18m | A, =1/15y ( = 2) McCoy et al.(1998

MTM GPHE(a) | Anign=1/18m| A, =1/45y ( = 0) | Vyushin and Kushnef2009

GSPE(t) Ahigh=1/18M| A\j,,=1/15y ( = 2) | Vyushin and Kushne{2009

GSPE(a) Ahigh=1/18m | A, =1/45y ( = 0) Robinson(19953

MTM GSPE(t) | Apigh=1/18m| \j,,=1/15y ( = 2) | Vyushin and Kushne{2009

MTM GSPE(@) | Anign=1/18m| A, =1/45y ( = 0) | Vyushin and Kushnef2009

2.2.1 Spectral Methods

The spectral methods find by estimating the spectral slope. These methods first ekul
an estimate5()\) from a finite-length time series of the true spectr§ii\) and then find the
best power-law fit taS()\). We consider two choices of spectral estimats(s): the peri-
odogram estimator (corresponding to the raw discrete gpagtand the multitaper estimator
(Percival and Waldernl993. For a time seriexX (t),t = 1,..., N, the periodogram estima-
tor is simply the square amplitude of the discrete Fouremgform divided by the time series

length:

L j=1,...,[N/2], (2.6)
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where)\; = j/N and the square brackets denote rounding towards zero. Tloglpgram
is an asymptotically unbiased but inconsistesgiectrum estimator, since its variance is not a
decreasing function oV: periodograms, as illustrated by the gray curve in Big, tend to
appear noisy in spectral plots.

Multitaper spectral estimatiomfiomson 1982 provides an estimated spectrum with rel-
atively reduced variance compared to the periodogram. [ileys a set of K" orthogonal
“tapers”hi(t), k = 1,..., K, that is applied to the time serié§(t). The multitaper spectral

estimate is given by

SO = =38P0, j=1,....[N/2], (2.7)

where 9

., J=1,...,[N/2], (2.8)

N

> ()X (t)e

t=1

is the k-th direct spectral estimator. In this thesis we use sinersafRiedel and Sidorenko

2 . kmt
hk(t)_,/NHsm[NH], t=1,....N. (2.9)

The number of taperdy, used in geophysical applications usually ranges betweamd35

~

S =

1995

(e.g.,Ghil et al, 2002 Huybers and Curry200§. We choosek’ = 3 because of the large
number of time series analyzed.

It can be shown that the variance $f") is a factork smaller than the variance &f®)
for large N. Thus multitaper spectra appear smoother in spectral; ph@smoothing effect is
evident in the multitaper spectral estimate shown by theldxtarve in Fig.1.2

Given the spectral density estimat§()), we find a power law fit taS()\) of the form
f(\;b, H) = b|A|'"2 over a frequency rang®,, < A < Ay, WhereH is the Hurst ex-
ponent,b is a scaling factor, and,,, and A, are low and high cutoff frequencies. For

a review of these methods, known as spectral semiparanestiimation methods, see e.g.

3This is the only place in the thesis where the word “incoesitstis used in a statistical sense. Everywhere
else it has its regular meaning.
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Moulines and Soulief2002. We estimaté and H by minimizing

m

> RS, f(A3b H)), (2.10)

j=l+1

1

K(b.H) = ——

3

wherek(u, v) is the so called contrast function, which can be thought ef distance between
functionsu andv. In the summation,andm are indices related to the low and high-frequency
cutoffs: Aoy = A1 @andApigh = Ay

The semiparametric power-law fits differ in their choice ohtrast functionk(u, v). We
here consider the Geweke-Porter-Hudak estimator (GR¥#iyeke and Porter-Hudak983
with k(u, v) = [log(u) —log(v)]?, which corresponds to log-linear regression, and the Gaiss
semiparametric estimator (GSPEgx and Taqqul988 with k(u,v) = log(u) + u/v, which
corresponds to a maximum likelihood estimator. GPHE is #st known and simplest of the
two methods; the optimaland H can be found in closed form along with confidence intervals.
We use GPHE to obtain the CET power-law fit for the multitagpercsrum estimator in Fid..2
the confidence intervals for GPHE with multitapering arenfin McCoy et al.(1998.

GSPE is relatively more sophisticated drdbinson(1995ab) has shown it to be superior
to GPHE in various ways. Its optimization is not in closedidsut reduces to a standard one
dimensional numerical optimization procedui®obinson(19950) andHurvich et al.(1998
show that GSPE has a factorof/6 ~ 1.7 smaller asymptotic variance than GPHE ([4(m —

1)) vs.w?/(24(m — 1)) for large N]. This property leads to practical advantages: in an aiglys
of power-law behavior in stratospheric ozone (see Chatietis found that GSPE yieldedl

estimates that are spatially smoother and more robust @raaéler variance) than GPHE.

2.2.2 Time domain method: Detrended fluctuation analysis (BA)

The DFA (Peng et a].1993 Kantelhardt et a).200]) time domain estimator off is, along
with GPHE, the best known power-law fitting technique andidesen applied widely in the life
sciences, the earth sciences and physics. DFA works asviolleirst, a cumulative sum time

series is generated from the original time sefig$). The cumulative sum time series is then
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split into segments of size Each of these segments is approximated by a least squauea fit
polynomial of orderP, with P typically chosen to be between 1 and 5. The standard deniatio
of the residual of each least-squares fit is then calculateddch segment and then averaged
over all the segments. This quantity is denofégd) and is calculated for segment sizes
whereP + 2 < s < sn.c. The standard method is to takg.. = [/V/4] (Kantelhardt et a).
2007 but we will test a variant withs,,., = N. The so-called “fluctuation function?’(s)
characterizes the noise at each time sealéthe spectral density(\) ~ A\'=2 for small ),

the fluctuation function”'(s) ~ s for large s (Taqqu et al. 1995 Heneghan and McDarby
2000.

Given this, we determinél by least-squares linear regressioni@f F' againstog s in the
rangesghor < s < Siong (PeNg et al.1993 Kantelhardt et a).2001), wheresg,o, ands,,,, are
short and long timescale cutoffs that correspond to the &ighlow frequency cutoffs for the
spectral methods. For DFA3 (i.e. DFA with = 3) we use a lower (high frequency) cutoff
scale ofsg,0=18 months because it is only for longer timescalés) for DFA3 might be
well represented by a power-law functiokantelhardt et al.2001). The choice 0fs,, Will
be discussed in Sectich3.

DFA is relatively straightforward to implement and can bedifo infer information about
the order of a trend of the time series. For example, a quadrand is effectively filtered out
by DFA with P > 2. But unlike the GPHE and GSPE spectral methods DFA is nuaéric
based and so lacks rigorous expressions for bias and coodidietervals estimates. Another
disadvantage of DFA, is that, to our knowledge, there i$ 1stiltheory allowing to estimate

scaling facton using DFA.

2.3 Benchmark tests of the estimator methods

Before applying the power-law fit methods to reanalysis at@rdata we benchmark the meth-

ods using Monte-Carlo tests of time series with known polaerbehavior. These time series
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Figure 2.1: Absolute bias of the Hurst exponent estimatsr@ function of time series length
N. Synthetic time series were simulated by ARFIMA(0,0.3,@),the true Hurst exponent was
set to 0.8. Time series lengfli = 540 corresponds to the length of the monthly mean ERA40
data and is marked by a solid triangle. Panel (a) shows thétsder the trimmed (t) version
of the methods and panel (b) for the all-frequency (a) versibthe methods. See Tak?el

and Sectior2.2for a description of the methods.

are generated from autoregressive fractionally intedrateving average (ARFIMA) models,
which are linear models for power-law stochastic procefBesan 1994 Taqqu 2002. By
convention, an ARFIMA(Q],0) time series has Hurst exponéht= d + 0.5 (that is, the power
spectrumS()\) ~ A~29). To mimic our climate data analysis, we take the ARFIMA tigegies
to represent monthly mean records and estimate the Hursherpfor frequencies lower than

Anigh=1/(18 months). We choose,,;, =1/(18 months) for consistency with DFA3.

We find thatH estimates in climate data are sensitive to the choice otiéegy range,
and that this sensitivity is method dependent. This is atjma@dssue encountered when deal-
ing with time series that are not pure power-law stochasticgsses with uniform behavior
across all timescales. Many of the standard applicatiopewkr-law estimates build in these
inconsistent ranges, for various reasons. For exampledatd practice for DFA is to use

sing = |IN/4], for periodogram spectral methods to usg, = 1/ and for the multitapered
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methods to usg,,,, ~ K/N (see Tabl@.1for references to each of these “conventional” meth-
ods). To test for the effect of these choices, we benchmalHtrémuency” (denoted “(a)”) and
“trimmed” (denoted “(t)”) versions of the methods. The fa#quency methods set the low-
frequency (long time scale) cutoff as low as possible. Thenred methods cut off some of
the lowest frequencies. Tabkel lists two versions of the methods we use, and in connection

with the table we note the following:

e The multitapered methods conventionally trim the lowesgérencies and the peri-
odogram methods conventionally use all frequencies. We test trimmed and all fre-

guencies versions of all spectral methods.

e For DFA3, DFA3(t) with syax = sing = [/N/4] is the conventional method
(Kantelhardt et a).2001). We here test a version DFA3(a), whose time scale range is

consistent with the all frequencies spectral methods. B&BA3SES ax = Siong = V.

We first test for the convergence of the magnitude of the estirs’ bias,< | — H| >, as

a function of time series lengtlV, whereH is the estimated value of the ARFIMA time se-
ries. Figs.2.1a and b plot< |H — H| > for the trimmed and all-frequency versions of the
five methods: DFA3, GPHE, MTM GPHE (i.e. multitapered GPHE$PE and MTM GSPE.
Here the angle brackets represent the ensemble mean 0080%6alizations of the ARFIMA
model, forH = 0.8 and270 < N < 900. We see that the DFA3(t) estimator converges
most slowly among the trimmed estimators, the periodogaecstsal methods converge most
quickly among the all frequencies estimators and neithé3Ixor the periodogram methods
are sensitive to the trimming. The convergence rate of thititaquer spectral methods falls
between the periodogram and DFA3 methods for the all fregjesrestimators. The increase
in bias from tapering for the all frequencies cases is exguefrom general statistical princi-
ples: heavier smoothing, i.e. reduction of the variancenftapering, leads to an increase in
the bias yon Storch and Zwiersl999. The effect of including the additional low frequency

points degrades the convergence of the multitaper metlkogls 1b). This degradation is not



CHAPTER 2. METHODOLOGICAL BASIS 35

o a ~ | (b
o [@) o [ (0)
T o —~_ T O o
2 32
£9 29
= O | = O
0 | 0|
()] < (] <
20| 2o
= < = <
oo oo
8O 8O
n o n o
| —e— DFA3 | —o— DFA3
—8— Periodogram GPHE —&— Periodogram GPHE
—&— MTM GPHE —=— MTM GPHE
—&— Periodogram GSPE —&— Periodogram GSPE
—— MTM GSPE —— MTM GSPE
T T T T T T T T T T T T T
05 0.7 09 1.1 05 0.7 09 1.1
H H

Figure 2.2: Bias of the Hurst exponent estimators as a fonaif the true Hurst exponent.
Time series length was fixed to 540, which corresponds toghgth of the monthly mean

ERA40 data. The rest of the description is similar to Rid.

surprising because the tapering impacts low frequencies simngly. The impact of trimming
on the spectral methods is consistent with thebtyrfich et al, 1998 McCoy et al, 1998 but
to our knowledge the robustness of DFA3 to changing fsgm = [N/4] t0 sjong = N has not

been reported before.

Next we test how the estimators’ bias dependsbfor N = 540, which corresponds to
the length of the monthly reanalysis time series analyze@hapters 4-6. In Fig.2a and
b we plot the biasc H — H > over 10,000 realizations. All the methods provide accurate
estimates off/, within the estimators’ standard deviation (see Ag). DFA3 exhibits the
largest bias among the trimmed estimators. This bias isesem magnitude with increasing

H andis robustto the trimming. The periodogram methods Haermallest bias, which is also
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Figure 2.3: Standard deviation &f averaged for each method in Tal@ld over theH values
shown in Fig.2.2 The short and long dashed lines demonstrate the asymptwoifcdence

intervals for GPHE and GSPE respectively.

robust to the trimming. The bias of the trimmed multitapetmoes is comparable to that of
the periodogram methods (Fig.2a). But the bias increases for the all frequencies multitape
methods, indicating again that the multitagérestimate degrades when all frequencies are

included (Fig.2.2b).

Fig. 2.3shows the relative robustness of the different methods asuned by the estimator

standard deviatiow/< <I:I— < H >>2> averaged across values 8ffrom 0.5 to 1.1. In this
figure we also include the larg¥ asymptotic estimates for periodogram GPHE and GSPE;
these estimates are independentiof DFA3 exhibits the least spread and is not sensitive to
the trimming. However all the spectral methods have smeadlaance when all frequencies are

included. Among the spectral methods the periodogram GHREibits the least spread. The
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decrease of thél variance gained from multitapering is outweighed by thedased variance
from the necessary trimming. The experimental standariatiens are consistently greater
than the asymptotic ones (shown by the dashed lines in2E)for the time series length of
540, but the asymptotic results provide useful constramtsany applications.

Thus all the methods provide valid approaches to power-l&tmdi of pure power-law

stochastic processes, but each method has distinct chiasécs:
e DFAS3 is robust (has the smallest variance) but has relgtiaedje biases.

e GSPE is more complicated than GPHE but produces more robtiistatdes than GPHE

and less biased estimates than DFA3.

e The standard trimmed MTM methods (MTM GPHE(t), MTM GSPE@)E less ro-
bust than the corresponding standard all frequencies gmyram methods (GPHE(a),

GSPE(a)).

2.4 Trend variance and the number of years required to de-
tect a trend

For the purpose of trend analysis memory is an issue. It & toedistinguish a trend from nat-
ural variability if a time series is strongly serially colated. The importance of taking into ac-
count LRC in trend analysis was first realizedBlpomfield (1992 during his studies of trends
in surface air temperature. He proposed to use an ARFIMA modeoduced independently
by Granger and Joyeu@d 980 andHosking(1981), for modeling temperature residuals. The
idea is to fit the residuals, obtained after filtering out deiaistic components of temperature
time series such as seasonal cycle and trend, by ARFIMA aadikigy analytical expression
for the variance of ARFIMA calculate the variance of the tteBloomfield’s approach can be
classified as sequential full parametric estimation, soree first estimates and filters out the

trend and then estimates the parameters of ARFIMA. Joihp&rametric estimation, in which
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the trend and the parameters of ARFIMA are estimated simedtasly, was theoretically jus-
tified by Robinson(2005 and applied to Northern Hemisphere SAT anomalie$llyAlana
(2005. The disadvantage of full parametric approach for trertéaten studies is a problem
of choosing the correct order of the ARFIMA, which itself isigsue Beran et al.1998. An
appealing way to overcome the issue of model selection wggoged bySmith (1993. He
showed that it is important to fit only the low frequency pdrtihe residuals’ spectrum using an
asymptotic form of LRC spectral density) |2/ with only two unknown parameters. Then
the variance of the trend can be calculated based on thegeatameters. We will follow this
direction in Chapter8 and6. This approach is classified as semiparametric since itinegju
estimation only of a part of the whole parameter s8mith and Cher{1996 advocate for
joint estimation of the trend and the parameteasid H. Unfortunately this theoretically more
correct approach is still missing a solid mathematical tation. Therefore in this thesis we
implement sequential semiparametric estimation, i.e. vgédstimate and filter out the trend
from the time series and then findand H for the residuals using semiparametric estimation.

The general theoretical justification of this method is gibg Yajima (1988.

2.4.1 Estimation of trend variance through autocovariance

Let us consider a general linear estimator
=D 1Y (L) (2.11)
t=1
The variance of may be expressed through autocovarianoé Y(t)

o) = 3 3Dt - ). (2.12)

t=1 s=1

For example for the statistical model

Y(t) = a+ By(t) + X (1), (2.13)
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wherey(t) is a certain explanatory variable (covariate) with zero mesad X (¢) is a noise, the

ordinary least squares slope estimata@nd its variancez(ﬁ) may be written as follows

S Y
S S (244
ya (0 ) + 230 k) Y w(i)y (G + k)
o*(5) = NAVECIE ’ (2:49)

wheren is the time series length,¢) is the residuals’ autocovariance function.

2.4.2 Approximation of autocovariance by exponential funton

The most conventional way to proceed from this point is toarsexponential approximation

A

for the residuals’ autocovariance functigft) for deriving an asymptotic formula fer(53). In
principle one can use an estimateydf) to numerically evaluate (). However due to poor
sampling properties of autocovariance function estimatassticians prefer to use approxi-
mations of the sample autocovariance function. To obtaiex@onential approximation for
the autocovariance function one can fit an autoregressiehud the first order (AR1) to the

noise. Symbolically AR1 can be written as follows
X(t)=oX(t—1)+¢e(t), (2.16)

where—1 < ¢ < 1 is the month-to-month autocorrelation (lag-one autodatie@n coeffi-
cient) and=(t) is a Gaussian white noise. Let us review some of the AR1 maadglepties.

Autocovariance function of AR1 decays exponentially
Yapi(t) = 0% ¢!, (2.17)

Spectral density of AR1

o2 1 — ¢? o2 1+
SAR1<)\) X ¢ N X_gb

== = = A 2.18
27T|1_¢6—i)\|2 211 — ¢’ s -0 ( )

whereo x is standard deviation of (¢). Equation®.17and2.18are analogous to equatiohg

andl1.3
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In the case we assume an AR1 model for the monthly resolveduads X (¢) and take

y(t) =t —(n+1)/2, we have

. o 14+¢
Cam(®) ¥ s T (2.19)
wherew = 1243 is the estimate of the linear trend in unit(Y)/year ahdis the length of a

considered period in yeargJatherhead and Coauthpt998 .

2.4.3 Approximation of autocovariance by power law functiam

The alternative approach is to use a power law approximatidhe sample autocovariance
function whose coefficients can be obtained by various esiim methods (see Secti@®).
Substitutingy(0) = ox?, y(t) = at* 2 for t > 0, andy(t) =t — (n + 1)/2 into (2.15 and
performing asymptotic derivations we obtain

boa _ 36a(1—H)
"I e mer-1)"

(2.20)

Scaling factors of the autocovariance and the spectraltgensandb, related as follows (e.g.

Smith, 1993

)
“TTQH —1)sin(rH) (2.21)

Using this relation and some properties of the gamma funatie can rewrite the asymptotic

~

formula foro(3) in terms ofb and H

~

ULRC(B) ~ B(b> H)nH_27 (2.22)

~

whereo rc () is the standard deviation of the estimated trend under th@ hypothesis and

B 72bm(1 — H)
B(b,H) = \/(1 + H)T'(2H + 1) sin(rH)"

(2.23)

Formulas 2.19 and .22 were used in Fig3.8 and Fig.3.9.
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2.4.4 Estimation of trend variance through spectral densig

Asymptotic formulas for the standard deviation of a regmssoefficient (slope) can be de-
rived only in cases when the explanatory variahlg has a relatively simple form such as a
linear trend. In other cases one can estimate the standeiatide of the slope only numer-

ically. From the numerical point of view it is more converti¢m express the autocovariance
through the spectral density. Thus replacing in form@la? the autocovariance by its expres-

sion through the spectral density &f(¢)

v(k) = / e Sx (N)dA, (2.24)
we obtain

(@)= [ vSsxax (2.25)

where 9

pGEE
t=1

The important thing is that for the case of a trend estimdtapat all weight of the function

U\ = (2.26)

U(\) is concentrated near the origin. Therefore for calculatibtine trend uncertainty a high
frequency part of the spectrum is not important. This factivates the implementation of
semiparametric (local) instead of full parametric (glQlsaiaitistical modelsmith 1993. For
example in order to calculate the slope uncertainty in tisegét) = EESC(t) — EESC(t),
where EESC(t) is the equivalent effective stratospheric chlorine timéese and the spectral

densitySy(A\) can be approximated by a power-laj|!~2# we use the following equation

)‘high

o> (Begsc) = b/ Urpsc(N)| A" dA, (2.27)

_)‘high

where\,zn, = 7/12 - high-frequency cutoff and

i EESC(t) — EESC(t) QWQ

Ugpsc()) = S (EESC(s)— EESC(s))?

t=1

Therefore we could neglect intra-annual variability (veqcy range§—=/2, —7/12) and

(w/12, /2] of the total ozone anomalies. FormutaZ7) was used in Fig3.8a.
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2.4.5 Estimation of the number of years required to detect arend

The number of years required to detect a trend of specifiedhinatg|w| under the hypothesis

that X'(¢) can be well described by an AR1 model accordinMeatherhead and Coauthors

2/3
Ny & [ o i ¢] , (2.28)

where N, is the number of years required to detect a trend of specifighitude|w| (in

(1998 is as follows

particular one may choose= ©) andz, is thep-percentile of the standard normal distribution.
In this setup the probability to reject the test hypothesizeoo trend when it is true is equal to
5% and the probability to accept the hypothesis of zero tvemeh it is false is equal tp. The
number of years required to detect a linear trend of speaifiagnitudew| depends on three
key parameters in the AR1 case, ¢, ¢).

From @2.22 we derive an analogous formula for the case wiéhn) is long-range correlated

12+ 2,)B(0, H)] =

In the above formula is expressed in basic time units of the time series, i.e. daysonths,
and 3 has a unit “unit(Y)/(basic time unit)”. Let us now transfotins formula to the form
which is conventionally used in ozone trend analysis whentittme to detect the trend has
units of years and the trend has units of DU/year..et TN and$ = w/T, whereT is the
length of year in basic time units, i.&. = 365 or T' = 12, N is the length of the time series in

years, andv is the trend in DU/year. Then fron2(29 we get

(2+ 2,) B(b, H) =7
| T

N; e & (2.30)

This formula is somewhat similar to formula.28. However, due to the fact that the exponent
in formula 2.30) is greater than the corresponding exponent in formi2g, trend error bars
tend to be larger under the LRC hypothesis than under the ARdthesis. This means that
in the presence of long-range correlations we have to obsbevtime series longer in order to

detect the trend with the same statistical significance. nidmeber of years required to detect
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a linear trend of specified magnitudle| in the case whetX (¢) is LRC also depends on three
key parameters: magnitude of the trdad, spectral scaling factdr, and the Hurst exponent.
It is worth noting that formulaZ.30 is a generalization of formul®(28. Thus for monthly

resolved time seried (= 12) under assumption of AR1 model we get that

41+

DR et (2.31)

1
Hipe — Hapi = 5 brre — bari =

and Brre — Bagri = V247mbar. Therefore formulaZ.30 reduces to formulaZ;28§).
The numerical validation of this fact can be noticed by logkat the Southern Hemisphere
mid- and high latitudes in FigS.4b, 3.6b, 3.8 3.9, and3.11 The Hurst exponent converges
to 0.5 as one moves from 3B to 60S as shown in Figs3.4b and3.6b. Simultaneously the
LRC trend error bars converge to the AR1 errors bars in Bgsand3.9, and the number of
years to detect the trend under LRC hypothesis convergéetorte under AR1 hypothesis in
Figs.3.1Ga and3.11

2.5 Conclusions

We have described two variants of the five Hurst exponennasion methods. We have tested
them using synthetic power-law time series (ARFIMAL0)) of various length and/. In the
case when the lowest frequencies are trimmed DFA3 showsitpgedt bias, whereas when all
the lowest frequencies are retained the DFA3 has a biasssitoithe MTM methods and larger
than the periodogram methods. However DFA3 has 1.5-2 tinadlenvariance comparing to
other methods. By default DFA sets the largest used time szplal to a quarter of the time
series length. But we have demonstrated that this time saafge can be extended up to the
time series length, because the statistical propertied8f B estimate almost do not change
in this case. These results, to our knowledge, represent@comprehensive test of the time-
domain and spectral-domain methods than has been preyarsied out. It is reassuring that
DFA3, which is widely used but not well justified, performgatevely well. Indeed, we find

that DFA3 is one of the best Hurst exponent estimators. Qtbeamethods have shown a good
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performance and final selection of the two best methods, wivie recommend to employ in
similar studies, will be done in the next chapter based ongbiglts of the methods’ application
to zonal mean tropospheric and stratospheric air temperatBome of the Hurst exponent
estimators, we have described and tested in this chapteheniised in each of the following
chapters. The equations for trend confidence interval esitm derived in Sectio@.4 will be
used for estimation of total ozone trends uncertainty thhoout ChapteB and for improving
an IPCC result in the conclusions of Chaper

We have assembled the code written in the R statistical Eggufor the
power spectrum estimators, Hurst exponent estimators, taedt Monte-Carlo bench-
marks described in this section into a package, which can dandf at the URL
http://www.atmosp.physics.utoronto.ca/people/vynSPowerSpectrumd.3.tar.gz The pack-
age, called PowerSpectrum, also includes functions fandithR1 model in the spectral do-
main, for estimation of a linear trend and its confidenceruatis based on white noise, AR1,
and power-law assumptions for the residuals, for crosstepacestimation, for a spectral
goodness-of-fit test, for Portmanteau tests, etc. In omlerake our results easily reproduced
and extended, we have made this package open source. A niantiaé package is included

in the thesis as AppendB.


http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum_0.3.tar.gz

Chapter 3

Total ozone trend detection

3.1 Introduction

The problem of the long-term decline of stratospheric oz@mg. Stolarski et al. 1992
World Meteorological Organization1988 and, in recent years, of ozone recovery (e.g.
Newchurch et a).2003 Reinsel et al.2005 has received wide attention from both the sci-
entific community and the general public. Statistical medglarticularly those based on
multilinear regression methods, are commonly used for ttedation of ozone changes (see
SPARC (Stratospheric Processes and their Role in Climge®8 and references therein).
Once a statistical model is established, it can be combingdanfitting method, for example
ordinary least squares, to find the best fit to the observatiOaone variations are typically rep-
resented as a combination of a long-term trend, naturabgiercomponents (seasonal cycle,
solar cycle, quasi-biennial oscillation, etc.), and a mndomponent (the residuals). Knowl-
edge about autocorrelations of the residuals of the reigressodel is required for a correct
estimation of the model parameter uncertainties. Sinces#likest ozone assessments (e.g.
World Meteorological Organizatiori98§ it has been assumed that the residuals can be de-
scribed by an AR1 model, i.e. that the residual for a giventimanproportional to the residual

for the previous month plus random uncorrelated noise. imdase the autocorrelation func-

45



CHAPTER 3. TOTAL OZONE TREND DETECTION 46

tion of the residual€’(¢) declines exponentially, i.€/(¢) ~ exp(—at), and the time series do
not contain any significant long-term components other thase included explicitly in the
model. In terms of equatioh.2a = — log(¢), where¢ is a lag-one autocorrelation. Once the
model parameters and their uncertainties have been estipntaey can be used, for example,
to calculate the number of years required to detect a treadyofen magnitude at a given level

of statistical significance (e.§Veatherhead and Coauthpi998 200Q Reinsel et a.2002.

As we stated in Introduction chapter, geophysical timeesaito not always follow the AR1
model, however. They commonly exhibit slow autocorrelationction decay, which can be
approximated by a power law, i.€(t) ~ |t|*’=2, where0.5 < H < 1. There are also indi-
cations that ozone time series are not always well deschligatie AR1 model.Toumi et al.
(200)) considered daily total ozone records from three west Eeappstations (Arosa, Ler-
wick, and Camborne) and calculated Hurst exponents foragesalized and detrended time
series (assuming a linear trend). All three time serieskatdd Hurst exponents of about 0.78.
However the authors did not remove the QBO- and solar cystled components, which
could affect the estimate of the Hurst expon&farotsos and Kirk-Davidoff2006 considered
total ozone time series for large spatially averaged ata#salso removed only the seasonal
cycle and the linear trend. The estimates of the Hurst expisneere calculated using DFA1
(see SectiorR.2 for DFA details). (The DFA filters out polynomial trends wieosrder is
less than the order of the DFA applied.) The Hurst exponemtdpical ozone estimated by
(Varotsos and Kirk-Davidoff2006 were about 1.1, which corresponds to a spectral slope of
-1.2 (in log-log coordinates). If we took the naive view tkfais value characterized the entire
spectral range, this would imply an infinite spectral vac@rsince the integral of the spectral
density would diverge. But as we will see later, stronglyate@ spectral slopes are charac-
teristic of restricted frequency ranges of geophysicahdand these slope estimates can be
affected by periodic signals not removed from the ozone 8arees in the Varotsos and Kirk-

Davidoff analysis, like QBO and the solar cycle (d&mosi and Mille(2005 and Chapte#).

In recent years it has been established that a sizabledreattihe long-term ozone changes
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over northern midlatitudes can be related to long-term ghann dynamical processes (e.g.
Weiss et al.2001;, Randel et a].2002 Hadjinicolaou et a].2009. Estimation of ozone trends
requires a proper accounting for the effects of these psesesn ozone. One approach is to
add more terms to the statistical models used for trend ledioos (e.g.Reinsel et al.2005
Dhomse et a).2009. However, the physical mechanisms behind these dynamifsadts on
ozone are often not well understood and therefore it is ditfio account for them properly in
a statistical model (see further discussion in subse&i8ri). Furthermore such non-periodic
components cannot be predicted and thus such models camnsied to estimate future be-
haviour. An alternative approach is to consider the coutiim of dynamical processes to
ozone fluctuations to be part of the noise. In this case, timermoay be LRC and a proper

estimation of the residuals’ autocovariance is required.

Here we investigate the possible existence of LRC behawunmtotal ozone time series and
study its effects on ozone trend significance estimates anithe@ number of years required
for trend detection. In this chapter we take a somewhat maeswpoint that significantly
greater than 1/2 values of imply the LRC behaviour. Later, in Chaptémwe will modify this
viewpoint by demonstrating that this condition is necegsat insufficient. Here we employ
spectral methods of Hurst exponent estimation instead & b¥cause they provide a neces-
sary estimate of the spectral scaling fadiqsee subsectiof.2.1and Sectior2.4) together
with an estimate off, which are needed for trend confidence interval evaluafArnintroduc-
tion to the theory of LRC processes has been given in Se2tibrsome details of the spectral
methods for Hurst exponent estimation have been presemtgelction2.2 Formulas elucidat-
ing the implications of LRC behaviour for trend uncertagstand for the number of years to
detect linear trends have been derived in Se@idnThe plan of the chapter is as follows. The
total ozone data used in the analysis are described in 8&f#0Section3.3is devoted to the
statistical models and their estimates of the noise. Wewethe theoretical background in sub-
section3.3.1 Long-term trends in total ozone are represented in terregloér the equivalent

effective stratospheric chlorine (EESC) time series orex@wise-linear trend (PWLT) with
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a turning point in early 1996. Evidence of spectral powemghoof several total ozone time
series, including station data, is given in subsec8@2 while for TOMS/SBUV zonal aver-
ages it is quantified in subsectiBr8.3and compared with AR1 behaviour. The significance of
the long-term ozone decline is compared under two diffemsatimptions for the ozone resid-
uals (AR1 vs. LRC) in subsectiah4.1 The recent positive ozone trend, and the number of
years required to detect this trend under the two differeatimptions, are compared in sub-
section3.4.2for both the EESC and PWLT derived trends. Some results faviI$(GBUV
gridded total ozone data, showing longitudinal structare, discussed in Sectidh5. The
main results are summarized and their implications disguigs Sectior3.6. The material in
this chapter has been published, along with relevant nateriChapter2, in the Journal of

Geophysical Researchyushin et al, 2007).

3.2 Data

The merged satellite data set used here is prepared by NA8Acambines version 8 of
TOMS and SBUV total ozone dat&rith et al, 2004 Stolarski and Frith2006); it is avail-
able fromht t p: // hyperi on. gsfc. nasa. gov/ Dat a_servi ces/ nerged/. The
data set provides a nearly continuous time series of zorthlgadded (10 latitude by 30
longitude grid) monthly mean total ozone values betweetS&ihd 60N (higher latitudes
have data gaps during polar night) for the period from Noveni®78 to December 2005.
Here we consider only the period from January 1979 to Dece2®@5. Some data, particu-
larly the data for August-September 1995 and May-June 186 missing. Zonal averages
estimated from ground based total 0zone measurenmiéolstov et al, 2002 were used to fill
the gaps. In addition, Dobson monthly mean total ozone ediwen three sites (Mauna Loa,
Buenos Aires, and Hohenpeissenberg) were also analyzed eese data are available from

the WMO World Ozone and UV Radiation Data Centné ( p: / / www. woudc. or g).


http://hyperion.gsfc.nasa.gov/Data_services/merged/
http://www.woudc.org
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3.3 Analysis of long-range correlations in total ozone time

series

3.3.1 Statistical methods

A typical statistical model describing observations of mindyn mean total ozone can be ex-

pressed in the form
Q) =ag+ A1) +Q(t) + S(t)+T(t) + X (1), (3.1)

where Q(t) denotes total ozone, is the number of months after the initial time (taken
here as January 1979), is the mean,A(t) represents the seasonal cydg) the quasi-
biennial oscillation (QBO),S(¢) the solar cycle,I’(t) the long-term trend, and () are
the residuals (noise). We used(t) = >} asi1sin(2mjt/12) + as;cos(2mjt/12),
Q(t) = (a9 + apsin(27t/12) + ayy cos(2mt/12))wso(t) + (@12 + arzsin(27t/12) +
a4 cos(2mt /12))wso(t), andS(t) = (a5 + ai6sin(27t/12) 4 ay7 cos(27t/12))S107(t), where
wso(t) andws(t) are the equatorial zonally averaged zonal winds at 30 andPa0réspec-
tively (htt p: / / ww. cpc. ncep. noaa. gov/ dat a/ i ndi ces/ ), andS;o(¢) is the solar
flux at 10.7 cm Kt t p: / / www. drao- of r. hi a-i ha. nrc-cnrc. gc. cal/i carus/).
We use winds at both 30 and 50 hPa, because they are about 8feslequt of phase,
which allows a better representation of the QBO signal ialtozone. Thesin(27t/12)
and cos(27t/12)) terms inQ(t) and S(t) represent seasonal dependence. To describe the
long-term trend in total ozone, two commonly used approsi@re the equivalent effective
stratospheric chlorine time serieB,ESC(t) (http://fmarc.fm . fi/candi doz/)
(Guillas et al, 2004 Newman et al.2004 Fioletov and Shephey@005 Stolarski and Frith
2006 Weatherhead and Anderse2006, and a piecewise-linear trend with a turning point
that is typically chosen in the second half of the 1990s. Binto Reinsel et al(2005 and
Miller and Coauthorg2006 we choose a turning point, in January 1996, because of the

changes in ozone behaviour and in the EESC tendency in th&980s. Therefore, we use ei-


http://www.cpc.ncep.noaa.gov/data/indices/
http://www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/icarus/
http://fmiarc.fmi.fi/candidoz/
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therT(t) = (a18+a19 sin(27rt/12)+a20 COS(27Tt/12))EESC(t) OrT(t) = a1} (t)+a19T2(t),

whereT(t) = t, for 0 < t < n, wheren is time series length (324 in our case), and

0, 0<t<nyg,
Tr(t) = (3.2)

t—ng, mng<t<n.

In order to provide analytical expressions for trends aradrthncertainties, we use rel-
atively simple trend models similar to those usedRsinsel et al(2002 and Reinsel et al.
(2005. In addition, one of key principles of statistical modeliis that the model be parsimo-
nious, namely that it involve a minimum number of free par@refon Storch and Zwiers
1999. The more parameters are introduced, the easier it is toefititne series and there is a
risk that an improved fit may be fortuitous. This is particly@ritical when the time series are
very limited, as is the case with total ozone. We therefostriat ourselves to Eq.3(1) and
do not, for example, introduce 12 coefficients for each camepoin Eq. 8.1) to more fully
account for seasonal dependences. We have checked thgtlizsgoefficients for the QBO
and/or trend terms does not alter the statistical progedti¢he residuals.

To test the impact of the El Chichon and Mt. Pinatubo volcasrigptions we included
SAGE aerosol optical depth observations into our regrassiodel. For each eruption the
aerosol loading was added to the model with the time lag tleatirmized the correlation be-
tween total ozone residuals and the aerosols. It was fouatdrtblusion of volcanic aerosols
only slightly decreases the Hurst exponent north ofS3@ualitatively, the Hurst exponent
distribution and other results stay the same.

There are several reasons why we included the solar cycle@B@ into Eq. 8.1)
but not other explanatory variables, for example, EP fluxropdpause height (see also
World Meteorological Organizatioi999. First, ozone changes could affect temperature and
other dynamical variables. Clearly, the solar cycle is ffil@céed by ozone. In addition, QBO
and solar variations are reasonably well-explained vianat EP flux forcing variations are not
- they are part of the climate noise. If LRC manifest themsghrough the EP flux forcing and

we remove this forcing, then we just transfer the problenhéd of understanding LRC in EP
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flux forcing. Furthermore, the correlation between ozoredymamical variables could be dif-
ferent at different spectral intervals. The ozone-temipeeacorrelation is a good example: the
two fields are positively correlated on daily and monthlydistales but negatively correlated
on an annual basis during major volcanic eruptiddar(del and Cohll994. So, the relation-
ship between ozone and such variables cannot be describeedibgle regression coefficient.
This is not an issue for QBO and solar forcing because thalbiity of the QBO and the solar
signal is located in a narrow spectral range. The QBO and sgldes create maxima in the
ozone time series power spectrum that could affect LRC estisnjanosi and Muiller2005.
Since we also want to estimate the number of years that isreebio detect future changes, we
have to make some assumption about the statistical mode$ té/e cannot predict the future
solar and QBO signals, but we have their power spectra esim&so, their impact on the
future trend errors can be estimated. It is hard to make asgigtions of dynamical variables

or even about their spectral characteristics.

The parameters; of the model 8.1) are unknown coefficients identified by multilinear
regression on the total ozone observations using leastesgjuBhe autocovariance of the resid-
uals X (¢) affects the variance af; and should be properly accounted for. Certain assumptions
are typically made about the behaviourX¥ft). For example, the AR1 model assumes that
X(t) = ¢X(t — 1) + (t), wheree(t) are independent normally distributed random errors.
Similarly, the ARK model assumes th&t(t) = ¢, X (t—1)+...+ ¢ X (t —k)+<(t). The pa-
rametery can be estimated after estimation of the parametgas the lag-one autocorrelation
coefficient of the residuals, or it can be included in the nh¢8€l) directly and estimated si-
multaneously with the parameters In this thesis we follow the first approach, i.e. sequential
estimation, because the simultaneous approach is stgimgig solid mathematical foundation
for a semiparametric power-law model, which will be desedilbelow. We estimate lag-one

autocorrelation coefficient using the Yule-Walker method.

A different methodology is used if the autocorrelation ftioie of X(t) decays by a power

law, i.e. C(t) ~ [t|*!=2 where0.5 < H < 1. The methods we use here are based on the
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fact that long-range correlations (dependence) in the tior@ain translate into a particular
behaviour of the spectral density around the origin. ltdal from the Abelian theorem that if
the autocovariance(t) ~ |¢|*72 ast — oo, where0.5 < H < 1, then the spectral density

S(A) ~ b|A['"2H as\ — 0 (seeTaqqu 2002, where by definition

o0

S(\) = % Z v(t)e A

t=—o00

In particular, the log of the spectral density is a linearchion oflog(\) asA — 0. In contrast,
the spectral density of an AR1 process is a constant fundafionunder the same conditions
(see Sectiol.4) and can be considered as a particular case of a more geoer@-faw model.
Thus, as shown in Sectidh4, the results we obtain for the LRC model are generalizatadns
those for the AR1 model and reduce to the latter whetends to 0.5.

The GPHE and the GSPE are the two methods used in this chapéstitmate the two
parametersh and H, of the spectral density approximation, as described ini@e.2 We
recall that GPHE estimatésand H by means of a linear regression of tlhg(periodogram)
onlog()\) and that GSPE is a maximum likelihood estimator (see Se2tdfor an estimators
description). The variances of the coefficient®f the statistical model3(1) can be expressed
as a function ob and H, as discussed in Sectiéh4. Furthermore, they can be used to esti-
mate the number of years that is required to detect a stalistisignificant trend of a given
magnitude (see Sectidhd).

The integral of the autocorrelation function from negatifeity to positive infinity, which
is one way of quantifying a decorrelation time, is finite for AR process and infinite for an
LRC process. This means that, in contrast to the case withRuprdcess where the limit
t > taecorrelation 1S Well-defined, two observations of an LRC process do nobimecstatis-
tically independent in the limit of arbitrarily large timegarations\on Storch and Zwiers
1999. Among many possible mechanisms generating LRC behavwiduich have been listed
in Sectionl.1, we think that at least two might be relevant for total ozddae is based on the
aggregation of an infinite number of AR1 processes whose sitages satisfy certain condi-

tions (Granger 1980. In practice, apparent LRC behaviour may obtain from thgreggation
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of a finite number of AR1 processes whose longest time scaengparable to the length of
the time seriesMlaraun et al.2004). This is a definite possibility in the case of ozone time
series where the records are comparatively short. A secossllge origin of LRC behaviour
is a sequence of shocks or pulses with stochastic magniandegurationsarke 1999. Vol-
canic eruptions could play such a role, although as notdkeardirect link between aerosol
loading and total ozone for the time period 1979-2005 doésppear to be associated with
LRC behaviour. The attribution of LRC behaviour in total oeds a separate topic which is

not addressed here.

3.3.2 lllustrations of long-range correlations

Fig. 3.1shows time series of the residu&l$¢) for Eq. 3.1), obtained by filtering out the mean,
seasonal cycle, QBO, solar flux, and EESC trend, for zonahamathly mean total ozone in
various latitude bands from 1979-2005. The correspondingsHexponentd, estimated
using the GSPE (see Secti@r® for an estimator description), are also indicated. Théudé
bands correspond to local maxima or minimdb{see Fig3.4b below), and have been chosen
to illustrate the different temporal behaviour that is epéfied by large or small values df .
The time series with larger values af tend to exhibit greater low-frequency variability with
more instances of strong apparent “trends” over decadakitales. Values off that are close
to 0.5 correspond to behaviour that is not significantlyetght from AR1, while the larger
values ofH are clear indicators of LRC behaviour.

To illustrate how the Hurst exponent is calculated by the GR¥e show power spectra
of monthly mean total ozone residuals for three grounddbasations, Mauna Loa (198,
155.6W), Buenos Aires (34.%5, 58.5W), and Hohenpeissenberg (4B 11.0E), as well as
for the corresponding nearest grid points and zonal averages the merged satellite data set.
For the purpose of comparison the period was limited to 1206 for all data sets. Several
months with missing data were filled by linear interpolatiortime. Fig.3.2 shows the peri-

odograms in log-log coordinates of the total ozone resglt@l station data (panels (a,b,c)),
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Figure 3.1: Monthly and zonal mean total ozone residualstihdbtained by filtering out the
seasonal cycle, QBO, solar cycle, and EESC fit for variGlatiude bands, as indicated. The
Hurst exponent for each time series is indicated in the ttigctegner of each panel. Note the
differences in the extent of low-frequency behaviour in tinee series with different Hurst

exponents.

for the nearest grid points from the merged data set (damf) for the corresponding zonal av-
erages from the merged data set (g,h,i). The periodograows ah increase in variability with
a decrease of frequency, which as noted earlier is a maaii@siof LRC behaviour. The solid
straight lines are the best linear fits of the periodogranogilbg coordinates, corresponding

to power law approximations in ordinary coordinates forftieguency bandwidth 1-27 years.
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Figure 3.2: The periodograms in log-log coordinates for thiynmean total ozone residuals
obtained by filtering out the seasonal cycle, QBO, solar fund EESC fit. The solid lines are
the best linear fits, while the dashed lines represent theignga uncertainty envelope. Panels
(a), (b) and (c) show ground-based station data as indicpsetls (d), (e) and (f) the merged
satellite data from the grid point nearest to the correspanstation, and panels (g), (h) and

() the corresponding zonal averages from the merged gatédita.

The dashed straight lines represent the one sigma undgrésavelope defined by the standard
errors for slope and intercept. The linear fit of the periodagrepresents the calculation of
the Hurst exponent using the GPHE (see SecfBidhfor details). Apart from panel (e) all
slopes are statistically significantly less than zero, nmgathat // is statistically significantly
greater than 0.5H = (1 — slope)/2). Therefore eight out of the nine power spectra shown
reveal that the corresponding total ozone residuals are (@R@ the slopes for panels (b) and
(e), which should be comparable, agree within the error)bdnse zonal average time series

typically have slightly greater Hurst exponents than thd goint time series from the same
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Figure 3.3: Autocorrelation function for two sample latieubands (solid circles) of monthly
and zonal mean total ozone residuals obtained by filteringhmuseasonal cycle, QBO, solar
flux, and EESC fit, together with that of various approximasiglines). The autocorrelation
function of the best-fit AR1 model is shown by the short dashede, that of the AR3 model

by the long dashed curve, and that of the best-fit power lawtfon by the solid curve. The

50°-55°N latitude band (panel (a)) shows clear evidence of LRC, evhie 50-55°S latitude

band (panel (b)) shows no such evidence.

latitudinal belt since the average of several time seriedg¢o have a Hurst exponent equal to
the maximum of the Hurst exponents of the individual timeeseGranger 1980. Additional
evidence that this is the case for total ozone will be pravigdeSection3.5.

To illustrate why it can be important to allow for LRC behawidn a statistical model,
Fig. 3.3a shows the autocorrelation function of the residua(s) for 50°-55°N as well as the
fits produced by various statistical models. In this cdsas significantly different from 0.5.
Fig. 3.3a shows that the AR1 model (the short dashed curve) does malfithe autocorre-
lation function of the total ozone residuals (the solid leisg for periods longer than several

months. Even using higher order AR models such as AR3 (thg dashed curve) does not
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improve the fit. The most parsimonious approximation of thigscircles is a simple power
law functionalt|>7=2 (the solid curve). Autocorrelation functions of the AR1 aki@3 mod-
els rapidly decay, while the power law function decays syoavid follows the autocorrelation
function of the original time series.

However as seen in Fi@.1there are latitude bands where LRC behaviour is not evident.
For example over 5655°S, wherel is not significantly different from 0.5 (see the appropriate
panel of Fig.3.1and Fig.3.4b), the power law function does not provide a superior fit ® th
autocorrelation function of the total ozone residuals, whe a reasonably good fit is provided
by the AR3 model (Fig3.3b). Thus, it is important to establish where LRC behaviour is

evident and where it is not (see a more general discussiom®topic in Chapte6).

3.3.3 Quantification of long-range correlations in zonallyaveraged ozone

Ozone trend studies are typically performed using zonakyaged data. Part of the motivation
for this lies in the approximate zonal symmetry of the sspteere and thus of quantities such
as ozone trends. By taking a zonal average of the data |ahgéufluctuations (eddies) are
removed, thereby reducing the standard deviation (no&s)lef the time series while keeping
the zonally symmetric trend unchanged. Thus zonal avegagsually leads to an increase
of the signal to noise ratio. However a drawback of zonal aykeig for trend detection is an
increase in the strength of serial correlations (see alstidel.5).

In this subsection we systematically analyze the zonalgraayed total ozone residuals in
the merged satellite data set as a function of latitude. Whebnsidered a residual depends
on how the trend contribution is defined. We thus consided @mpare) two versions of
the residuals, which represent the trend contribution ffeidint ways: one with the EESC
function and the other with the PWLT. The residuals are thetyaed using the AR1, GPHE,
and GSPE approaches. The GPHE and GSPE were applied toduericy bandwidth from
1 to 27 years. The estimates for the square rodt ahd H for the case where the EESC

trend is removed are shown in Fig.4a and b, respectively. The GPHE and GSPE provide
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Figure 3.4: Estimates of various statistical parameteraifanthly and zonal mean total ozone
residuals obtained by filtering out the seasonal cycle, Qi@ flux, and EESC fit, shown as
functions of latitude. (a) Standard deviatiercalculated by AR1 (red circles) and the square
root of the parametércalculated by GPHE (violet circles) and GSPE (blue circé®)lied to
the frequency bandwidth 1-27 years. (b) Month-to-monthdag autocorrelation calculated
by AR1 (red circles) and the Hurst exponents calculated biERriolet circles) and GSPE
(blue circles). The violet (blue) dashed lines in panel foli¢ate the 95% confidence intervals
for GPHE (GSPE). Thus, time series for which the Hurst exptske above the dashed lines
may be roughly considered as LRC at the 95% significance (@esl the comment about

conditions of LRC existence in Secti@nl).

consistent estimates for the Hurst exponents, althoughEsiBHnore spatially noisy. (This
lends further support to our conclusion, following the gsa in Chapted, that GSPE is
preferable to GPHE because it typically produces resulils ieduced disagreement between

spatially proximate time series.) All but one Hurst expdregtown in Fig.3.4b is less than one,
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Figure 3.5: Same as Fi§.4, but with GPHE and GSPE applied to the frequency bandwidth
2 months-27 years. Note the different vertical scale in p@y)ecompared with Fig3.4. This
analysis yields spurious results, namely Hurst exponergater than unity (indicating non-
stationary behaviour). The figure is included to highligig importance of choosing an appro-

priate bandwidth (see text for further discussion).

i.e. the corresponding time series are second order séayiovith finite and time-independent
mean and standard deviation. The estimates ¢ftandard deviation of the residuals) and
¢ (lag-one autocorrelation of the residuals) for the AR1 niade also shown in Fig3.4
Although /b ando, as well asH and¢, cannot be compared directly, they represent similar
guantities: the first pair is a measure of the variabilitytaf tesiduals, while the second pair is
an indicator of the persistence in the time series. It is@#ing to note that the maxima and

minima ofb ando, as well as off and¢, tend to occur in roughly the same latitude bands.

The theory for distributions off estimated by GPHE and GSPE exists only for the asymp-

totic casem — oo, wherem is the number of frequencies used, with some other additiona



CHAPTER 3. TOTAL OZONE TREND DETECTION 60

o —
=% @ 2
|
\u) o 4
< o |
Rl
= o
2 2
2% |
N— IO
Qo o
Y— c N~
O O ! -1 ]
c 83 \
5 <
2 Q o |
2~ °
il 0 |
) o
SN
< S
c o
2

05 |

0N o a

60S 30S EQq. 30N 60N  60S 30S EQ. 30N 60N
Latitude Latitude
Figure 3.6: Same as Fig§.4, but with PWLT filtered out instead of EESC to describe theglon

term trend. The Hurst exponents are similar to those in &in the Southern Hemisphere,

but are reduced in magnitude by about 0.1 in the Northern kigineire.

conditions [sedRkobinson1995a,b]. Under these conditions the theorems proved bynRon
state that the estimates &f obtained by GPHE and GSPE are distributed normally with a
mean equal to the true value Bf and variances equal t& /24m and1/4m, respectively (see
also Sectior2.2.1). Therefore GSPE has a smaller asymptotic variance tharE3R®ta factor

of 72/6. The value$).5 + 1.967 /v/24m and0.5 + 1.96/(2/m) are indicated in Fig3.4o by
dashed violet and blue lines, respectively. All Hurst exgarestimates located above these
lines may be considered as greater than 0.5 with 95% statisignificance, meaning that the
corresponding time series may be parsimoniously deschipesh LRC model. This applies to
just over half the latitudes analyzed. There is clear ewddeaf LRC at certain latitude bands,
while at other latitude bands the autocorrelation behav®unot significantly different from

the AR model. Interestingly, the latitudinal structure &C behaviour is quite different in the
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(a) Monthly and zonal mean total ozone anoméiethe 55-60°N latitude band

obtained by filtering out the seasonal cycle, QBO, and soleq, fiogether with the EESC

(solid) and PWLT (dashed) fits. (b) The corresponding totain@ residuals when the PWLT

fit is removed. Panel (b) may be compared directly with the EfB&8sed residuals shown in

Fig. 3.1f.

two hemispheres.

It should be emphasized that the LRC methods discussed teebased on asymptotic ap-

proximations at low frequencies and therefore they coulddssitive to the frequency interval

used for the parameter estimation: a wider interval maydy@ebias in the estimates, while a

narrower interval results in larger uncertainties of thigneastes. Fig3.5is similar to Fig.3.4,

except that GPHE and GSPE were applied to the entire fregumaredwidth from 2 months to

27 years. (The results for the AR1 model (red circles) aratidal to those shown in Fig.4.)

The Hurst exponents shown in Fig.5b are almost everywhere greater than one, i.e. they be-

long to a nonstationary range. However, Bg2g,h,i demonstrates that the periodograms for

the zonal averages have steeper slopes for the bandwidtmthsad year than for the band-
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width 1 year-27 years. Therefore the fact that the calcdlaberst exponents are greater than
one in this case is a result of including the high frequenayp{annual) part of the spectrum in
the fit. We will further discuss the importance of the frequerange choice in Chaptdr

To investigate the dependence of the residuals on the defimt the long-term trend, the
calculations were repeated but with the residuals definesing the PWLT in Eq.3.1) instead
of the EESC time series. The results are shown in¥.§.and may be compared with Fig.4.
In the Southern Hemisphere the statistical parameterstfedatitudinal variations) are very
similar in the two cases. However there is a distinct chamgthé Northern Hemisphere,
where the Hurst exponents decrease by about 0.1. Over a tegiath of the midlatitudes!
is no longer significantly different from 0.5, implying thesls of LRC in this region; and at
the highest sub-polar latitudes, the extent of LRC behavi®strongly reduced. Inspecting
Fig. 3.1f, corresponding to 556(°N, it is evident that the major low-frequency variation in
the residual defined relative t6F SC'(t) projects strongly on a piecewise-linear trend with a
turning pointin early 1996, and its contribution to the desll is therefore substantially reduced
when the PWLT function is used to define the long-term trerfus 1S illustrated by Fig3.7,
which shows the ozone time series for88°N (with mean, solar, QBO and seasonal cycle
filtered out) together with the EESC and PWLT fits (panel (aY the PWLT residual (panel
(b)); the latter may be compared with the EESC residual showg. 3.1f.

3.4 Significance of long-term trends in zonal-mean total

ozone

3.4.1 Long-term ozone decline

The statistical model used to describe the noise does rattdfie mean trend estimated by
Eq. 3.1, but it does affect the estimated uncertainty of the tréHae regression coefficient

of the total ozone anomalies on the EESC time series is showigl. 3.8a as a function
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of latitude for the period 1979-2005. The magnitude of thgression coefficient basically
displays the sensitivity of total ozone in that latitude tbda the stratospheric abundance of
ozone-depleting substances as represented by the EESERparison with other estimates
the result is presented in units of DU/year for the time peli®79-1995, during which time the
EESC time series is nearly linear with a net change of apprataly 1.0 ppb of chlorine. As is
well known, the long-term ozone decline has a minimum in thpits and increases towards
the poles, with larger values in Southern Hemisphere as aoedpwvith Northern Hemisphere
midlatitudes. The strong increase of the Southern Hemrephend with latitude is indicative
of the large influence of Antarctic ozone loss on the Soutlmisphere midlatitude long-

term decline (e.gChipperfield 2003 Fioletov and Shepher@005.

The error bars in Fig3.8a indicate the 95% confidence intervals estimated under A1 a
LRC hypotheses concerning autocorrelation of the ressdddie trend uncertainties under the
LRC hypothesis are evidently wider than those under the Agfbthesis. The differences
are particularly large wher# exceeds 0.7, which from Fi§.4b occurs basically everywhere
north of 35S. In this region the standard deviation of the trend undelfRC hypothesis is
up to 1.5 times larger than that under the AR1 hypothesiss Btoadens the range of tropical
latitudes over which the trend is not significant at the 95%&lleand substantially increases
the already large trend uncertainty in northern middle agt tatitudes. In contrast, the Hurst
exponent is about 0.5-0.6 over southern middle and higtutss, i.e. the residuals have
relatively weak long-range correlations, and in this regibe trend uncertainties estimated

under the LRC and AR1 hypotheses are nearly identical.

Fig. 3.80 shows the corresponding results for the linear trend fréi911995 (the declin-
ing part of the PWLT function). The means and standard dieviat(including the differences
between the latter for LRC and AR1 hypotheses for the retgjlaae very similar to those
obtained using the EESC fit in Fi§.8a, except in northern middle and high latitudes where
the PWLT-derived trend is larger. This is consistent with Behaviour already noted in sec-

tion 3.3.3 where the strong decline in total ozone in northern middke lagh latitudes in the
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Figure 3.8: (a) Regression coefficients of monthly and zomedn total ozone anomalies (ob-
tained by filtering out the seasonal cycle, QBO, and sola)) tuxEESC for the period 1979-
2005. (b) The first (declining) slope of the PWLT fit for the joek 1979-1995. The regression
coefficients in panel (a) are scaled so as to be comparabte tonear trend over 1979-1995;
thus, the two panels represent respectively the EESC-lzask®WLT-based estimates of the
long-term ozone decline. The 95% confidence intervals shavealculated under two alter-
native assumptions: AR1 (light grey region) and LRC (dakygegion bordered by the dashed

curves.). Details of the confidence-interval calculatioas be found in Sectio®.4.

early 1990s and its subsequent increase in the late 199tieiprieted as LRC noise relative to
the EESC time series, but contributes to the long-term de¢ivith weaker LRC behaviour in

the noise) under PWLT.
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3.4.2 Recent and future ozone increase

The EESC time series can be well approximated by two lineaetians, with the first slope
equal to about 1 ppb/decade for the period before the EES@maxin the second half of
the 1990s and the second slope equal to about -0.34 ppbaleratie period after the EESC
maximum.

Therefore it is possible to estimate the expected rate afi@atcrease after the late 1990s
from the EESC fit: it is just the regression coefficient pldtie Fig. 3.8a multiplied by -0.34.
The result is shown in Fig3.9 by the dotted-dashed curve. For comparison, the posieveltr
estimated from PWLT, which is the observed linear trend ¢khertime period 1996-2005, is
shown by the diamonds connected by the solid curve togetitleiitaszuncertainties under both
the AR1 and LRC hypotheses. The two trends are fairly sinmlaouthern middle and high
latitudes, although the uncertainties on the observed$rencompass zero. In northern middle
and high latitudes, however, the observed linear trendighty four times the EESC-predicted
trend, and is actually statistically significant ovef<BI°N according to the PWLT estimate of
the noise. Thus, once again in northern middle and higtutiés we have a major difference
between the analysis provided by the EESC and PWLT-baseélsya@ithough this difference
is within the 95% error bars.

Once the analytical relation between the trend uncerta@intythe length of the time series
is known, it is possible to estimate the number of years reguio detect a certain trend with
a given error, and its dependence on location. This is inapbftom a practical point of view
for designing an ozone monitoring strategy. The number aefyeequired to detect future
ozone trends was studied byéatherhead and Coauthp900 using the AR1 model. Here
we expand on Weatherhead et al.’s results by including awatce for LRC behaviour. The
methods and formulas used here to calculate the number if geadescribed in Secti@w.

We first consider the number of years required to detect a wéa given magnitude, with-
out reference to the magnitude of the expected trend. Wenthse estimated relative to the

EESC trend function (as in Fi§.4), the number of years required to detect a 1 DU/year trend
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Figure 3.9: The EESC-based linear trend calculated for #adirdng part of EESC (solid
circles connected by the dashed line) is compared with thensk(increasing) slope of the
PWLT fit for the period 1996-2005 (diamonds connected by thiel $ine), the latter with 95%
confidence intervals calculated under the AR1 (light greyar) and LRC assumptions (dark

grey region bordered by the dashed curves).

in zonal mean total ozone at the 95% significance level udeAR1 and the LRC hypothe-
ses is shown in Fig3.10a. The latitudinal structure primarily reflects that of treriability
(cf. Fig. 3.4a), with the shortest number of years being required in tbeids (30S-30N).
However the impact of long-term memory (cf. F&y4b) mainly accounts for the hemispheric
asymmetry in Fig3.10, increasing the number of years required in northern apaced with
southern latitudes. In those latitude bands for which thestHexponents are below 0.7, both
the AR1 and LRC models give consistent estimates of the nuofbgars required; whereas
in other latitude bands, and especially in northern sultedand high subpolar latitudes, LRC

behaviour considerably lengthens the time required tactiatgiven trend, by a factor of up to
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Figure 3.10: (a) The number of years required to detect a ly&ds/trend at the 95% signifi-
cance level under the AR1 (red curve) and LRC assumptioongefwurve shows GPHE, blue
curve shows GSPE) applied to the frequency bandwidth 1-aisya the monthly mean total
ozone residuals obtained by filtering out the seasonal c{@BO, solar flux, and EESC fit.
(b) The same as panel (a), but using the frequency bandwidtbrzhs-27 years for the LRC
estimates (the red curve is the same in both panels). Notiffeeent vertical scales in the two
panels. Panel (b) is a spurious result (cf. Bgp), and is shown to highlight the importance of

choosing an appropriate bandwidth for the analysis.

1.5 or so.

If the noise is estimated according to the PWLT trend fumctias in Fig.3.6), then the
number of years required to detect a 1 DU/year trend is \lytudentical to that shown in
Fig.3.10a in the Southern Hemisphere, but is, as expected, redudedaser to that estimated

from the AR1 model in the Northern Hemisphere (not shown).

Fig. 3.1 shows the same estimates as in Bid(a, except that in estimating the statistical
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parameters andH under the LRC hypothesis, GPHE and GSPE were applied todhadncy
bandwidth from 2 months to 27 years (cf. Fi§5. The number of years in this case is
several times larger than for the proper bandwidth (1-27s)e&Ve include Fig3.1( here to
emphasize the importance of a correct bandwidth choice tostexponent estimation under

the LRC model.

We now consider the latitudinal dependence of the expeotad$, and estimate the num-
ber of years required to detect a statistically significaatne increase if the positive trends are
those estimated in Fi.9 according to either the EESC or PWLT models. In both cases the
“detection” is here made under the assumption that the tieimtlependent of the past trend
(prior to 2000 for EESC, prior to 1996 for PWLT), and both AR1dd_RC estimates are com-
puted. Consider first the detection of the positive ozonadtexpected from the EESC decline,
shown in Fig.3.11a. As was noted byWeatherhead and Coauthp2900, southern middle
and high latitudes are the best places to detect ozone ngcaveording to the AR1 model; the
same is seen to be true for the LRC model. In the Northern Hareig, there appears to be
an optimal region for detection of ozone recovery around48DN; on either side, there is a
strong effect of LRC behaviour on the number of years redyespecially at northern middle
and high latitudes where, according to the LRC model, it &htake about 1.5 times longer to

detect the expected trends than estimated under the AR1Imode

The number of years required to detect the observed tremd #@96-2005 at the 95%
significance level, according to the PWLT analysis, is shawfig. 3.11b. The length of
the observed record (10 years) is indicated by the dotteq hn latitudes with points lying
below this line, a significant trend has therefore alreadgnbaetected (cf. Fig3.%). The
result is completely different from Fi@.11a. According to the PWLT analysis, the best place
to detect ozone recovery is northern middle and high lagésudmoreover, in this region a
positive trend is either on the verge of being detected oralv@ady been detected - and the
second best region is in the equatorial zone. However ahsauhigh latitudes the number of

years required;- 18, is similar between the EESC and PWLT analyses, and is wigthated
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Figure 3.11: (a) The number of years since 2000 required tecti¢he EESC-based linear
trend calculated for the declining part of EESC at the 95%ifigance level under the two
alternative assumptions: AR1 (red curve) and LRC (blueeurased on GSPE). (b) The same
as panel (a), but for the PWLT-based trend calculated foptheod 1996-2005, so the value
represents the number of years after 1996. Values highartf@ years are plotted as 100
years. Note the similarity of the two estimates in southertidte and high latitudes, but the

large differences in the Northern Hemisphere.

by the AR1 model in both cases. This is expected given theist@nsey at these latitudes of the
EESC-predicted and observed recent trends, the consystétice EESC and PWLT derived

noise estimates, and the absence of LRC.

3.5 Longitudinal structure

In this section we present the latitude-longitude distidns of some of the statistical param-

eters discussed above for zonal averages. Fifa and b show the spatial distributions of
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Figure 3.12: Spatial distribution of the month-to-montkomorrelation parameter(top panel)
and the Hurst exponent (bottom panel) calculated by GSPEnfanthly mean total ozone
residuals obtained by filtering out the seasonal cycle, Q&Myr flux, and EESC fit. This is

the two-dimensional version of Fi§.4b.

the AR1 month-to-month autocorrelation parametand the Hurst exponelit, respectively,
when the trend is defined by the EESC function. Bothnd H reflect “memory” in the total
ozone time series but there is a distinct difference in thgétial structure. The autocorrelation
parameter has its maximum at the equator and decreasesltaivampoles; the values are very
similar to those reported byNeatherhead and Coauthp2900 (see their Fig3.4 and Plate
3) for 1979-1998. In contrast, the spatial distributionlod Hurst exponent has two maxima,
around 18S over the Pacific and 2N over the Pacific, eastern Atlantic, and Africa. For both

¢ and H, the maxima have pronounced longitudinal structure. Theagaof H for zonal-mean
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Figure 3.13: Spatial distribution of the EESC-based linteamd calculated for the declining
part of EESC in DU/year (top panel) and the second (incrgasilope of the PWLT fit for the

period 1996-2005 (bottom panel). This is the two-dimenaiersion of Fig.3.9.

ozone (Fig.3.4b) are approximately equal to the maximum valuegiofor gridded ozone at
the given latitude. We will discuss the relationship betwtee zonally averagef and theH
for zonal averages in Chaptéin relation to temperature. The spatial distribution of thest
exponent when the PWLT is filtered out instead of EESC (notvsi)as similar to Fig.3.12,
except the values are lower in the Northern Hemisphere.

Fig. 3.13a and b show the spatial distributions of the recent trendsrding to the EESC
and PWLT functions, respectively; they correspond to thevesiin Fig.3.9 for zonal-mean
ozone. In the case of EESC, this represents the positivarlinend expected since the late

1990s based on the fitting of the entire 1979-2005 record byERSC time series. Based
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Figure 3.14: The number of years since 2000 required to td#tedEESC-based linear trend
calculated for the declining part of EESC at the 95% sigmitealevel under the LRC assump-

tion (based on GSPE). This is the two-dimensional versidiigf3.11a.

on EESC, the ozone recovery rate should be strongest in thih&a Hemisphere sub-polar
regions, apart from the south-west Pacific. In the Northeemidphere the recovery rate is
predicted to be relatively strong over northern Europe aret eastern Siberia. In the tropics
and subtropics the expected recovery rate is weak and vest.zAs can be anticipated from
Fig. 3.9, the ozone recovery rates based on PWLT (i.e. the obsemedrlirend from 1996-
2005) are also positive everywhere but have a very diffespatial distribution and strength.
In particular, the PWLT recovery rates are greater in thetidwn Hemisphere midlatitudes
and sub-polar regions than in the Southern Hemispherere¢hds are especially strong over
Siberia, the north Pacific, the subtropical Atlantic, andteern Europe. The only place in
the Northern Hemisphere midlatitudes and sub-polar regwanere the trends are relatively
weak is the north Atlantic. The spatial distribution of trecent PWLT over the Southern
Ocean is opposite to that for the EESC trend, with a maximuherdahan a minimum over the
south-west Pacific.

Finally, Fig. 3.14 presents the number of years from the year 2000 requiredtéctdibe
expected EESC-based ozone trends shown in 3, based on the LRC noise estimates

computed from the entire time series (with the EESC trener&ll out). The Fig3.14allows
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us to identify the optimal locations to make long-term graoased total ozone observations.
For example, it would be desirable to have some stationsdarstiuthern sub-polar Atlantic
since the number of years required to detect ozone recoaahminimum in that region,
where it varies between 12 and 20 years. In the Northern Herare the minimum is located

in the zonal band around 38, and varies between 20 and 30 years.

3.6 Summary and discussion

The statistical analysis of long-term changes in total ezbas traditionally been performed
assuming that the residuals, which represent the noiseeigytftem, are well described by an
AR1 model. In this chapter the total ozone record from 19005has been examined from the
alternative viewpoint that the time series is long-rangeetated, implying a deviation from
AR1 behaviour with an unbounded decorrelation time. Theterice of LRC behaviour in
total ozone would reduce the statistical significance ovamirend, and lengthen the number
of years required to detect a trend, from that estimatedyumsmAR1 model. We employ the
merged satellite data set prepared by NASA which combinesore8 of TOMS and SBUV
total ozone dataHfith et al, 2004 Stolarski and Frith2006, use well-based spectral estima-
tion techniques to quantify LRC paying proper attentiorhi®frequency bandwidth, and filter
long-term time-periodic signals (QBO, solar) which canegdpurious indications of LRC be-
haviour. The analysis mainly concerns zonal-mean ozotleowdh some station data and
gridded satellite data are also considered. However thigsiaas restricted to 6(5-60'N, as
in polar regions the satellite data have gaps during potdrtni

We first summarize the results obtained when the long-tetat t@one changes are rep-
resented in terms of the EESC time series. The large valutgedfiurst exponent, which is
the necessary condition for the presence of long-rangeledions, are found basically every-
where north of 3%S. In southern middle and high latitudes the correlationaligur is not

significantly different (at the 95% confidence level) fromttbf the AR1 model. In the regions
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with strong LRC behaviour, uncertainties in the magnitutithe long-term ozone decline at-
tributable to EESC are increased by about a factor of 1.5 epedpwith those estimated from
ARZ1; this includes northern middle and high latitudes, vehitie AR1-based uncertainties are
already quite large. However the strongest long-term odewcéne is found at southern middle

and high latitudes, and there the AR1 estimates are found teliable.

Analogous results are found for the number of years (fromO20@quired to de-
tect the increase of ozone expected from the anticipatetindeof EESC. We confirm
(Weatherhead and Coauthp2000Q's finding, based on the AR1 model, that southern mid-
dle and high latitudes should be the optimal place (withim 8% S-60°'N region) to detect
ozone increase; at these latitudes we have the combindtithe strongest expected trend,
the apparent absence of LRC behaviour, and the shortestoaugtation times. The required
detection time (to 95% confidence) is about 18 years for zoresn ozone at 6@, but is
even a few years shorter in the sub-polar south Atlantic. il@mited regions have higher
noise levels, they also have weaker serial correlatiortse)récent observed behaviour of total
ozone in these regions is consistent with the EESC-pretiteéad, but detection of an ozone
increase attributable to EESC is not expected until soneekate in the decade 2010-2020. In
the Northern Hemisphere, detection of ozone increase is ot@llenging. There appears to be
a narrow band around 3§ where LRC behaviour is relatively weak and the required inem
of years is around 30, but in northern middle and high lagsithe required number of years is

increased from around 25-35 to around 30-60 by LRC.

Although the representation of long-term ozone changesring of the EESC time series
is preferred, given the a priori nature of the represematgocommonly used alternative is a
piecewise-linear trend (PWLT) with a turning point in thesed half of the 1990s. There-
fore we compared the results obtained using the two difteepresentations of the long-term
changes. In our implementation of PWLT we use a turning paietarly 1996. The estimates
of the noise and the long-term ozone decline are essentiedlgame for the two cases in the

Southern Hemisphere, but there is a notable discrepan&eihorthern Hemisphere (partic-
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ularly at northern middle and high latitudes) where therggrdecrease in ozone in the early
1990s, and its subsequent increase in the late 1990s, arpreted mainly as LRC noise rela-
tive to EESC, but project strongly on the long-term changiesréby reducing the strength of
the LRC behaviour) relative to the PWLT. This differenceeatt all subsequent estimates. For
example, according to PWLT the long-term ozone decline inh@on middle and high (sub-
polar) latitudes is comparable in magnitude to that in thetlsern Hemisphere; and the recent
ozone increase (since 1996) is strongest in this regionpraardinally statistically significant
(at the 95% confidence level) indicating that a positive @zvand is already on the verge of

being detected.

The natural question is, then, which representation ofahg-term changes (and thus of
the noise) is correct? We do not attempt to answer this cquredefinitively, but a few com-
ments may be in order. If one adopts the EESC perspective thigeresults seem physically
sensible: we know that the annual-mean long-term ozonengedrom pre-1980 levels to
those characteristic of the 2000 time period, over middia laigh (sub-polar) latitudes has
been much greater in the Southern as compared with the Northemisphere - roughly 6%
as compared with 3%/Norld Meteorological Organizatior002. Furthermore we know that
Northern Hemisphere ozone exhibits more interannual baitiathan Southern Hemisphere
ozone because of the greater stratospheric dynamicabidyian the Northern Hemisphere,
which is for well-understood reasons. What remains thenetautderstood is the physical
origin of the LRC, especially in northern middle and hightlades. If it is the existence of
AR time scales comparable to the 27-year observationatdetwen are these time scales as-
sociated with natural variability or with climate change®fe$e questions can likely only be

answered with climate models.

If, on the other hand, one adopts the PWLT perspective, thensoforced to consider the
strong decline of northern middle and high latitude ozorteééearly 1990s, and its subsequent
increase in the late 1990s, as part of the signal and accouitt {One possibility often con-

sidered (e.gSolomon et al.1996 is that the increased stratospheric aerosol from the Mount
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Pinatubo volcanic eruption in 1991 amplified the EESC-as$ed ozone loss. The problem
with this argument is that there was no corresponding ozecesdse observed in the South-
ern Hemisphere, even though EESC and aerosol abundancesemparableBodeker et al.
2007). Another argument is that the behaviour reflects decadde variations in stratospheric
wave forcing (e.gRandel et al.2002 Hadjinicolaou et a.2005, which would affect ozone
both through changes in transport and changes in chemioakdpss, especially in the Arc-
tic which would then affect the annual mean sub-polar ozdmmdances through transport of
ozone-depleted air. The impact of long-term changes iriosipheric wave forcing on both
polar and midlatitude ozone is well establish&do(ld Meteorological Organizatiqr2002).
However, attributing the ozone changes to changes in waeefpmerely changes the prob-
lem to that of accounting for the variations in wave forcifgprinciple, they could be part of
the signal or part of the noise. Yet the use of PWLT involvesithplicit assumption that the
recent strong positive trend in northern middle and higkudé ozone is secular and can be ex-
trapolated; moreover by regarding this trend as part of igr@as rather than part of the noise,
the estimated noise is reduced and the LRC behaviour wedkane the estimated signifi-
cance of the trend thereby increased. So far, no mechanerdhld give such a statistically

significant positive trend in northern middle and high ladié ozone has been put forward.

3.7 Appendix A: Comparison with ground based measure-

ments for 1979-2008

The analysis of total ozone was repeated for the period POD8 for the merged
TOMS/SBUV/OMI data and for the ground based measureméiitdefov et al, 2002. In
comparison to the 1996-2005 period the PWLT for 1996-200&me significant every-
where in the Northern Hemisphere relative to the AR1 confideimtervals, although it
dropped in magnitude north of 49 and thus became somewhat closer to the EESC trend

(see Fig.3.93.153.16. The EESC trend for the merged satellite data is similahéoBEESC
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Figure 3.15: Same as Fi§.9, but for the period 1996-2008 using the TOMS/SBUV/OMI

merged data set.

trend for the ground based measurements (seeHi§3.16). In contrast the PWLT disagrees

in the two data sets in the Southern Hemisphere, which engdsai$s sensitivity to noise.

The monthly autocorrelations are noticeably lower for theugd based than for the satel-
lite merged data, whereas the Hurst exponents are moreasifede Fig3.17,3.18), though
slightly larger for the former. This probably means that ihe-frequency residual variabil-
ity, represented by the Hurst exponent, is more consistetiita two data sets than the high-
frequency variability, represented by the monthly autcelations. Trends and autocorrelations
demonstrate more zonal variability in the ground based. dette standard deviations are no-
ticeably larger for the ground based measurements (se8.Ei@g3.18a), which leads to larger
confidence intervals for the PWLT (see F&153.16). We tend to think that these differences

are presumably caused by data inhomogeneities in the gitmaset measurements.

One can also notice that the Hurst exponent estimates, iepdor the PWLT residuals,
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Figure 3.16: Same as Fig.9, but for the period 1996-2008 using the ground based measure

ments. Please note that the latitudes extent from the SoulietNorth Pole.

fall below 0.5 over the polar regions (see F8gl8, which means that the corresponding time
series demonstrate blue noise behaviour, i.e. their spqmiwer decreases with decreasing
frequency. As a result the power-law confidence intervaés tive poles are less than the AR1
confidence intervals. It is interesting what physical medctra stands behind this phenomenon.
Overall the three additional years (2006-2008) of the nekegeellite data and the indepen-
dent ground based measurements support our conclusioes bathe TOMS/SBUV merged

data for the 1979-2005 period.

3.8 Appendix B: Analysis of Kiss et al. results

(Kiss et al, 2007 (KO7 henceforth) analyzed long-range temporal correfetiof total ozone
measured by the TOMS instrument. KO7 estimated the Hursbrexut for the total ozone

time series by means of DFA3. Thus the Hurst exponent wamatdd as the slope of a
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Figure 3.17: Same as Fi§.6, but for the period 1979-2008 using the TOMS/SBUV/OMI

merged data set.

DFA curve in log-log coordinates, which was measured forrdmgge of scales from about
a month to 6 years. The Hurst exponent was estimated for eatipgnt time series of the
gridded TOMS measurementsS{B60°E, 60°S-60N’) and then zonally averaged. The obtained
latitudinal distribution of the Hurst exponent estimate lecal maxima over high latitudes and
the equator and local minima over midlatitudes. This distibn was compared by KO7 with
the distribution of the Hurst exponent estimated in thigatbaand published iNyushin et al.
(2007 (below in this appendix we will refer to the current chapasr\VVO7 for short) for the

merged zonally averaged TOMS/SBUV total ozone and founcttdifberent.

In this note we explain the difference in the two distribn8o Seven differences in the
ways the exponents were estimated are: (a) only TOMS data wtdized by KO7, while VO7
employed the merged TOMS/SBUV data set; (b) daily data was by KO7 vs. monthly
data used by V07; (c) DFA3 was used by K07 vs. the GPHE and GSe# loy V07; (d)
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Figure 3.18: Same as Fig.6, but for the period 1979-2008 using the ground based measure

ments. Please note that the latitudes extent from the SoulietNorth Pole.

only annual cycle and QBO were filtered out by KO7 vs. annualegyQBO, solar cycle and
the EESC trend by VO7; (e) scales from about a month to 6 years uwsed by K07 vs. the
frequency range corresponding to 1 to 27 years by VO7; (f) M@brted results for the zonally
averaged total ozone, while KO7 reported the zonally avestdturst exponents for the gridded
total ozone; (g) the QBO was filtered by linear regression @7 4nd by the Wiener filter in
KO7. We demonstrate here that the last four differences ayerk explaining the different

results reported.

First, we checked that the results for monthly TOMS/SBU\adat the same as for TOMS
only data. Therefore we excluded item (a). Item (b) is inald in these studies, because sub-
monthly frequencies are not used. Providing time seriegpaveer-law stochastic processes
not contaminated by the presence of trends or periodic@iEA and spectral methods (GPHE

and GSPE) should give close estimates of the Hurst expomsewaa shown in Sectio®.3
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However climatic and meteorological time series do not lgii@ave pure power-law spectra.
Often their spectra have different slopes for high and l@gfiency ranges (see e.g. Big).
Moreover, they may contain periodic and quasi-periodinaig of various periods, secular
trends as well as data inhomogeneities, caused for instgncleganges in instrumentation, etc.
In such circumstances an estimate of the Hurst exponenndspmn the filtering applied to
the time series and the choice of frequency (time scale)ergseelanosi and Mulle2005;
Markovi¢ and Koch(2005 and Chapte#). It will be shown in Chapte#, using tropospheric
and stratospheric air temperature as an example, that D&Apectral methods give similar
estimates provided equal time scales and frequency rangkesling the lowest available fre-
guencies are chosen and that trends and periodic and gerasthp signals are filtered out.

Below we show that these principles are also applicablegadtal ozone.

Fig. 3.19 shows estimates of the Hurst exponent for the TOMS/SBUV lypreaerage
total ozone anomalies estimated by DFA, GPHE, and GSPE ferelnt filters and time scales
combinations. We start with filtering the components whidrenfiltered in KO7, namely the
annual cycle and the QBO. In panel (a) the annual cycle an@B@ have been filtered out
using linear regression on four annual cycle harmonics hadetjuatorial zonally averaged
zonal winds at 30 and 50 hPa (see Sec8dhlfor the linear regression details) and the Hurst
exponents are estimated for the time scales from one to aps\{the intersection of the time
scale ranges used in VO7 and KO7). The Hurst exponents dgstinbyg DFA1, GPHE, and
GSPE do not agree in this case. At the next stage (see8Hig) we have also filtered out
the solar cycle using the solar flux at 10.7 cm and the EES@ tireaddition to the annual
cycle and the QBO. This brings the three curves closer tegeltiit there are still noticeable
differences between them. Comparison of Bd.% and b reveals the effect of filtering of the

solar cycle and the EESC trend, i.e. the effect of item (d).

At the third stage to fully comply with the recommendatiofisChapter2 we extend the
time scale range up to 27 years and thus include the loweBablafrequencies. Most of

the articles, which employed DFA, set the maximum used tioeesequal to a quarter of
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Figure 3.19: Estimates of the Hurst exponent for zonallyayed TOMS/SBUV total ozone
anomalies by DFA, GPHE (violet curve) and GSPE (blue cur@)ly the annual cycle and
the QBO have been filtered out by means of linear regressipanel (a). In all other panels
annual cycle + QBO + solar flux + EESC have been filtered out. tifhe scales from 1 to
6 years have been used in panels (a) and (b) and from 1 to 28 yepanels (c) and (d).
The DFAL results are shown by the orange curves. In panel édalao show the results of
DFA2 (brown curve) and DFAS3 (red curve). The horizontal dashnes in panels (a-c) show
the upper 95% asymptotic confidence intervals for GPHE anBESfSr the Hurst exponent
equal to 1/2, which corresponds to stochastic processéswhiite noise like low-frequency

variability.



CHAPTER 3. TOTAL OZONE TREND DETECTION 83

time series length. This limitation was eliminated in Cles& demonstrating by means of
Monte-Carlo simulations that the properties (bias andaven¢) of the Hurst exponent estimate
obtained by DFA do not almost change when the longest avaitabe scales are included.
This actually makes DFA based estimates comparable todmgiam based results, for which
the lowest available frequency are typically included bfad&. The inclusion of the longest
available time scales is also consistent with the fact thatHurst exponent is defined only
asymptotically (see e.glaqqu 2002. Another motivation for the inclusion of the lowest
available frequencies is that for the estimation of trendeutainty (the trend is supposed to
be filtered out prior to the Hurst exponent estimation) onlgva-frequency behaviour of the
power spectrum matterSith 1993. Fig. 3.1 shows that by the inclusion of the lowest
available frequencies we reach a very close agreement éetie different methods estimates.
The GPHE and GSPE Hurst exponent estimates (the violet aredcoirves) in Fig3.1< are
the same as in Fig3.4b, which KO7 used for comparison. Comparison of Bdl% and ¢

reveals the effect of item (e).

In the first three panels of Fi§.19we employed DFA of the first order (DFA1), because
it can automatically filter out only discontinuities in tinseries, but not trends, and therefore
is more similar to spectral methods than DFA of the higheemsd KO7 used DFA3, which
automatically filters out local quadratic trends, and itngortant to compare its results with
the results of DFAL1. We plot in Fig.19d the Hurst exponent estimates obtained by DFA1-3
after the annual cycle + QBO + solar flux + EESC have been filtere and the time scales
from 1 to 27 years have been used. With the exception of théh8ouHemisphere middle
and high latitudes the DFA results have qualitatively samdistribution with generally larger
estimates obtained by higher orders of the DFA. We will expthe differences between the

DFA results below in relation to Fig.20

Comparing panels (b) and (c) of Fig.190one can notice that the shift of the low frequency
cutoff from 6 to 27 years has decreased the value of the Hyminent estimates over the

Southern Hemisphere middle and high latitudes. Let us n&e @aacareful look at the power
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Figure 3.20: Periodogram (panel (a)) and DFA1-3 fluctuafiomctions (panel (b)) of the
TOMS/SBUV total ozone anomalies obtained by filtering outwad cycle + QBO + solar
flux + EESC from the 58055°S zonal band. The periodogram, fluctuation functions, aaat th
power-law approximations are shown in log-log coordinafBse estimated values @&f are

rounded to one digit.

spectrum and DFA curves (fluctuation functions) of the torne anomalies for the 565°S
zonal band. They are plotted in Fi§2Q There are two scaling regimes in this power spectrum
(see panel (a)). The first is a high frequency one. It ranga® 2 months to somewhere
between one and two years. The second, low frequency regamges from about two years
to the lowest frequency. If one fits a power-law curve to tlegjfrency range from 2 months
to 6 years, which is the scaling range used in KO7, then oreraba Hurst exponent equal to
about unity, as illustrated by the green line. In contrdst power-law is fitted to the frequency
range from 1 to 27 years, as illustrated by the violet line asdvas done in V07, then the
estimated Hurst exponent is about one half. This explaiasdifierence seen at 5%5°S
during the transition from Fig3.1% Fig. 3.1 (the effect of item (e)). The sensitivity of the
Hurst exponent estimates to the choice of the frequencyeramg actually stressed in VO7 by
contrasting Fig3.4and3.5.

Fig. 3.2 shows fluctuation functions and their best linear fits inlleg coordinates for
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DFA of the first, second, and third order. In agreement witlp. Bi1l3d the Hurst exponent
estimate increases from 0.5 to 0.8 as one increases the [MEAfoom the first to the third. Itis
known that even for a power-law stochastic process DFA alinae two regimes: short scale
and long scaleKantelhardt et a).2001). The Hurst exponent should be estimated by fitting
a power-law function to the long time scales. It is also kndhett the transition (crossover)
point between the two regimes depends on the order of DFAhidteer the order, the larger
the transition pointiantelhardt et aJ.2001). This phenomenon can be observed in Big.
The transition point for DFAL is located around a one yearetiseale, whereas for DFA3
it is close to two years. Thus using the same time scale rah@¥ (years) for DFA1 and
DFA3 the Hurst exponent is overestimated by the inclusiah@efhort scale range regime into
the estimation domain for DFA3. We conclude that KO7 obtdisignificantly higher Hurst
exponent estimates over the Southern Hemisphere highdast because they used the time
scale range located in high frequencies and the third orflBxF8.. Both of these facts lead
to an overestimation of the true Hurst exponent. This paagralso underlines that care is
needed when estimation of the Hurst exponent is performddtaat none of the estimation

methods should be used in isolation.

The discussion above only partially explains the diffeesnin the shape of the Hurst ex-
ponent distributions between V07 and KO7. F3g21lreveals the effect of items (f) and (g).
Panel (a) of Fig3.21 shows the zonally averaged Hurst exponent obtained for tiokeley
TOMS/SBUV merged data set after the annual cycle + QBO + $hiar+ EESC have been
filtered out by linear regression. The time scales from orsxgears have been used. There-
fore this panel is analogous to panel (b) in BdL9 One can notice that qualitatively the spatial
distributions of the Hurst exponent are somewhat simildh@se panels. However the zonally
averaged Hurst exponents are generally lower than the Expsinents for the zonal averages,
in agreement with the theory of power-law stochastic preeggranger 1980 and the results
for the atmospheric general circulation (see Chag}eilhis phenomenon was also discussed

in VO7 in respect to Fig3.2 Nevertheless KO7 compared in their Fig. 7 the Hurst expbnen
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Figure 3.21: Zonal averages of the Hurst exponent estimaiézined for the gridded
TOMS/SBUV data by DFAL (orange), GPHE (violet), and GSPEéblafter filtering the an-
nual cycle + QBO + solar flux + EESC using the time scales from@ years. In panel (a) the
QBO has been filtered out by linear regression, whereas iel flajit has been filtered out by

the Wiener filter as in KO7.

estimates from V07 for the zonally averaged total ozone witir zonally averaged Hurst
exponent estimates for the gridded data. When we recadctiiatHurst exponents plotted in
Fig. 3.21a for the time scale range 1-27 years we get a picture veryagitoi Fig. 3.1 with
somewhat smaller values but with even better agreemeneeeattihe methods (not shown).
Fig. 3.21b is analogous to Fig3.21a, with the only difference is that the QBO has been
filtered out using the Wiener filter following KO7. KO7 lindpiinterpolated the total ozone
anomalies power spectrum for frequencies in the range frdnol4.3 years. When we apply
this filtering method to monthly ozone data the results ageiicantly affected, as seen by
comparing panels (a) and (b) of Fig.21 Remarkably, DFA1 and the spectral methods start

to significantly disagree over several regions when thealimegression filtering of the QBO
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used in VO7 has been replaced by the Wiener filter used in KOthé& methods demonstrate
a relative boost of the Hurst exponent estimates over thpecso Although K07 utilized daily
data and a wider estimation frequency range, for which thedl4.3 years range comprises a
smaller portion, their results still could be affected big ttough filtering method.

The major sources of differences between the results of \f@irkD7 are the way the
data were filtered and which frequency (time scale) ranges aleosen to measure a power-
law exponent. VO7 employed a low frequency range for twoaess Firstly, because only
a low frequency residual variability affects the unceryiof a trend, a proper estimation of
which was the main goal of VO7. Secondly, the mathematicady of power-law stochastic
processes is developed primarily for the asymptotic casewihen the spectral density (auto-
correlation function) scales by a power-law for low freqcies (large time lags). KO7 chose
the intermediate range of scales mainly because of comreitDFA requirements. Therefore

the comparison of VO7 and KO7 results is not appropriate.



Chapter 4

Power-law characteristics of the

atmospheric general circulation

4.1 Introduction

In Chapter3, we applied the two statistical noise models that are thaedad this thesis —
the power-law and AR1 models —- to the problem of ozone tremdisvariability, which is an
issue of significant practical interest. In this and thedwihg chapters, we turn to the more
general question of how best to characterize internal bgit\ain the climate system. As we
have just seen in the ozone context, the choice of noise ntatettrongly affect conclusions
about trend analysis, and this is also the case for detecfipariodic signals in climate data
(Ghil et al, 2002. But the ozone analysis did not help us settle several ofjtlestions we
raised in the Introduction. The questions we focus in thiagér regard the choice of power-
law method and a preliminary attribution of observed s@qgtower growth to some specific

processes.

In this chapter, several power-law exponent estimatorgppéied to global zonally aver-
aged free atmosphere air temperature data from reanalgxisigis. The methods employed

(detrended fluctuation analysis, Geweke Porter-Hudaknastir, Gaussian semiparametric es-

88
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timator, and multitapered versions of the last two) agre# foe pure power-law stochastic
processes as was shown in ChaeBut for the observed temperature record, the power-law
fits are sensitive to the choice of frequency range and thmsnt filtering properties of the
methods. The observational results converge once freguanges are made consistent and
the lowest frequencies are included, and once several teigignals have been filtered. Two
robust results emerge from the analysis for interannualdeeddal time scales: first, that the
tropical circulation features relatively large power-laxponents that connect to the zonal-
mean extratropical circulation; and second, that the ta@nd subtropical lower stratosphere

exhibits power-law like behavior that is volcanically fect

In Chapters 4-6 we employ monthly mean temperature from Be4D and NCEP/NCAR
reanalyses. The NCEP/NCAR reanalysis is a continually tipglgridded data set represent-
ing the state of the Earth’s atmosphere, incorporatingrwhsens and global climate model
output dating back to 1948. It is a joint product from the Watl Centers for Environmental
Prediction and the National Center for Atmospheric ResealERA40 is a similar product
by the European Centre for Medium-Range Weather Foreaalish covers the period from
September 1957 to August 200For consistency we use only data from this 45 year long pe-
riod from both reanalyses. The NCEP/NCAR reanalysis haigtwtal resolution of 1.%1.9
and 17 vertical levels between 1000 and 10hPa. ERA40 hazdmbail resolution of 2.%2.5
and 18 vertical levels between 1000 and 10hPa. (ERA40 hasiva vertical levels, which

go up to 1hPa, but we do not use them.)

This chapter represents an attempt to systematically fatsgdgoower growth of the atmo-
spheric general circulation by the power-law. First, welpppe methods to air temperature
from reanalysis products for the last half century, focggn plots of zonal mean cross sec-
tions of the Hurst exponent (Sectidr?). Although no single power-law fit technique should

be employed in isolation, we identify a pair of techniques ttharacterize the range of results

40riginally the ERA40 data set was planned to be 40 years lwhi;h gave the name to the project. However
during realization of the project another five years of dataeradded.
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that might be typically expected (Sectidi3). We attribute robust features of these plots to
specific physical climate processes and other less robastrés to methodological artefacts
(Section4.4). In Section4.5we also discuss the connection between point statisticz amal
mean statistics as the starting point for a more completsipalytheory explaining spectral
power growth of the general circulation. We provide a sunyneéithis chapter in Sectiod.6.
The material in this chapter has been published, along wldvant material in Chapté&; in

the Journal of Climateyushin and Kushne2009.

4.2 Results for unfiltered data

Having benchmarked th& estimation methods with synthetic data in Sectib8 we now
apply the methods to the monthly mean tropospheric andsfrheric ERA40 air temperature
from September 1957 to August 2002ppala and Coauthor2005. The annual cycle and
three of its harmonics are removed from the temperature eStimates of the Hurst exponent,
H, are then carried out identically to the benchmark testseictiSn 2.3 We calculate/ at
each longitude, latitude and pressure level, and take thal zoean of the result to obtain a
zonal cross section that characterizes the power-law li@haf/the global atmosphere. We
plot the resulting zonal meaH in Fig. 4.1a-d for DFA3(t), DFA3(a), periodogram GPHE(a)
and periodogram GSPE(a) (see Table 1 for parameter sefbintpgese methods). By including
these various methods and being clear about parametergsettie aim to reconcile existing
results for the value off for air temperature since different studies use differeethrads and
different frequency ranges (see SectioBand TableA.1).

Fig. 4.1 shows that, apart from a common maximummin the tropical troposphere, there
are clear contrasts between DFA3(t) and DFA3(a), and alsedes DFA3 and the two spectral
methods. The differences generally lie well outside thgeaof biases found in the benchmark
tests and one of our main aims is to pin down the source of ttiéieeences. DFA3(t) and

DFA3(a) show a similar decrease Hf from the tropics to the extratropics, but the values of
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(a) DFA3(t) (b) DFA3(a)

90S 60S 30s Eq. 30N 60N 90N 90S 60S 30s Eq. 30N 60N 90N

(c) GPHE(a) (d) GSPE(a)

Figure 4.1: Zonal mea# of ERA40 air temperature for a) DFA3(t), b) DFA3(a), c) GPHJE(
d) GSPE(a). Values below 0.4 are shown in white.

H are generally lower in DFA3(a) than in DFA3(t). This is peutiarly true in the tropical
lower stratosphere, where the methods disagree most Str(seg Sectiort.4). The spectral
methods produce noisier plots, as might be expected by gesierally larger variance (see
Section2.3). They display pronounced maxima in the Southern Hemispthett are not found

in the DFA3 plots and that we will show are largely tied to Anérends in the data, some of
which might arise from data inhomogeneities (Secaf). They also show strong minima and
even blue-noise (positive spectral slope) behavior infth@cal stratosphere; these features are

also discussed below.
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4.3 Effect of multitapering and frequency range

We reported in SectioR.2 that multitaper based GPHE and GSPE have somewhat similar
biases and standard deviations to the periodogram base& GRHGSPE. The difference be-
tween the multitapered MTM GSPE(a) and the periodogram GQHar linearly detrended
data is shown in Fig4.2a. When all frequencies are included, the differences bmtvwke
methods range from about -0.15 to about 0.1. The asymptotitdf the GSPE Hurst expo-
nent estimate standard deviation (one sigma) for this #aqurange ig/2v/30 ~ 0.1, where
30 is the number of frequencies used. Therefore the difte®ifor the first case are statisti-
cally significant only for a few locations and the MTM GSPEt[:IM)F[ is visually similar to
Fig. 4.1d (not shown). But we recall that MTM GSPE(a) has a larger thasa MTM GSPE(t)
(Section2.3). Thus, standard practice would suggest that we should aterdTM GSPE(t)
and GSPE(a). Figt.2b plots the difference off for MTM GSPE(t) and GSPE(a). The total
area where the two methods disagree has increased relatitig.t4.2a. The difference be-
tween MTM GSPE(t) and GSPE(t) is even larger (see &ig:) especially in the observation
sparse regions, such as the Southern Hemisphere stratespiéch points to different sensi-
tivities to data inhomogeneities (Sectiér) in periodogram and MTM based methods. Given
this, it is clear that differences introduced by standardtitapering methods reflect not only
the effect of multitapering itself but also a) the selectidrirequency range for the power-law
fit; b) the effect of data inhomogeneities; and c) the inedasriance off due to trimming.

At this point we are in a position to reduce the number of mashwe consider. Together
with the results of the Monte-Carlo testing, and additiowsting with the GSPE method,
we conclude that multitapering adds unnecessary comjglicad the Hurst exponent spectral
estimation procedure. Multitapering might produce gragly smoother spectral plots (as in
Fig. 1.2), but it does not provide obviously improvédd estimates. We have also found that
the all-frequency estimates work equally well for both DFASd the periodogram spectral
methods. Finally, we find the GSPE method to be similar to bodienately more robust than

the GPHE method. We thus proceed to focus mainly on the DFAB(@ GSPE(a) methods,
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Figure 4.2: a) Zonal mean df for MTM GSPE(a) minus that for GSPE(a). b) Zonal mean of
H for MTM GSPE(t) minus that for GSPE(a). c) Zonal meanfbfor MTM GSPE(t) minus
that for GSPE(t). Al were estimated for linearly detrenddd R filtered, in the notation of

Sectiond.4) ERA40 air temperature.

and try to explain the robust and non-robust aspects of fiigiortraits.

4.4 Effects of filtering and choice of reanalysis product

We now show that many of the differences between the spemtichitime domain methods
(e.g. between Figst.1b and d) can be attributed to specific physical processes aticlooh
ological artefacts. We consider the effects of detrendimg quasi-biennial oscillation (QBO),

ENSO, and volcanic aerosol forcing. The filters we use are
e LTR: We remove a simple linear trend from the data.

e QBO: We remove a QBO signal by means of multilinear regressiamgusie equatorial
zonally averaged zonal winds at 30 and 50 hPa (see S&:8Bah). We use winds at both
30 and 50 hPa, because they are about 90 degrees out of phasie allows a better

representation of the QBO signal.
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e ENSO: We remove an ENSO signal consisting of the Nino3.4 indegdadoy 4 months
by means of linear regression. We choose 4 months lag betansemizes correlations
between Nino3.4 index and tropical troposphere air tentpergYulaeva and Wallace

1994 Trenberth and Smit20086.

e VOL : We remove the effect of volcanic aerosols by regressintggaiperature on merid-
ionally and time dependent historical reconstructionsad€anic aerosols optical depth

(Ammann et al.2003.

All signals described above are modulated by the seasool@ ityour filtering procedure (see
Section3.3.]). We have also carried out additional calculations invadvsolar and Atlantic
multidecadal variability signals, but these did not shogndicant effects orf{ estimates. The
impact onH of removing each signal is plotted in Fig.3. For all rows in Fig.4.3the left
column corresponds to DFA3(a) and the right to GSPE(a).

The first row of Fig4.3(Figs.4.3a and b) shows the effect of the linear detrending (filtering
LTR) on H. Specifically, with LTR filtering is subtracted froni/ with no filtering. As ex-
pected, detrending has little effect on the DFA3 based estinsince this method effectively fil-
ters out polynomial trends up to the second order. Howewsgffiect is significant for GSPE es-
pecially in the Northern Hemisphere lower stratosphereSmghern Hemisphere troposphere.
The presence of a linear trend increagédy 0.1 to 0.25 for the spectral methods, because a
linear trend increases power at low frequencies and therefi@epens the spectral slope. It
is well known that climate trends in reanalysis productemfteflect data inhomogeneities
(Dell’Aquila et al, 2007 Bromwich and Fogt2004 Marshall 2002 Randel and Wu1999
Randel et al.2000, although effect of data inhomogeneities is generallyantend. We do
not aim to evaluate the realism of these trends; instead,aw i@ point out the relative sensi-
tivities of the H estimation methods to detrending.

The second row of Figd.3 (Figs. 4.3 and d) shows the impact of removing the QBO.
Specifically, H with LTR + QBO filtering was subtracted fron/ with LTR filtering. For

DFA3(a) and GSPE(a), removing the QBO reduégsn the tropical and subtropical lower
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stratosphere, but the impact is much greater for GSPE(a)ftndDFA3(a). Thus the presence
of a quasiperiodic signal appears to significantly impaetgpectral method. In contrast to the
linear trend case, the QBO boosts frequencies near thefleghency cutoff of 18 months and

shallows the spectral slope. Thus, the presence of the QB@esH .

In another analysis, we have found that for the trimmed DFPAB(t), which is the stan-
dard method in the literature, the effect of filtering the QB®@s to significantlyincreaseH in
the lower stratosphere (not shown), opposite to what is sefeigs.4.3c and d. This effect can
be attributed to spreading of the QBO signal by the DFA smiagtke.g.Janosi and Muller
2005 Markovic and Koch2005. The effect is seen in the difference between the DFA3() an
DFA3(a) plots in Figgl.1la—b. This again illustrates how sensitive tHeestimation methods

are to the frequency range choice.

Figs.4.3e and f show the impact of removing the ENSO signal. The looaif the dif-
ference is in the tropical troposphere and the sense of thadims similar to the QBO case.
ENSO represents a high (interannual) frequency signaigisagnificantly correlated with trop-
ical temperatures, and so the ENSO and QBO effectd e analogous. Again, the impact
on H for DFA3(a) is minimal, but it is more significant for the strd-practice DFA3(t) (not

shown).

Unlike for the other filtered signals, the impact of the volicasignal on# is similar for
both DFA3 and GSPE (Figd.3g and h). Volcanic forcing appears to increasén the tropical
and subtropical lower stratosphere. In climate simulatieith and without volcanic forcings,
we have been able to reproduce this volcanic signatufe(see Chaptes), andVyushin et al.
(2004 have reported a similar boost of surface temperakiifeom volcanic forcing in climate
of the 20th century simulations. The fact that volcanic iiogcleads to power-law behavior
points to an ambiguity in how to interpret power-law spe@saindicators of long-memory
processes. In this case the long-memory process is the ggophone of volcanism, which
leads to intermittent pulses of shortwave forcing, ratf@nta process internal to the atmo-

spheric general circulation.
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Figure 4.3: Impact on zonal-med# of filtering different climate signals. Difference plots fo
DFA3(a) are in the left column and difference plots for GSBE(e in the right column. First
row, a) and b): zonal meal for the unfiltered time series minus that férwith LTR filtering.
Second row, c) and d): zonal meahfor LTR filtering minus that ford with LTR+QBO
filtering. ) and f): as in ¢) and d), but f&@NSO instead ofQBO filtering. g) and h): as in c)
and d), but foVOLC instead ofQBO filtering.
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In Fig. 4.1, we saw considerable disagreement between the methodgsaedially be-
tween the spectral-domain and time-domain methods. Notwibahave accounted for the
various effects of trends, QBO, ENSO, and volcanoes, asasalbnsidered the effect of using
different time scale ranges, we compare again the spectdatismme domain methods. Com-
pared to the corresponding plots in Figslb and d, the methods have converged considerably.
Both methods show relatively largé in the tropical troposphere, subtropical lower strato-
sphere, in the tropical stratosphere above 20hPa, and extraropical Southern Hemisphere.
The methods still disagree substantially in the Southermisighere stratosphere. Overall, the
GSPE provides somewhat largét, which is expected based on the Monte-Carlo testing (see

Fig. 2.2).

The Southern Hemisphere stratosphere, where GSPE(a) aAd(&Fcontinue to dis-
agree in Fig4.4a and b, is a highly problematic area for this kind of analymsause of
inhomogeneities in reanalyzed daRafidel and Wu1999 Marshall 2002. For example a
red spot inH structure at (608,300hPa) is caused by an obvious jump in temperature re-
lated to the assimilation of the Vertical Temperature PedRhdiometer data (see Sectin3
and (e.g.Bromwich and Fogt2004 Dell’Aquila et al,, 2007). To test the robustness of the
H estimates for ERA40, we calculafé using the NCEP/NCAR reanalysis air temperature
(Kalnay and Coauthord.996 for the same time period and with the same filtering applied.
Figs.4.4c and d show that the main features of tHeportraits found in the ERA40 data are
also present in the NCEP data. But in the data poor Southemmdpéere polar stratosphere,
the four panels disagree significantly. It is known that tbetS8ern Hemisphere stratosphere
record has nonlinear temperature trends related to phetoiclal ozone loss (see Chap®r
and these cannot be filtered outlbyR in GSPE; but this does not explain why GSPE(a) gives
different results for NCEP and for ERA40. We thus do not expedind a robust estimate of

H in this region from reanalyzed data.
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(a) DFA3(ERA40) (b) GSPE(ERA40)

(d) GSPE(NCEP)

O

Figure 4.4: Zonal meard! with LTR+QBO+ENSO+VOLC filtering for a) DFA3(a) and
ERA40 data, b) GSPE(a) and ERA40 data, ¢) DFA3(a) and NCER dpGSPE(a) and NCEP

data.

4.5 Hurst exponent estimates of zonal-mean temperature

Figs. 4.1,4.24.34.4 represent the zonal average &fvalues calculated at each point. But
energy and momentum conservation constraints, along thheory of eddy mean-flow in-
teractions in the atmospheric general circulation (e.gehn 1967, Schneider 2006), suggest
that # values of the zonal mean circulation might also be dynaryidaferesting. With this
very general motivation, we show in Fig.5 H for the zonally averaged ERA40 air temperature
which, analogously to Figt.4, have had all theLTR, QBO, ENSO, VOL ) signals removed.
We include both DFA3(a) and GSPE(a) estimates in Fdgs and b, and plot the difference

fields (7 for the zonal-mean temperature minus the zonal meafi &6r the temperature at
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each point) in Figs4.5c and d.

We see in Fig4.5 that the zonal-mean temperature statistics exhibit censildy more
power law behavior in the extratropics than the point terafpee statistics. For example, the
regions withH > 0.8 are confined between 45 and 16N in Fig. 4.4a but between 4 and
20PN in Fig. 4.5a. For GSPE this difference is even more pronounced. Thet boogded by
taking the zonal mean first, which is shown in Figc and d, is remarkably robust between
the two H-estimate methods. We have also documented that the zosi@ges have larger

values ofH than individual grid point time series in the case of totade (see Sectiod.5).

There is a possibility that some of the boost seen in Fgk. and d comes about because
of an aggregation effect that arises when independent plawetime series are averaged. In
particular, when independent power-law time series areageel, thef/ of the mean is greater
than the meaii/ of the individual time series@ranger 1980. Although the temperature time
series are spatially correlated this aggregation effeghtrstill operate on sufficiently large
scales. We test for the aggregation effect by the followingnké Carlo test: we create a set
of independent synthetic temperature time series withegabi / equal to the estimatel at
each spatial point in the ERA40 reanalysis grid represeantedy. 4.4b. Therefore we simulate
144 x 73 x 18 mutually uncorrelated time series using the ARFIMA(0) model. The zonal
meanH of this dataset is, by construction, the same as that seeigirt Bb. We note that
we do not include spatial correlations in order to focus amdggregation effect. We then
estimateH of the zonal averages of these synthetic time series. Thanslot spatial patterns
(not shown) are noisier than Fige4a and b but are numerically close to it. Thus for mutually
uncorrelated time series the statistical aggregatiorceffenegligible. This suggests that the
boost in H from using the zonal-mean temperature is of dynamical oragid stems from

systematic zonal correlations of the eddy fields.

The boost in Figs4.5c and d is relatively small in the tropics, consistent with ttiea of
Sobel et al(2002 that point temperatures in the tropics are well correlatéti the zonal-

mean tropical temperature field. The enhanced valueS af midlatitudes, at the surface
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Figure 4.5: a)d of the zonal-mean temperature for ERA40 data for DFA3(a)Adin a), for
GSPE(a). ¢ of the zonal-mean temperature minus zonal meal &r point temperatures,

for DFA3(a). d) As in c), for GSPE(a).

and in the lower stratosphere suggest that the long-menedrgvior in the tropics is coupled
to midlatitudes via the eddy driven zonal-mean overturraimgulation Held and Schneider

1999.

4.6 Conclusions

Under the working assumption that the atmospheric gen@@llation exhibits power law

behavior, we have estimated the Hurst expotefdr the temperature of the global atmosphere
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using several statistical methods. Monte-Carlo benchm@nkith pure power-law time series
reveals no obvious discrepancies between the methods,Hart we apply these methods to
reanalyzed climate data we find a striking degree of inctersty among the results. We

summarize our current understanding of the methods:

e DFA3 results are insensitive to trends and can be made iisen® high-frequency
periodicities, provided trimming is not applied and all éstales are used, i.e. provided

Slong IS SE€t tON.

e Multitapered and periodogram spectral methods can be ntadgstent with one another
provided consistent frequency ranges are used and thetlfnegaencies are included.
Since the two methods yield consistéitestimates (Fig4.2a), there is no obvious ad-

vantage to using multitapering i estimation, at least in this application.

e The DFA3 and the spectral methodisresults are quite inconsistent unless filtering is
applied, consistent frequency ranges are chosen and tlesténgquencies are included.
The spectral methods are sensitive to periodicities amititreand DFA3 appears to be

more robust in this regard.

Given our current understanding, we recommend the use o jAand GSPE(a), or alterna-
tively DFA3(a) and GPHE(a), and tests to filtering of wellekyn climate signals such as the
QBO, ENSO and external climate forcings, to provide a regmmtive picture of power-law
behavior in climate time series.

Another issue that has arisen is the different sensits/ttie methods exhibit to data inho-
mogeneities, e.g. temperature jumps induced by instrumtientchanges. Although previous
work suggests that DFA3 is more robust in the presence ofishcmogeneitiesRerton 2004
Chen et al.2002 Hu et al, 2001 than spectral methods, its results might also be affedtéd.
discuss this question in more details in SectoBbelow.

Using DFA3(a) and GSPE(a), we have found several robust Highgions in the atmo-

spheric general circulation. In particular, we have fourat point temperature statistics exhibit



CHAPTER4. POWER-LAW CHARACTERISTICS OF THE ATMOSPHERIC GENERAL CIRCULATI®102

robust power-law behavior in the tropics that decreasels laittude. A connection between
the tropics and extratropics becomes evident wHeis calculated for the zonal-mean tem-
perature. These results may have practical implicationsufi@lysis of tropical tropospheric
temperature trends (e.§anter et a).2005 Randel and Wu2006 Thorne et al.2007). These
trends are highly nonrobust: satellite measurementspsaddes, and climate model simula-
tions all provide different values for these trends. Butdipical temperatures exhibit power-
law behavior, confidence intervals on these trends woulg Mezly be underestimated using
AR1 based noise models. Calculation of confidence intea@srding to a power-law model
for the residuals as carried out 8mith (1993 would lead to a significant increase of the
trends confidence intervals (see also Chaptand Sectior6.5). Thus at least some of the
apparent discrepancies could be accounted for by propephesenting long-range temporal
correlations in the tropical atmosphere.

Another robust result, found both for DFA3(a) and GSPE@}hat volcanic forcing in-
creased] in the lower tropical and subtropical stratosphere. Vaicdorcing has also been
found to have an effect o at the surface\(yushin et al, 2004 and it still remains to rec-
oncile the surface and stratospheficsignatures. Furthermore, since the volcanic forcing
record can be imprinted in the deep oceanic circulatidelyorth et al, 2005 Gleckler et al.
20086, this result suggests that some of the long-memory behaeien in the coupled ocean

atmosphere system might be attributable to a volcanicrigreffect.



Chapter 5

Reanalysis vs. specialized GCM

simulations

5.1 Introduction

In Chapterl, we discussed how the ability of climate models to capturseoled power-
law behaviour has lead to some considerable controversyenptevious literature (e.g.
Govindan et al.2002 Fraedrich and Blende2003 Vyushin et al, 2004. With the results
of Chapters2 and4 in hand, we have established the relative sensitivity ahdhbiéty of
the different estimation methods. We are now in a positioartalyze the ability of climate
prediction models to simulate temporal scaling behaviorour view this represents a strin-
gent performance test because it requires the model toreaydmiability on a wide range of

timescales.

In this chapter, we estimate the power-law exponent didioh — i.e. the Hurst exponent
distribution — for the global atmospheric circulation oétstratosphere and troposphere during
the 20th century, in observations and in climate simul&j@nd use the climate simulations
to gain insight into the distribution. This is a significanttension of the previously cited

literature, which has generally been restricted to surtacéemperature. We will highlight
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results that are independent of the Hurst exponent esbtmétichnique. Here we focus on
DFA3 results, since itis more robust than GSPE; it autorafyifilters out linear and quadratic
trends; and we do not need to estimate scaling fdctothis chapter. However we verify that
DFA3 and GSPE, the two methods we recommend to use in siniidies, results agree. We
will mainly use highly constrained climate simulations ihieh the ocean surface temperatures
and different combinations of radiative forcings are prigsd; in Chapte6, we will extend
the analysis to coupled ocean-atmosphere climate models.

This chapter is structured as follows. Sect®@ compares spatial distributions éf for
reanalyses and various GCM simulations. The effect of ¢a@®ST forcing is analysed in
Section5.3. The results of the DFA3 are compared with the GSPE in Seé&iénA simple
model for understanding the effect of volcanic eruptionsr@temporal spectrum of the lower
tropical stratosphere is presented in Secbdh Section5.6 concludes. The material in this

chapter has been published in Geophysical Research Léfyaushin et al, 2009.

5.2 Specialized GCM simulations

Fig.5.1plots DFA3 estimates off for the reanalysis products and several climate simulation
The H distribution displays a characteristic shape that we hauréied is robust to differ-
ent methods o estimation (see Chaptdj. Both the NCEP/NCAR and ERA40 reanalyses
(Figs.5.1a and b) show maxima iff in the tropical to low-extratropical troposphere and in the
tropical to subtropical stratosphere and a minimum in thetidon Hemisphere polar strato-
sphere. But there are differences between the reanalysitigis; for example, ERA40 has
separate local maxima iff in the lower and upper troposphere af$hat will be discussed
later in relation to Fig5.3 We will also show that even where the distributions appeagtee,
they might do so for different reasons.

Fig.5.1c plots theH distribution for a simulation of the GFDL Atmospheric ModéM2.1
The GFDL Global Atmospheric Model Development Ted&04) forced by historical SSTs,
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Figure 5.1: H distribution for zonal-mean temperature for (a) the NCEPAR reanalysis,
(b) the ERA4O reanalysis, (c) the GFDL AM2.1 HistSST+AllE@imulation, (d) the GFDL
AM2.1 HistSST simulation, (e) the GFDL AM2.1 Vol simulatioff) the CMIP3 simulations.
Panel (f) represents a multiple model average. As stateldeinetxt, QBO filtering has been

applied to the reanalysis temperatures in panels a-b.

anthropogenic greenhouse gases and aerosols, ozone shewigeflux, and volcanic aerosols
(hereafter the “HistSST+AllIForc” simulation). The mairafares of the’ distribution of this
simulation are similar to those displayed in the observatiiy based Figs5.1a-b, including
the falloff of # as we move from the equator to the poles and separate maxitha lower
stratosphere and the troposphere. Therefore given ldat@STs and the other principal ex-
ternal forcings the GFDL AM2.1 is able to reproduce the amniim of zonal mean temporal

temperature variability represented by the Hurst expanent

Three additional simulations of AM2.1 help explain the ghgsorigins of theH distri-
bution. First, a simulation with time-independent radiatforcings and with prescribed cli-

matological SSTs (labelled “Climo”) haH values close to 0.5, with a range of 0.4 to 0.6
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(results not shown). Thus, the atmosphere exhibits a flattepe on interannual to multi-
decadal timescales in the absence of forcing on these tatesscSecond, a simulation with
time-independent radiative forcings and with historic8ITS (“HistSST”) has a tropospheric
pattern of # (Fig. 5.1d) that is similar to that in Figs5.1a-c. The simulated tropospheric
H is thus determined by the SSTs and is consistent with thasestemperature analysis of
Fraedrich and Blende2003 that suggested that the origin of largein the atmosphere is
oceanic. Third, a simulation with time-independent fogsrirom the radiatively active gases
and anthropogenic aerosols and with prescribed climaidb&STs, but with historical vol-
canic forcing (“Vol") gives rise to a stratospheric pattefie (Fig. 5.1e) that is similar to that
in Figs.5.1a-c. To summarize, the simulations show that the obsekietribution is mainly
determined by temporal variability of the SSTs in the trqgeee and by volcanic forcing in
the lower stratosphere.

We briefly demonstrate that current generation climate fsozten capture thé/ distribu-
tion in a less constrained forcing framework. THedistribution averaged over the CMIP3
coupled ocean-atmosphere model simulations of the 20tiiigeis shown in Fig5.1f; it dis-
plays a similar structure to Fig8.la-c but has a narrower meridional extent and a weaker
volcanic signature in the lower stratosphere. The simpjgagation for the latter is that only
9 of the 17 models considered included realistic volcanicifgs. In Chapte6 we will com-
pare spatial distributions off for the 20th century simulations of the models with a remlist
volcanic forcing to those without it. We will also show thaetZ for the CMIP3 models is es-
sentially the same whether we estimatdor the range 18 months to 45 years over the second

half of the 20th century or for the range 18 months to 100 yeees the entire 20th century.

5.3 Influence of tropical SSTs

We propose that the relatively steep spectral slopes repies by theé? maximum centered in

the tropical troposphere are generated by tropical SSRb#ity. Our test of this idea reveals
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Figure 5.2: H without TropSST filtering minug? with TropSST filtering, which represents

the signature of the tropical SSTs in tiEfield: (a) NCEP/NCAR, (b) ERA40, (c) AM2.1

HistSST+AllIForc. QBO filtering has been applied to ERA40 &CEP/NCAR reanalyses.

a significant discrepancy between the two reanalysis ptediio test the idea, we create time
series of tropical mean SST in the latitude ban®&Ra0N (“TropSST” Smith et al, 2008. We
then filter the TropSST signal from the temperature timeesarsing linear regression and esti-
mateH of the result for the NCEP/NCAR and ERA40 reanalyses andhi®HistSST+AllForc
simulations. Fig5.2isolates the part of th& distribution related to tropical SSTs by showing
the original # minus the TropSST-filtered. In the NCEP/NCAR reanalysis (Fi§.2a) and

in the simulation (Fig5.2c), there is a vertically coherent part of thedistribution throughout
the tropical and low extratropical troposphere that istegldo the TropSST signal, as indi-
cated by the positive values. The TropSBTignature in the ERA40 reanalysis (F&2b) is

qualitatively different, being vertically incoherent aofimixed sign.

In Fig. 5.2, the NCEP/NCAR reanalysis and the climate model simulaijgoear to agree
with our hypothesis of tropical SST control, while the ERA&fpears to disagree with it. To
understand these inconsistent results we display theuasidf the tropical upper tropospheric
temperatures after TropSST filtering has been appliedhotitree reanalysis products and for
the HistSST+AlIForc and HistSST simulations (Fig3a). A one year running average has also
been applied. The ERA40 residuals (shown in red) show muaie thecadal variance than the

NCEP/NCAR and Japanese reanalysis (JRAOR®gi and Coauthoy2007) residuals and the
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Figure 5.3: The one year running mean of zonally averageteaiperature residuals (a) at
(Equator, 400 hPa) with TropSST filtering as described irtélg (b) at (60S,925hPa), with-
out TropSST filtering ; (c) as in (b), at (68,300hPa). ERA40 time series are shown in red,
NCEP/NCAR in orange, JRA-25 in green, HistSST in blue, anst$BT+AlIForc in violet.

All time series were adjusted to have zero mean for 1979-2002

simulations’ residuals. Significant fluctuations for the/&ZR include particularly high val-
ues during 1975-1983, which are probably related to problefith transition from VTPR to
TOVS satellite datagimmons et a).2004 Uppala and Coauthor2005, and low values for
1986-1991 and after 1992. Similar issues also explain thedand upper troposphertit max-
ima at 60'S that are seen in the ERA40 reanalysis (Bidb) but not seen in the NCEP/NCAR
reanalysis (Fig5.1a) or in the HistSST+AllIForc simulation (Fi.1c). Figs.5.3b and c plot

temperature anomalies (without TropSST filtering) from shene five data sets at these loca-
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tions. There is an obvious jump (negative at 925hPa andip®sit 300hPa) in the ERA40
temperature presumably related to problems with assimnatf the VTPR data from 1973 to
1978 Bengtsson et 312004 Simmons et a).2004). Another striking difference between the
models and reanalyses are the strong positive trends aPa00imese trends seem to be spuri-
ous and stem from the reanalysis models’ cold biases comblitb a gradual increase in the
number of observations in the Southern HemisphBen{tsson et 312004 Simmons et a.
2009. Discrepancies in the Southern Hemisphere polar stra@sphave been discussed in
Sectiord.4. Therefore several data inhomogeneity issues in the ERAKdttand are revealed
by our H analysis. However this does not exclude a possibility oéotlata problems present
in the ERA40 and NCEP/NCAR reanalyses. The data inhomotiesdescribed above could
also probably be identified by comparison of the spatialithstions of standard deviations
of the annual mean anomalies of the reanalyses and modelasioms. However the Hurst
exponent characterizes temporal variability for a rangenoé scales, whereas the variance is
typically dominated by a high-frequency variability of agn time series. Thus to capture pos-
sible data inhomogeneities using the variance one shostdséveral temporal aggregations,
e.g. to estimate standard deviations of daily, monthlyuahror decadal means. In contrast,

the power-law analysis achieves this goal in one step.

5.4 DFA3vs GSPE

We have established two primary methodstbestimation, DFA3(a) and GSPE(a), and now
test whether some of our key results are method dependehe Figs5.1and5.2we used the
DFA3 time domainA estimator. We have shown in Chapfehat DFA3 and other spectral do-
main methods yield consistent estimategfoprovided a consistent frequency range has been
chosen and known climate signals have been filtered out. DF#&Btively filters out linear
and quadratic trends in the data, which helps us to focus temnial climate variability. The

distribution of the DFA3H seems to be approximately Gaussi®yljski and Bunde2009
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Figure 5.4: H distribution estimated by GSPE for zonal-mean temperafare(a) the
NCEP/NCAR reanalysis, (b) the ERA40 reanalysis, (c) the GRM2.1 HistSST+AllForc
simulation, (d) the GFDL AM2.1 HistSST simulation, (e) th&QL AM2.1 Vol simulation,
() the CMIP3 simulations. Panel (f) represents a multiptedel average. As stated in the text,
QBO filtering has been applied to the reanalysis tempersinrpanels a-b. Values df less

than 0.4 are shown in white.

with standard deviatior: 0.075 for the case of the time scale range of 18 to 540 time units
(seeWeron(2002 and Sectior2.3). Overall, DFA3 provides more robust estimates than other
available methods, but for the results reported here, we faawnd consistent results using the
spectral domain Gaussian semiparametric estimator.

Figs.5.4and5.5apply the Gaussian Semiparametric Estimator (G3Ribjnson 19953
to the same data sets as in Figsland5.2 GSPE is a maximume-likelihood spectral domain
estimator ofH. The GSPEH is known to be relatively sensitive to the presence of lireeat
nonlinear trends and to high-frequency spectral peaks aosddo DFA3 (see Sectiagh4). Be-
cause of the known sensitivity to trends we have filtered loaitinear trend before calculating

the GSPEH.
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Figure 5.5: 4 without LPTropSST filtering minug/ with LPTropSST filtering, which repre-
sents the signature of the tropical SSTs infhéeld. First row - DFA3 estimates, second row

- GSPE estimates.

In Fig. 5.4the overall distribution of the GSPH is similar to, but noisier than, the DFA3
H in Fig. 5.1 However, significant differences remain. For example,tSenn Hemisphere
stratospheric values dff are larger for GSPE than for DFA3 in the reanalyses due to data
inhomogeneities and to nonlinear trends from ozone depiétee SectioA.4and ChapteB).

In addition, the differences in the tropical tropospheiseairom ENSO related variability that
boosts the high frequencies and is known to reduce the GBRéative to the DFA3H (see
Section4.4). In the CMIP3 simulations this discrepancy is present wiveranalyze 45 year
long time series, but is reduced when we analyze 100 yeartiomgseries.

We also have to bear in mind GSPE’s sensitivity to high fremyespectral peaks when
we try to reproduce the results of Fi§.2, which illustrates the sensitivity aff to tropical
SST variability. The impact on the GSPI of TropSST Smith et al, 2008 filtering (not
shown) looks quite different from that for the DFAB, which is shown in the Figs.2d-f.

This difference arises because the high frequency compohéme TropSST signal dominates
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the GSPEH response while the low frequency component of the TropS§fiasidominates
the DFA3 H response. But we can put the two methods on a more even fdnjifgcusing
on the decadal component of the tropical SST variabilityictvls the timescale of interest in
this thesis. To do so, we construct a 3 year low-pass filtexgadally averaged SST signal
(“LPTropSST”) and compute the response to LPTropSST fittein DFA3 Hand GSPEH in
Fig. 5.5. The first row of this figure is similar to Fid.2, showing that the DFA3/ response
is robust to the low-pass filtering. The first and the secomdabFig. 5.5are also remarkably

similar, indicating that the tropical SST effect is in go@teement in the two methods.

5.5 Effect of volcanic eruptions

We return to the volcanic signature &f in the lower stratosphere. It has been shown theo-
retically that a sum of stochastic amplitude shocks decplgina power law has a power law
spectrum Parke 1999. But the volcanically induced warming of the stratosplageays ex-
ponentially in time Robock 2000 and so we cannot expect power-law behavior in temperature
except over a limited range of frequencies.

A simple model to capture the behavior is

dT 1
— =——T+V(t) (5.1)
dt T

where T' is temperature,r is a relaxation time scale and(¢) is the volcanic forcing
(Stenchikov et a).2006 (expressed as aerosol optical depth). Biga shows one-year run-
ning mean air temperature anomalies in the tropical lowextasphere obtained from the
GFDL AM2.1 Vol simulation (see Figb.1e), Fig.5.60 the solutions tog.1) for various val-
ues ofr, and Fig.5.6c the power spectra for the time series in Fgdb. As the relaxation
time scale gets larger the power spectra saturate at loaguéncies, which would give rise to
larger estimates of/. These power spectra demonstrate a combination of poweodaavior

between 6 months and 4-10 years and a flat spectrum at thetlvwgsencies. When we
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Figure 5.6: (a) Air temperature anomalies at (Equator, @)fiem the AM2.1 Vol simulation.
The smooth red curve is a one year running average. The tiamidghe names of the major
volcanic eruptions are shown above the time axis. (b) Swmistto equationH.1) for - = 1
year (red curve), 3 (orange), 5 (green), and 10 years (bl{gg)Multitapered power spectra
of these solutions and their DFA3 Hurst exponent estimai@sThe power spectrum of the
solution forr = 1 with the weather noise superimposed on it. The best fit pdawercurve

(line in log-log coordinates) is shown in brown. Panels e plotted in log-log coordinates.



CHAPTER 5. REANALYSIS VS. SPECIALIZED GCM SIMULATIONS 114

repeat the same calculation for the volcanic forcing recdrthe past 130 years the saturation
occurs at lower frequency (not shown).

The DFA3H for the solutions tog.1) are labelled with colors corresponding to the spectra
in Fig. 5.6c. The H values are so large because our simple model does not incgdéar
weather noise, which boosts spectral power in high-fregiesrand thus decreases tHe To
support this we have plotted the power spectrum of the swiub 6.1) for 7 = 1 with the
weather noise superimposed on it. We employed the timessefiair temperature monthly
mean anomalies at the equator at 70hPa obtained from th@ Glimulation of GFDL AM2.1
that was forced with climatological SSTs and with time-ipdedent radiative forcings. The
Hurst exponent estimate of this time series, obtained usiadoFA3 method, is 0.97, which

agrees well with the values in the lower tropical stratoselie Fig.5.1e.

5.6 Conclusions

To conclude, we find that zonal-mean air temperature on anteral to multi-decadal
timescales has a steep spectrum that might be modelled bgrgaw behavior in the tropi-
cal to low-extratropical troposphere and the tropical tbtsapical stratosphere. Current gen-
eration climate models can capture these features andasipedi simulations elucidate their
dynamics. We propose that the troposphéfisignatures are linked to tropical SST variability
and that the lower stratosphetit signatures are linked to volcanic forcing. The link to tropi
cal SST variability is clear in the NCEP/NCAR reanalysiseTargeH values in the tropical
upper troposphere in the ERA40 reanalysis appear to aose dlata problems that mask the
connection to tropical SSTs. The ERA4D estimates also exhibit tropospheric maxima at
60°S that appear related to other documented data assimilasioes.

This analysis points to problems in naively interpreting Hurst exponent distribution as
an indicator of long-term memory in climate and care neetie taken to elucidate the physical

basis for a giverf! feature. Data inhomogeneities affect many observatiome series and
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can equally give rise to power-law behavi8efton 2004 Rust et al.2008. Sometimes, such
as at 60S in the troposphere, it is immediately evident that thei@ dgscrepancy to explain,
but at other times, such as in the tropical troposphere, ftbd still needs to be made to test
the consistency of the power-law behavior under differdaysical hypotheses. We have found
that general circulation models provide a useful tool fartstesting.

The frequent presence of power-law behavior, whatevemriise, suggests that statistical
testing for significant trends and periodicities should peeer-law noise models (s&mith
(1993, Chapter3, and Sectior6.5) as well as AR1-models, particularly in the tropical upper
troposphere and lower stratosphere whires large and trend evaluation has proven difficult
(e.g. Santer et a).2005. Power-law based confidence intervals are typically lalprause
they assume more power at lower frequencies. For examplegrdaw based significance
testing has been applied to the problem of stratospherioerecovery in the presence of
significant stratospheric internal variability, and le&ala lengthening of the projected time for

the detection of ozone recovery (Chagr



Chapter 6

Analysis of CMIP3 simulations

6.1 Introduction

In this chapter we study persistence and spectral powertgrofathe surface and free atmo-
sphere air temperature derived from several observatmnoducts and CMIP3 climate model
simulations. The CMIP3 project provides an excellent opputy for verification and gener-
alization of features and mechanisms found in individuaesiational data sets and models,
which were the subject of almost all previous climate péesise studies in climate literature
and Chapterd and5. We compare the fidelity and the goodness-of-fit of the AR hegpbwer-
law model and show that they provide a lower and an upper btamdimate persistence on
monthly to decadal time scales. We test the robustness gidher-law fit by varying the
spectral range to which it was fitted and scenarios underhwiicdel simulations have been
performed. We provide a comparison with previously puldihesults based on individual
climate model simulations and paleo reconstructions. Taenal in this chapter represents a

manuscript by Vyushin and Kushner in preparation for submisto Climate Dynamics.
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6.2 Data and Methods

In this chapter we use three observational products: the MREAR reanalysis
(Kalnay and Coauthord 996, the ERA40 reanalysidJppala and Coauthor2005, and the
NASA GISS surface air temperaturggnsen et al.1999. The GISS dataset combines ob-
servations of land meteorological stations and sea sutiEmgerature data. It maps the
observations on a°22° grid and smoothes them over 1200 km. We also employ the pre-
industrial control picntrl) and the 20th century2Qc3mn) simulations of 17 atmosphere-
ocean coupled general circulation models from the CMIP3alge: CGCM3.1(T47),
CGCM3.1(T63), CSIRO-Mk3.0, CSIRO-Mk3.5, ECHAM5/MPI-ONBFDL-CM2.0, GFDL-
CM2.1, GISS-AOM, GISS-EH, GISS-ER, MIROC3.2(medres), IE3.2(hires), MRI-
CGCM2.3.2, NCAR CCSM3.0, NCAR PCM, UKMO-HadCM3, UKMO-Ha#@®11. We also
analyze 500 year longicntrl simulations of six GCMs (CGCM3.1(T47), ECHAM5/MPI-OM,
GFDL-CM2.0, GFDL-CM2.1, GISS-ER, MIROC3.2(medres)).

For each scenarigicntrl or 20c3m) we have found it sufficient to use a single realization
from each model. For all the observational products we us&BRA40 period September 1957
to August 2002 and compare this to @@c3msimulation period 1955-1999 for the models. We
also use the longet0c3msimulation period 1900-1999. We note that for #@&3msimula-
tions all the models were forced by anthropogenically civagreenhouse gases and aerosols
and some models were also forced by changes in stratosplzemne, solar radiation and vol-
canic aerosols. Model details have been documented padyi(eig.Santer et a.2005 and
can also be found on tHeMIP3 web-site The seasonal cycle and its first three harmonics are
filtered out from all time series. In addition, we have filgi@ut the effect of the QBO from
reanalysis zonal mean air temperature following the medlogy described in Sectio8.3.1
because none of the CMIP3 models simulates this phenomenon.

We estimate the Hurst exponent by means of detrended flimtuabalysis of the third
order (DFA3) Kantelhardt et a).2001). DFAS3 filters out local polynomial trends up to the

second orde{antelhardt et a)200]) and therefore typically is not sensitive to human induced
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secular climate change effects, such as surface warmingadospheric temperature changes
forced by ozone depletion and a subsequent recovery (seé®is22.2and4.4). We have
shown in Sectior?.3 that DFA is one of the most robust Hurst exponent estimatarsye
have verified the results presented in this chapter by mefathe dGaussian Semiparametric
Estimator (sed&kobinson(19953 and Sectior?.2.1), which gives results consistent with DFA
provided periodic components and anthropogenically iedutends have been filtered out
and equivalent frequency ranges have been used (see Chppiée lag-one autocorrelation
coefficient is estimated by the Yule-Walker method and hanbeerified by a maximum-
likelihood fitting of the AR1 spectral density (see BHg3) to the periodogramBeran 1994).

We have already discussed the uncertainty of Hurst expoestithates in Chapte2.
We recall that unfortunately there is no analytical degimip of DFA H properties, but
Monte-Carlo simulations demonstrate that it seems to beoappately normally distributed
(Rybski and Bunde2009 and that for the frequency range of 18 months to 45 years3or 4
year long monthly time series(ﬁ[) ~ 0.075 for DFA3 vs~ (.12 for GSPE (see SectidhJ).
For the frequency range of 5 to 45 years Monte-Carlo sinaiatshow thatr(ﬁ[) ~ 0.14 for
DFA3 ando (H) ~ 0.27 for GSPE.

6.3 Results for the surface air temperature

6.3.1 Time aggregation effect

The ability of climate models to reproduce many aspects efdiiserved climate variability
(e.g.Randall and Coauthor2007) helps to answer the question of whether spectral power-
law behaviour is an appropriate representation of climat@ability. In this subsection we
compare the relative validity of the AR1 and power-law stital models for SAT. We will
return to this question again in subsect@B.4 Here we will address this question without
actually fitting a power-law to power spectrum.

Our comparison exploits the distinctive behaviour of thel/dRd power-law models under



CHAPTER 6. ANALYSIS OF CMIP3 SIMULATIONS 119

temporal aggregatioas is done when, for example, creating an annual mean tines $&sed
on January to December averages of a monthly mean time s&¥eglefine the temporally
aggregated time series

T

X" = %ZXHTU_D, j=1,2,...,T>1. (6.1)

i=1
where X;, i = 1,2,... is the original time series. In this notatio,\'” would be the
first value of an annual mean time series aggregated from tha&hly mean time series
{Xy,..., X1, X13,...}. Under temporal aggregation, for an AR1 time series withdag
autocorrelationy, the temporally aggregated time series has lag-one ausdaton

o1 —¢')° 0<o<1 (6.2)

ARL 0w = Ta =gy —asa =gty 0 S

In (6.2), ¢(r) = O whene =0, o) — 1as¢g — 17, ando ) < ¢ for 0 < ¢ < 1. The shape
of ¢(ry as a function of) is shown by the red curves in Fi§.1

By contrast, temporal aggregation has no impact on a pavestochastic process. More
precisely, for a second order self-similar process, whant loe regarded as the ultimate case

of a power-law stochastic process, we fi@bg, 1984 Taqqu 2002
Power-law: ¢y = ¢, 0 < ¢ <1, T > 1. (6.3)

This property, that the autocorrelation is independentroétaggregation, is certainly rather
counterintuitive for climate processes.

Egns. 6.2) and 6.3) suggest a simple, and to our knowledge novel, test of tla¢ivelvalid-
ity of the AR1 and power-law models: we examine the behavibtiie lag-one autocorrelation
under temporal aggregation in comparison with these egustiThe results for the SAT from
the CMIP3 simulations are the most informative and are shiowkig. 6.1. Comparison to
observations is not straightforward and will be discusde¢teaend of this subsection.

Figs.6.1a-c are scatter plots of the CMIP3 ensemble mean annual véhiy@utocorrela-

tions (¢12) Vs ¢) for the linearly detrended SAT anomalies. Each point irs¢hecatter plots
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(a) 17 GCMs picntrl (100y) (b) 17 GCMs 20c3m (1901-2000)
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Figure 6.1: a) Scatter plot af(;,), which is the lag-one autocorrelation for the annual mean
time series, v®, which is the lag-one autocorrelation for the monthly meamretseries, for the
linearly detrended SAT. The autocorrelations are enseaudeaged across tipgcntrl simula-
tions of the 17 CMIP3 models. The blue line represents = ¢ from (6.3) for the power-law
statistical model; the red line represents, as a function of) from (6.2 for the AR1 sta-
tistical model. The dots are colour coded by region: “cyadtirth Atlantic; “violet”: North
Pacific; “yellow”: Main Development Region (MDR); “green'Southern Ocean; “orange”:
Maritime Continent; “maroon”: Arctic; “navy”: Antarcticdblack”: the rest. b) As in a), for
the20c3msimulations. ¢) As in a), for the 500 yeaicntrl simulations of the 6 CMIP3 models.
d) As in c), for the decadal versus annual mean time seriet tRe different scales used in d).
The regions have the following boundaries: the North Atta(B08’E-350E, 40°N-60°N), the
North Pacific (149E-230E, 20N-57°N), the Southern Ocean‘®-360E, 40°S-65'S), MDR
(299E-332E, 5’N-22°N), the Maritime Continent (9&E-158E, 5°S-5N).



CHAPTER 6. ANALYSIS OF CMIP3 SIMULATIONS 121

represents a grid point on the Earth surface with colourrapor different regions (see the
figure caption). The red and blue lines represéri?)(and 6.3 respectively. Figs6.1a and b

demonstrate the results for the 100 year lprantrl and20c3msimulations, with the ensemble
mean including the 17 GCMs in those simulations. The annucarrelations are slightly
larger for the20c3mscenario, but otherwise the two plots look quite similarisHuggests that
beyond the influence of trends the origins of climate pexast on monthly to inter-annual

time scales are internally generated rather than extgriwatied.

To verify the robustness of this analysis we repeat it forsiliés00 year longpicntrl simu-
lations and plot the results in Fif.1c, which also resembles Figgla,b. Finally, we use these
long integrations to compare decadal-mean and annual-ené@anorrelations (i.es () VS ¢).
Qualitatively this panel is similar to the first three, bug ttorrelations are reduced overall on

decadal scales.

In all four panels most of the points lie below the blue lind above the red line. Therefore,
for the simulations, the AR1 model provides a lower boundthedower-law model an upper
bound for climate persistence on intra-annual to inteladattime scales. The points from the
Arctic are located closely to the blue lings) = ¢ in Figs.6.1a-c; strikingly, for the Arctic
points, the annual mean time series has a similar lag-oeauélation to the monthly mean
time series. But this behaviour, for which we have no simpgf@anation, does not extend to

decadal means: most of the Arctic points fall below the bine in Fig.6.1d.

We have produced similar scatter plots for the SAT from theeolational products; these
are not shown. Although these plots are noisy due to a redewcsemble averaging effect,
gualitatively they look similar to Fig6.1 with a majority of the points located between the
two curves. However there are noticeably more points lacat®ve the blue line and less
dependence between annual and monthly autocorrelati@scoloured regions tend to be
organized in vertical stripes. This suggests that furtieays involving a closer comparison
between observations and simulations at individual ppistseeded to determine if subannual

time scale persistence is an effective predictor of anrudétadal scale persistence.
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The fact that the AR1 and power-law models provide bounds diimate per-
sistence on intra-annual to inter-decadal time scales dmat the current stan-
dard practice in climate science is dealing only with thetfief these bounds
(e.g. Intergovernmental Panel on Climate Chang@07 World Meteorological Organizatign

2007 motivates us to consider in details the second bound.

6.3.2 Spatial patterns

We start our analysis of the power-law spectral approxiomatvith an analysis of the Hurst
exponent spatial distribution for the observed and sinedl&AT for the second half of the
20th century. We first estimatl for the time scale range of 18 months to 45 years, which
was the time scale range of focus in Chagefig. 6.2a showsH of SAT calculated for the
ERA40, NCEP/NCAR, and GISS datasets, and then averageth&yg&Ve refer to averaging
the spatial distribution off over different datasets or simulations as “ensemble” @jega
(The GISS SAT is spatially complete northward of S@ poleward of 58S only the ERA40
and NCEP/NCAR data figure in the ensemble average). We dbnsea larger values off

at lower latitudes than at higher latitudes, and largereslof 7 over ocean than over land.
We see a gradient in tropical Pacific and Atlantic oceans Veither values in the western
part of each basin. Separate local maxima can be found in ¢tineh IRacific, North Atlantic
and extratropical Southern Ocean. The main features in\tbege can be found in each
observational product (see also Fig3).

Figs.6.2b and6.2c show the 18m-45y/ for the model ensemble me&0c3mandpicntrl
SAT. (A single 45 year segment was used for each model). Thisfage smoother than in
Fig. 6.2a, primarily because of the ensemble averaging across theotléls. The main fea-
tures of the three panels agree, with significant discrapamg parts of the Indian Ocean and
in the southwestern Pacific, wheF for the observations is greater than that for the simula-
tions. Recall that for DFA3 for the frequency range of 18 nhartb 45 yearsr(H) ~ 0.075.

Assuming that?/ for different climate models are not correlated, the stathdaviation of the
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17 models’ ensemble medi is o (Hcyps) =~ 0.075/4/17 ~ 0.02. It is harder to justify a
similar assumption for the observational products and Wei®btain only a lower bound on
o(Hops) =~ 0.075/4/3 ~ 0.04. Assuming independence of the observed and simuldted:
haveo(Hons — Honirs) = /o (Hon)? + o(Hearres)? = o(H)/I/3 + 1/17 ~ 0.05. Thus

we can consider the differences between the observed andasan// for the 18 months to

45 years range as approximately significant atihéevel if they are greater than 0.1. (For the
frequency range of 5 to 45 years this threshold is 0.17.) 8tbez as a rule of thumb, values
of H, when the observations and CMIP3 models are compared ir6Egshould not be con-
sidered significantly different when they differ by only agle contour level. More detailed
regional comparisons between the models and observatitinsewone below in relation to

Fig.6.3

The results for the0c3mandpicntrl simulations are very similar, which underlines the ori-
gins of the spectral power increase with decreasing frezjasncharacterized by, in internal
climate dynamics and which also suggests a minor role ofrab¢xternal forcings (solar and
volcanic) for the inter-annual and decadal SAT variahilithis conclusion applies to regions
where the climate models and the observations agree. Theogogenic forcings obviously
boost power in low-frequencies, but firstly their effects fitered out by DFA3 and secondly
they should be modeled deterministically, rather thanhsstically, and therefore are not of
interest in our study. We have also compared the spatiailglisibn of the 4 for the 20c3m
simulations which included natural forcings with those efhdid not. A significant difference
between these two types of the simulations is found only tverMaritime Continent (not
shown), where the simulations with natural forcings dertraies largere and which will be

discussed below. The origin of this effect remains unknomahraquires an additional research.

For the CMIP3 simulations, we can also test the sensitivityZoto the low-frequency
cutoff by shifting it from 45 to 100 years. The results for @@3msimulations for the time
scale range of 18 months to 100 years, corresponding to ationg from 1900-1999, are

shown in Fig.6.2d. The averagé! decreases somewhat over this time scale range, indicating



CHAPTER 6. ANALYSIS OF CMIP3 SIMULATIONS 124

(a) Observations, 18m-45y (e) Observations, 5y-45y
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Figure 6.2: The DFA3 Hurst exponent estimates ensembleagedracross the NCEP/NCAR
reanalysis, ERA40 reanalysis, and GISS SAT (a,e) and theMIP& models (b-d,f-h). In

the ensemble average, first theis estimated for each observational product/model and then
averaged across the observational products/models. Timod8s to 45 years time scale range
is used for estimation aff in (a-c), 18 months to 100 years in (d), 5 to 45 years in (e419,2

to 100 years in (h).
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a somewhat shallower slope. We have repeated this for 100gregpicntrl runs from the
17 GCMs identified in Sectiof.2 and 500 year longicntrl runs from the 6 GCMs setf

is almost indistinguishable in these cases. The similéetyveen Figs6.2c and6.2d, which
also holds for individual models, suggest that the mainuiest of the distribution can be
extracted from 50 years of data. This implies that the ciiwbservational record is sufficiently
long to characterizé/ on annual to multidecadal time scales in regions where tineatd

models and the observations agree.

Although the H distribution appears robust to changes in the low-frequentoff, it is
quite sensitive to changes in the high frequency cutoff. hSaisensitivity was previously
noticed byFraedrich and Blend€R003; Blender and Fraedricf2003; Blender et al(2006),
who showed that in climate simulations the spectral slopéise tropical ocean were sensitive
to where the high frequency cutoff is located. The right hesldmn of Fig.6.2is the same as
the left hand column of Figs.2, but with the short time scale cutoff changed from 18 months
to 5 years. In the observed SAT, a sharp drogfimccurs in the eastern tropical Pacific and
Atlantic and in the central Indian ocean (see Fg2e). In the eastern Pacifid/ < 0.5,
indicating positive spectral slope over the 5 to 45 yearg tiwale range. The high values

remain robust over the extratropical oceans.

In the CMIP3 models (Figs.2-h), H is also sensitive to the high-frequency cutoff. The
large drops inH over the eastern tropical Pacific and Atlantic are seen abservations,
thus cross-validating the observational finding. But therail A for this lower frequency
band is biased low compared to the observations, partlgulaithe Southern Hemisphere,
tropical Atlantic and over the Maritime Continerravtsov and Spannag{@008 have doc-
umented discrepancies between the multidecadal vatiabiliregionally averaged observed
and CMIP3-simulated SAT. Thus some of the regions for whigty tfound that the models
noticeably underestimate natural climate variability, iftstance the tropical Atlantic, are the
regions of significant disagreement between the observédranleled? (see Figs6.2e-h).

Kravtsov and Spannagl@008 suggest that these discrepancies might be related tolinabi
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ity of the CMIP3 ensemble mean to reproduce the observech#idIdMultidecadal Variability
(AMV). We will return to one of these discrepancies duringatission of Fig6.3e. H in

Figs.6.29-h is insensitive to the character of the external forcingshe shift of the low fre-
guency cutoff from 45 to 100 years, and to the shift of the Higlquency cutoff from 5 to 7

years (not shown).

The spatial distributions of the CMIP3 model and observaticensemble mean of the
monthly SAT lag-one autocorrelation (not shown) are gasliely similar to the correspond-
ing spatial distributions of th& estimated for the range of 18 months to 45 years. The same is
true for the spatial distributions of the annual SAT lag-an&ocorrelation (not shown) and the
H estimated for the range of 5 to 45 years. This fact probablgma¢hat a) different climate
processes are dominant at different time scales, becaesstimates of the memory parame-
ters, and H, depend on the aggregation time scale and the high-fregjwenaff respectively,
and b) the lag-one autocorrelation and the Hurst exponenige different viewpoints on the

same phenomenon.

The comparison between the models and observations i6 R incomplete because the
model ensemble mean does not always represent individudglsiand because the confidence
in estimates off varies among regions and decreases for narrower frequanges. To
assist in making a more informative comparison we presefign6.3 the averaged over
several regions, grouped by frequency range, and within esage split into individugbicntrl
simulations, observational products, and individ2Z@t3msimulations. The boundaries of the

regions are listed in the caption of Figj1L

The confidence intervals were obtained in the following waiystly, for each time scale
range we calculated the standard deviation of DHAZstimate (averaged across values of
H between 0.4 and 1.1);(H), using 8x10,000 synthetic time series as in Secfidh We
averaged across the several valueH dfecause it has been shown (&ggqu et al.1995 that

o(H) very weakly depends off. Secondly, in order to take into account the effect of spatia

averaging we dividedr(H) by the square root of the number of grid points in each region
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(a) North Atlantic

(b) North Pacific

(c) Southern Ocean
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Figure 6.3: The averages of the DFAB for the various regions and time scale ranges. For

the first four time scale ranges the left column represerdgabults for thepicntrl and the

right column for the20c3msimulations. The observations are shown in between thoge tw

columns. The averagefl for the GISS SAT is not estimated for the Southern Ocean due to

its poor coverage. For the 20 to 500 years range pidptrl simulations of the six climate

models are available. The horizontal dashed lines denairdtie2o confidence intervals for

the H = 1/2. The confidence intervals fdi > 1/2 are roughly similar. See the text for their

description. The region boundaries are given in the catidfig. 6.1
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divided by zonal and meridional decorrelation scales of 3A&this procedure we made rough
assumptions that temperature spatial correlations degagnentially and that decorrelation
scales of SAT are equal to decorrelation scale& ofVe also roughly assumed that the zonal
(meridional) decorrelation scale is equal to 3 (2) grid piwhich approximately corresponds
to & (5°) (Molinari and Festa200Q Romanou et al.2006. The obtained effective standard
deviations ofA were multiplied by+2, added to 1/2, and plotted as horizontal dashed lines in

Fig. 6.3

For the North Atlantic, the models have just slightly largstimates of than the obser-
vational products, with CSIRO-Mk3.0 and NCAR CCSM3.0 havihe largest estimates and
NCAR PCM, GISS-EH, GISS-ER having the smallest estimatbs.’ for the North Atlantic
are robust to changes of the high and low-frequency cutatfsimthe 18 months to 100 years
time scale range. The spectral power grows at a slower rateuttidecadal to centennial time
scales for thepicntrl simulations as demonstrated by the smallefor the 20 to 500 years

range.

The models show even better agreement with the observhpooducts over the North
Pacific, with GFDL-CM2.0 and MIROC3.2(medres) at the top &TWAR PCM, GISS-EH
and MIROC3.2(hires) at the bottom of the mod&Mdistribution. Here the estimates for the 5
years cutoff are somewhat smaller than for the 18 monthdfciitoe distributions of thed for
the Southern Ocean have a similar spread to the North Patgpjte larger area, with GISS-
AOM being always at the top and GISS-EH, NCAR CCSM3.0, andRCBEMk3.5 typically at
the bottom. The agreement with the reanalyses is also qoité.As for the North Pacific the
H with the 5 years high-frequency cutoff are slightly lessttzose for the 18 months cutoff.
The spreads over the North Pacific and the Southern Oceamatiesthan the spread over
the North Atlantic at least partially due to larger areasheffiormer regions as reflected by the

narrower confidence intervals.

As discussed before in the context of F&g2, H is very sensitive to the high-frequency

cutoff on time scales between 18 months and 100 years indpect;, identified by the Main
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Development Region (Northern Tropical Atlantic) and therMiame Continent in Fig.6.3
Fig. 6.3d demonstrates a drop of the model ensemble ni&drom about 0.9 (strong long-
memory) for the 18 months high-frequency cutoff to aboubQweak long-memory) for the
5 years cutoff. The observational products show a smaltgy (from 0.95 to 0.85) and strong
long-memory for both cutoffs, which is consistent with clustons ofKravtsov and Spannagle
(2008 that CMIP3 models underestimate natural multidecadaiatiée variability in the Main
Development Region. The spread between the models in th&esres larger than over the
extratropical oceans, which perhaps represents the coeseg of inconsistency in represent-
ing interannual (multidecadal) variability related to ENSAMV) among the models (e.qg.
AchutaRao and Sperhe2006 Kravtsov and Spannagl@008 as well as relatively small ar-
eas of the considered in Fi§.3d,e regions and strong spatial correlations in those region

(Molinari and Festa200Q Romanou et al2008.

The Maritime Continent has a similar spread between the faadethe Main Develop-
ment Region but a smaller drop in tti for the 5 years high-frequency cutoff. However it
exhibits the largest spread between the observationaliptedespecially for the 5 to 45 years
range. For this range there is also a large disagreemeneéetthie models and observations
in the two considered tropical regions. For the Maritime @want the disagreement could be
related to data inhomogeneities in the observations orl@nodwith reanalyses models’ pa-
rameterizations, which are probably manifested in theglafgyead between different products
for the 5 to 45 years range, and difficulties in modelling tieigion (see e.dNeale and Slingo
2003. In addition, the Maritime Continent is the only region iigF6.3 for which the model
meanH for the 20c3msimulations (the right column for the first four time scalegas in
Fig. 6.3) is consistently larger than for thpcntrl simulations (the left column). This might be
a regional effect of natural forcings: those models wha@e3msimulations included natural
forcings demonstrated a consistently larggeover the Maritime Continent than those whose

simulations did not include natural forcings (not shown).

The model ensemble meahbased on theicntrl simulations for the 20 to 500 years range
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is about 0.5 for the two tropical regions, which contradiotthe results oHuybers and Curry
(2006, who found significantly steeper slopes for this time scateye in paleo-proxies. For
the MDR and the Maritime Continent MIROC3.2(medres) and$sE31 almost always show
the highest exponents and NCAR CCSM3.0 and NCAR PCM the lowéss might be related
to the frequency and the amplitude of the ENSO peak in thespanding model power spectra
(see e.gAchutaRao and Sperhet006.

One of the open questions in climate science is the interabetween the tropical Pacific
and the extratropical North Pacific. There are at least tvssinte hypotheses for generating
interdecadal variability in the North Pacific. The first omegoses that this variability is gen-
erated locally by coupled atmosphere-ocean feedbackd @ifjand Barnett1996. The sec-
ond hypothesis suggests that it is forced by a tropical ohedtidal variability (e.ddeser et al.
2004. The values of the CMIP3! for the 5 to 100 years ranges are typically higher for the
North Pacific than for the Maritime Continent and especifdhthe Nino3 region (not shown).
This fact underlines the importance of extratropical dyitanfior generating or at least mod-
ulating the interdecadal variability in the North Pacificoyided the CMIP3 models correctly

capture this variability.

6.3.3 Comparison to previously published results

Our results for the CMIP3 simulations are largely consisteith previously published re-
sults, to within methodological differences. For examglee results for the 18 months
to 45 years time scale range are within the error bars of thHosel to 5 year time
scale range for the NCEP/NCAR reanalysis and 1 to 15 year 8pae range for a
1000 year long ECHAM4/HOPE control run and 1S92a (businessisaual) global warm-
ing runs of HADCM3 and ECHAM4/OPYC reported biyraedrich and Blende(2003;
Blender and FraedricfR003. In addition our results for the 5 to 45 years time scale eang
seem to be consistent in the extratropics with the ones ®5btto 40 year time scale range

for a 10,000 year long run of CSIRO-Mk2 analyzed Bignder et al(2006. In the tropics
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their H estimates are larger than ours, especially over the tropmeific and Atlantic. The

H for the 18-220 years time scale range for a 1000 year longaamin of ECHO-G model
studied byRybski et al.(2008 are consistent with our results for the 20 to 500 years ticates
range, except in two regions. In the North AtlanRgbski et al.(2008 report the values of
H > 0.72 and in the Southern Ocean their values are somewhat cantsigith the anoma-
lous results we get for GFDL-CM2.(Rybski et al.(2008’s results agree with the results of
Fraedrich and BlenddR003 for the 15 to 150 year time scale range of the ECHAM4/HOPE
1000 year long control run. We note tliagedrich and Blend€R003; Blender and Fraedrich
(2003; Blender et al(2006; Rybski et al (2008 used DFAZ2 in their studies. The models they

analyzed belong to the previous generation and are not pine €MIP3 archive.

A linear regression of a logarithmically binned logarithfraanultitaper spectral estimator
against a logarithm of the frequency was employedoybers and Currg2006 to estimate
H. We have found that theil/ estimates for the NCEP/NCAR reanalysis for the 2 month to
30 year time scale range are larger than ours over the tiamieans because of the smaller
high-frequency cutoff they implement (comparison not shpwAs we have shown above
and as can be seen in figuresFaiedrich and BlenddR003; Blender and Fraedric{2003;
Blender et al(2006), the H over the tropical oceans is larger for smaller high-freqyesutoff

time scale.

Although the simulated and observéfl agree over large regions on annual-to-decadal
timescales, we find suggestions that the simuldfed consistently smaller than observed on
multidecadal to centennial time scales. In particularitiertime scale range of 20 to 500 years
the [ is typically between 0.5 and 0.7 for the extratropical osegrrording to the six models’
picntrl simulations, which manifests weak long-memory behavigutimse time scales. But
paleo-climate reconstructions consistently exhibitéakfon these time scales. For example,
Pelletier(1997 reportedf = 0.75 for the Vostok Antarctic ice core on the time scale range
between several decades and several milleBlender et al (2006 estimated thed = 0.7

for GRIP and thefl = 0.84 for GISP2 Greenland ice cores for the range between around 30
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and 1000 years, andybski et al. (200§ showed that various reconstruction of the Northern
Hemisphere SAT havél > 0.8 for the range between a decade and several hundred years.
Huybers and Curry2006 demonstrated a transition from the valuesbbelow 1.0 to values
greater than 1.0 at around a 100 years time scale for se\aeal-proxiesPelletier(1997) also
documented such a transition for the Vostok Antarctic ioecbut at around the several thou-
sand years time scale. There are several processes missimghepicntrl, such as the natural
radiative forcings (solar and volcanic), glacial dynam#psd interactions with the biosphere,
which might boost the in the simulations. For now, we conclude that these simaiati
provide a lower bound foff on multidecadal, centennial, and longer time scales. Hewev
potential problems with paleo-climate reconstructionghsas data inhomogeneities, which
could increase low-frequency time series variability aneréfore 4, cannot be completely

excluded.

6.3.4 Goodness of fit tests of power-law and AR1 models

We now compare the performance of the AR1 vs power-law madéeims of a spectral
goodness-of-fit testMilhoj, 1981 Beran 1992. This test estimates a standardized overall
measure of the discrepancy between the periodogram andttk $pectrum (e.g. AR1 or
power-law). The spectral goodness-of-fit test also prav@e approximate p-value, i.e. the
probability of obtaining a deviation from the fitted specirat least as extreme as the one
that was actually observeBercival et al(2001) applied this test to North Pacific atmospheric
variability and found that neither model was clearly superiTheir conclusion was that the
observational record was too short to distinguish betweentwo models. In contrast, we
applied this test to the three century Central England Teatpes time series in Sectidhl
and foundp = 0.67 for the power-law model angl = 0.2 for the AR1 model, which favors the
power-law model as a significantly superior fit to this timaes

Here we extend these results by applying the spectral geseufefit test to SAT in the

CMIP3. The power-law fit to the periodogram is based on GSRElaAR1 spectral density
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Figure 6.4: The spectral goodness-of-fit test p-value fergbwer-law fit minus the p-value
for the AR1 fit for the20c3mCMIP3 simulations. Panel (a) shows the results for the mgnth
means and (b) for the annual means. The time scale range obhgmto 100 years have
been used for the power-law fitting in panel (a) and 2 to 100syea(b). All the available
frequencies, 1/(2 months) to 1/(100 years) in panel (a) &@dykars) to 1/(100 years) in panel
(b), have been employed for fitting the AR1. The results haenbaveraged across the 17

CMIP3 climate models. The power-law fit is superior (infeyim the red (blue) areas.

is also fitted to the periodogram using a maximum-likelihapgroach (Sectiob.2). Here
we use GSPE, because in contrast to DFA it allows us to useailable frequencies. (DFA3
has a limitation that its short time scale cutoff should beatgr or equal than 18 time units
(see Sectior.2.2.) In Fig. 6.4a, we fit the AR1 model to the linearly detrend2@c3mSAT,
calculatep,r; for the AR1 model for each grid point and each GCM, and takentioelel
ensemble mean. We calculate the ensemble average ..., in a similar way for the 18
months to 100 years power-law model and plot in feigla the difference,ower—iaw — DaR1-
We see that this difference is positive almost everywhespgeeially over the extratropical
oceans. Thus the spectral goodness-of-fit test favors therpaw model in this application or
in other words the power-law model is more strongly suppbotethe data under consideration

than the AR1 model.

But we note in Fig6.4a that there is an inconsistency in the time scale range ndéting
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the two models: the AR1 model is fit from 2 months to 100 yeats|erthe power-law model
is fit from 18 months to 100 years. We considered this examgbalse it is a standard prac-
tice, for instance in studies of total ozone trends (seeWéagld Meteorological Organizatign
2007, to fit the AR1 model to monthly mean residuals of a regressiodel. Fig.6.4a con-
firms conclusions of Chapté&that the power-law model fitted at low-frequencies provides
better or similar quality fit at low-frequencies than the ARbdel fitted to all available fre-
guencies and thus the former is preferable for trend condiglértervals estimation. When we
use consistent frequency ranges, which puts the two statistodels on an equal footing, the
results change. In particular, if we fit the two models to thedrly detrende@nnual mean
SAT time series over the same time scale range of 2 to 100,ykarsvo models show equal
performance for the0c3m(Fig. 6.4b) and thepicntrl (not shown). This approach is consis-
tent with previous applications of such comparisons (Baycival et al.2001). The similar
performance of the two models, when consistent frequenayesiare used, meshes with the
gualitative impression from Figh.1, which shows that persistence in SAT falls about midway
between the AR1 and power-law models. This behaviour estemdilarly to other time scale
ranges and to thegicntrl integrations, including the decadal-to-centennial randke 500 year

long picntrl integrations (not shown).

In summary, from the temporal aggregation analysis (€if). and the spectral goodness-
of-fit test (Fig.6.4), we have reached a key conclusion: there is no objectivdeace that the
power-law model is superior to the AR1 model in the CMIP3 datians on interannual to
multidecadal timescales. Instead, we see a behaviour isitti@ations that falls between the
two statistical models, showing that neither provides aplete description of natural climate
variability. This opens a possibility that high order ma&ja&.g. autoregressive models of order
greater than one, might provide a better fit. The significasfdae above mentioned conclu-
sions depends in part on the match between the simulatiahszservations. In our evaluation,
the models do sufficiently well in regions like the North Ri@cand the North Atlantic to trust

that this conclusion would also apply to the real climataesys Thus, Percival et al.’s (2001)
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conclusion that AR1 and power-law models perform compgridsithe North Pacific circula-

tion might not depend on the length of the observed recoradibthe fundamental character of
natural climate variability in that region. But this consion could very well change on longer
time scales as Earth System models are developed that [yroppture biosphere-climate and
cryosphere variability, given the evidence of power-lawe Ibehaviour in paleo reconstructions

(e.g.Pelletier 1997 Huybers and Curry2006.

6.4 Results for the free atmosphere air temperature

In Chapterst and5 we analyzed observed and simulated zonal mean free atmasigmper-
atureH for the time scale range of 18 months to 45 years; the sinausth Chaptes included
specialized atmospheric general circulation model sitiaria and the CMIP3 simulations. In
this section, we further explore the CMIP3 simulations,hia tontext of the findings of the
previous section.

The first row of Fig.6.5 plots the H for zonal mean air temperature for the time scale
range of 18 months to 100 years. Panel (a) is similar to Fiff, which showed the results
for the 20c3msimulations for the range of 18 months to 45 years. This isistent with the
results for the SAT, which are robust to the low-frequencioffishift from 45 to 100 years.
The tropospheric part of the distribution for thepicntrl simulations (Fig6.5b) is similar to
Fig. 6.5a. This agrees with the conclusions of Chafidnat the tropospheric structure of the
H is caused by the internally generated tropical SST vaitgbil

The tropical lower stratosphere maximumihwas shown by means of linear regression
in Section4.4 and by a volcanic forcing GCM simulation in Sectibr? to be caused by the
volcanic forcing. The same general effect is found in the E81models: we plot in panel
(c) the difference between thé for the nine20c3msimulations that had historical volcanic
forcing and the eigh2Oc3msimulations that did not. This difference resembles thpaerse

of the atmospheric GCM experiment forced by climatologi88ITs and a historical volcanic
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Figure 6.5: The DFA3 Hurst exponent estimates for the 17 Gwidels (a,b,d,e). The

is estimated for each model first and then averaged acrossdtels. The 18 months to 100
years time scale range is used for estimatiof/oh (a-c), 5 to 100 years range in (d-f). Panels
(c) and (f) show the difference of thié between nine models with and eight models without

historical volcanic forcings.

forcing seen in Fig5.1le.

As for the SAT we test the sensitivity of the estimafédo a change of the high-frequency
cutoff from 18 months to 5 years. The results are shown in ¢eersd row of Fig6.5. One
can immediately notice a large drop of tiein the tropical troposphere for both scenarios
(see also Fig6.6e). In principle such a drop could be anticipated given ttseilis for the
SAT for this time scale range, which show the values of theerse mearf/ < 0.7 in the
tropics (see Fig6.2h and Fig.6.3d,e), and the conclusions of Chapfethat the tropospheric
distribution of theH is controlled by the tropical SSTs. The difference of fiidor the range
of 5 to 100 years between simulations with and without valcdorcings (see Fig6.5) is

slightly weaker (larger) in the stratosphere (troposphiran in Fig.6.5c (see also Figs.ab).
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Figure 6.6: As Fig6.3 but for the six regions in the free atmosphere. For the centid

intervals estimation we roughly assumed that the meridiQreatical) decorrelation scale is

equal to 2 (4) grid points.

The stratospheric response is again consistent with theanm forcing GCM simulation in

Section5.2 However the tropospheric response is somewhat different vhat we expected

based on the linear regression and on the atmospheric GCiMagion results. Because almost
all the CMIP3 GCMs that included historical volcanic forggalso included historical solar
forcings, the tropospheric response could be related stt peatially to the latter, but more spe-
cific studies are needed to identify the possible link. Adler SAT, the spatial distributions of
the corresponding monthly and annual lag-one autocoioel&br the zonal mean air temper-

ature are qualitatively similar to the first and second rowigt 6.5respectively and therefore

we do not show them.

We find the format of Fig6.3 useful for model and data intercomparison and apply it
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to study the spatial distribution of th& for the zonal mean air temperature (see Big).
We split the area of our study into six regions: the extratajpSouthern Hemisphere tropo-
sphere §0°S-30°S, 1000hPa-100hPa), the tropical troposph&peS-30°N, 1000hPa-100hPa),
the extratropical Northern Hemisphere troposph8teéN-90°N, 1000hPa-100hPa), and three
regions with the same latitude boundaries, but between h@018hPa in the lower strato-
sphere. Together with the models we plot the results for GER/NCAR and ERA40 reanal-
yses for two time scale ranges. In contrast to Bi@.the right columns for the first four time
scales ranges, corresponding to #@e3mscenario, show larger values than the left columns
(picntrl scenario) for all regions with the exception of the southteoposphere extratropics.
That is, the natural radiative forcings affelit more strongly in the free atmosphere than at
the surface. Inconsistencies in these forcings might axplay the simulatedd exhibits a
large spread in the0Oc3msimulations. Also in contrast to the SAT results there is migss
agreement between the reanalyses and the models, espétitde data poor regions. For
instance the reanalysésare noticeably larger than any GCM for both time scale raimytee
Southern Hemisphere extratropics and than almost all GOM$E 5 to 45 years range for the

tropical and the Northern Hemisphere stratosphere.

In those cases when reanalyélsis significantly larger than the model$ we have found
that there are often data inhomogeneities in the reanalygch inhomogeneities tend to in-
creasel] (seeBerton(2004: Rust et al (2008 and Sectiorb.3). For instance, in the tropical
lower stratosphere the NCEP/NCAR reanalySigor the 5 to 45 years range is much larger
than that of ERA40 and all the models probably due to disoaities in this product around
1979 related to the inclusion of satellite data (seeRagvson and Fiorind999. In any case,
the large values off manifest the presence of low-frequency variability, eithatural or in-
duced by data inhomogeneities, which makes the task of wetettion more difficult, for
instance in the tropics (see e$anter et aJ.2009. The tropics are data poor and hard to
model (see e.gNeale and Slingo2003 and thus the largest spread between the models and

between the two reanalyses in the free atmosphere and atrfaeesis found there.
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Overall the modelsH are between 0.4 and 0.8 for the extratropics, but vary a lthen
tropics. The models that are consistent with the reanalystg tropical lower stratosphere
for the 18 months to 45 years range (see Bigb) are the models which include historical
volcanic forcings. These models also have noticeably taffjgalues for the20c3mthan for
picntrl simulations for the 18 months to 100 years and 5 to 100 yeaigesin agreement
with Fig. 6.5f. One the largest spreads between the models is found indpieal troposphere
for the 20 to 500 years range for thentrl simulations, although in the tropical stratosphere
all the six models cluster narrowly around 0.5 for this tingals range. Some of the models
are consistently at the top or at the bottom of fiiedistribution. Thus MIROC3.2(medres)
is usually the model with the largest valuesif The two versions of the Canadian model
typically have one of the lowest values Bf in the extratropical lower stratosphere. GFDL-
CM2.0 has one of the largest values in the extratropicalosppere. Probably due to their
local sensitivity to the radiative forcings some of the misdr instance NCAR CCSM3.0 in
the southern extratropical troposphere, have one of thedbi for the picntrl scenario, but
one of the largest for theOc3mscenario. It is also interesting that two versions of theesam
model, for example MIROC3.2(medres) and MIROC3.2(hireai), be located at opposite ends
of the distribution for a particular region. Thus model leson might exert a strong control

on annual to decadal scale variability.

6.5 Conclusions

In this work we have systematically studied the power-laywragimation of the temporal
power spectrum of the surface and free atmosphere air tetopey characterized by the Hurst
exponentH. We have analyzed several observational products (NCERRN&hd ERA40 re-
analyses and GISS SAT) and simulations under two scendrtbe 7 CMIP3 global climate
models. We have varied the time scales on which the powemlasvfitted to the spectrum

from 18 months to 500 years. We have verified our results witimdependent Hurst exponent
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estimation method.

At the surface for the time scale range of 18 months to 45 yadkdata sets show the largest
values of thef, i.e. the fastest rate of the spectral power buildup withrel@sing frequency,
in the tropics. The values of thH significantly larger than 0.5 (a flat spectrum case) are
observed mainly over the ocean in agreement with otheresuéiaedrich and Blende2003
Blender and Fraedrigt2003. The results remain robust when we increase the low-fregyue
cutoff from 45 to 100 years, but changing the high-frequeagtoff from 18 months to 5
years leads to a significant drop ifi to H < 0.7 everywhere but three regions: the North
Atlantic, the North Pacific and the Southern Ocean. Thesemsgvere also identified in the
previous case studies of specific models, scenarios, anst Exjponent estimation methods
(Fraedrich and Blende2003 Blender and Fraedri¢l2003 Blender et al.2006 Rybski et al,
2008.

The results for the pre-industrial control and the 20th ggnsimulations are remarkably
similar, which points to internal climate mechanisms gatieg the growth of the spectral
power on annual to multidecadal time scales at the surfaeethifk these mechanisms might
be related to positive climate feedbacks, such as a wirdsturl feedback in the North Pa-

cific, which have been shown to increase the power in lowtfeegies $chneider et al2002.

For the range of 20 to 500 years thelies between 0.5 and 0.7 for tipécntrl simulations
even in the North Atlantic, the North Pacific and the South@oean, which corresponds to
an absent or to a weak long-memory behaviour. However thetseger paleo-proxies, cover-
ing several past centuries and millennia, show the valué$ gfeater than 0.7 for decadal to
centennial time scales. Provided decadal to centenniglhibity in the paleo-proxies is reli-
able, this indicates that either other missing mechanipossibly solar and volcanic forcings,
glacial dynamics, interactions with the biosphere, or ptinknown physical processes, have
stronger input to the spectral power growth on centennilescor that the representation of
certain processes in the studied GCMs is deficient. Morelddtstudies, (e.gZhu et al, 2006

Zhu and Jungclayf008, of the mechanisms responsible for this growth in spec#gians
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for specific time scales are definitely needed, because thieyeweal the origins of natural

climate variability, which is often underestimated.

We have compared the validity of the power-law vs the AR1 made their goodness-
of-fit for the SAT time series. We have introduced a new metloodime series model val-
idation based on temporal aggregation. We have found tleaeshimates are clustered be-
tween the two statistical model predictions, which firstlgans that neither model fits the
time series perfectly on monthly to inter-decadal time esabnd secondly means that the
power-law model might serve as an upper bound and the AR1 Inasda lower bound on
SAT persistence. This is an important conclusion for treetkction, because typically trend
confidence interval (Cl) and therefore trend significanadimate research is estimated solely
under the AR1 model assumption for the residuals (seeTeemberth and Coauthqr&007

World Meteorological Organizatigrz007) and thus is probably underestimated.

For illustration we estimate the linear trend CI for the GIS&thern Hemisphere land
SAT annual mean anomalieblgnsen et al.2001), which is the third item in Table 3.2 in
(Trenberth and Coauthqr2007), for the period 1901-2005. Our autocorrelation estimate f
the linear trend residuals is = 0.63, whereas GSPE = 0.95 in case all the available fre-
guencies, 1/(2 years) to 1/(105 years), are used for the rpawefit. Based on these numbers
our estimate of the trend 90% CI4g).24°C per century for the AR1 ant0.42°C per century
for the power-law model. The IPCC estimate of the 90% AR1 CL{s25°C per century.
Therefore the power-law Cl is almost two times larger thamAliR1 Cl. The GISS Northern
Hemisphere land SAT linear trend, which IPCC estimate i8@8er century, is significant
even relative to the power-law Cl. However this might not lbe ¢ase for other climatic time

series.

We have also employed both statistical models in stratagpheozone
trend analysis in Chapter3. We thus recommend that power-law based
Cl be included along with AR1 based Cl in trend detection work For

this purpose we have developed the open-source R packagever$mectrum,
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http://www.atmosp.physics.utoronto.ca/people/vynSPowerSpectrum.3.tar.gz The
package also provides various estimators of power and-spesstrum with their Cls, several
estimators off/, the spectral goodness-of-fit test, Monte-Carlo tests efHlurst exponent
estimators and the goodness-of-fit test, etc. The aboveionedtconcerns about the ubiquity
of the AR1 model in climate research are also related to praiiiity studies (e.gBoer, 2009

and extreme value statistics (eBunde et al.2005.

We have also applied the spectral goodness-of-fit @sta) 1992 to compare the per-
formance of the power-law vs the AR1 model. This test favahespower-law model when
the two models are compared over a low-frequency range tohathie power-law model is
specifically fitted and the AR1 model is fitted to all the avaléefrequencies. Thus the spectral
goodness-of-fit test supports the suggestion that a tresddzild be estimated using the power-
law model, because for its estimation only a low-frequenelidviour is important§mith
1993. However when both time series models are fitted to and coedpaver all the available
frequencies they score equally, which is consistent wigiréisults of the novel method for time

series model validation we have described above.

In Chapter5 we showed using specialized simulations of a GFDL atmosphavdel that
steep power-spectra for the 18 months to 45 years range edeiqad in the tropical tropo-
sphere by the internal atmosphere-ocean interaction atiweitropical lower stratosphere by
the volcanic eruptions. In the extratropical atmospheesstiectra were found to be relatively
flat. The analysis of the tropospheric and lower stratosplzenal mean temperature derived
from the CMIP3 simulations confirms the robustness of ouviptes findings. However it is
established that for the range of 5 to 100 years the Hurstrexgs noticeably decrease in
the tropics. The distributions of the CMIP3 Hurst expondatsthis time scale range in the
tropical stratosphere and troposphere (shown in&i@ and e) are similar to the distribution
for the same range for the Main Development Region and thaetiktar Continent (shown in
Fig.6.3d,e). All these distributions exhibit a large spread witmsmf the models being close

to or even lower than 1/2 and others significantly larger thi@n This spread, a disagreement
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between the CMIP3 models with the observations and palexigs, and presence of possible
data inhomogeneities in the latter prevent us from makinga fionclusion about spectral
power build up on decadal to centennial time scales in th@idso However in the strato-
sphere for the 20 to 500 years range almost all of the six CM3E3/s with 500 year long
pre-industrial control simulations demonstrate apprataty flat spectra.

Comparison of the area averaged Hurst exponent estimateslsaliscrepancies between
the reanalyses and between the reanalyses and the climdtd smmulations, especially in
the data poor Southern Hemisphere. It underlines againthleatiurst exponent analysis is
also a useful tool for cross validation of low-frequencyiahility in different data sets (see

Section5.3).

6.6 Appendix A: A combination of multiscale AR1 models

Everything should be made as simple as possible, but notesimp

Albert Einstein

In Sectionl.1we considered a generalization of the AR1 model, an autessgre model
of the K-th order. Another approach to generalize the AR1 ehalto combine several AR1
models operating at different time scales. Let us considexample of such model with three
components:

My = Xy + Y19 + Zjt/120),5 (6.4)

where square brackets denote rounding to the largest mtegard zero,M; is a time series

of monthly meansX,, Y;, andZ, are independent AR1 models describing subannual, annual,

and decadal and longer scales variability respectivelysatidfying the following conditions:

12 10
D Xiwe=0, Y Yiu=0, i>0,
t=1 t=1

Xi = oxXi1 + &y,
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Yi=ovYi1 +n,
Zi = Gz 1+ &,
where¢y, ¢y, ¢ are time scale specific autoregressive coefficientsang, &; are indepen-
dent white noise innovations. We call this model a combaradif multiscale AR1 models. Due
to the independence of the individual AR1 models we get tHeviing variance partitioning
between time scales:
012\4:0§<+032/+0%.

The idea behind this model is that in general climate praessth different decorrela-
tion scales operate at different time scales. In Sectidrwe showed that the decorrelation
time scale estimated for the CET monthly mean anomalies io8tms and for the annual
mean anomalies is 3 years. This fact motivates the usage abtinbination of the multiscale
AR1 models, which explicitly resolves several decorrelatime scales. Thus, in contrast
to an ARK model, the decorrelation time scale for the annuaams of the combination of
multiscale AR1 models described above is independent ade¢leerrelation time scale for the
corresponding monthly means.

Let us illustrate the combination of multiscale AR1 modaelditiing it to the Central Eng-
land Temperature (CET, 1659-1958) anomalies introduce&entionl.1 Fig.6.7is Fig.1.2
with the spectral density of the combination of multiscalRlAmodels shown by the orange
curves.

Qualitatively the spectral density of the combination ofltisaale AR1 models gives the
best fit to the CET monthly mean anomalies power spectrum grttenfour considered sta-
tistical models (see Fid.7). It is arguably also the most physically motivated modebam
these four. However for the case of the CET monthly mean ahesnia depends on the six
parameters, three autoregressive coefficients and thmegation variances, in contrast to two
parameters for the AR1 and the power-law.

The spectral densities of the combination of the multiséd&d models and of the power-

law model, shown by the orange and blue curves respectindiyg. 6.7b, are obtained just
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Figure 6.7:As Fig. 1.2 but with the spectral density of the combination of multiscAR1 models

shown by the orange curves.

by truncating time scales shorter than 2 years from the spomding spectral densities shown
in Fig. 6.7a. Thus the advantage of the last two models is that in cdrtivathe AR1 and
the best fit autoregressive model they do not have to be tefideh time the aggregation
time scale is increased and therefore they better captereverall power spectrum shape.
Barsugli and Battist(1998 obtained a spectrum qualitatively similar to the orangeveun
Fig. 6.7 for the atmospheric component of a bivariate AR1 modelasgmting atmosphere-

ocean coupling, which is another way to generalize a urat@AR1 model.



Chapter 7

Conclusions

7.1 Summary

In this thesis we considered several statistical modelsrid@sg natural climate variability.
Most of our attention was focused on the two models, AR1 anvdepdaw. The AR1 model
is the most widely used statistical model for natural clienariability and it is the current cli-
mate science standard. However recently many studiestegpaibuildup of spectral power at
low-frequencies of climatic time series, which cannot beteeed by the AR1 model, because
its spectral density saturates at low-frequencies. On tiherdand, also recently a theory of
power-law stochastic processes have been developed (sgee@?). This theory, also known
as the theory of long-range correlated, long-range depgndelong-memory processes, de-
scribes stochastic processes whose autocorrelationdard#cays algebraically for large time

lags, or equivalently whose spectral density increasesgomeer-law at low-frequencies.

A key difference between a power-law stochastic processaaralitoregressive process of
any finite order is that the former has an unbounded incrgdsira power-law near the origin
spectral density, whereas the spectral density of the Isdtteirates to a constant near the ori-
gin. Because the most low-frequency part of climate spattuill always remain unobserved,

due to a finite period of the Earth existence, for many apptos, e.g. trend detection, it is

146



CHAPTER 7. CONCLUSIONS 147

necessary to make an assumption about spectral behaviautheeorigin. Thus autoregres-
sive and power-law stochastic processes, both of whicmpeima class of weakly stationary
stochastic processes, provide two extreme cases of sugmpssn. Currently, in particular
owing to the Hasselmann’s theory, the assumption that tirapectrum saturates to a con-
stant near the origin prevails in climate science, whictefected in ubiquitous usage of the
AR1 model. This assumption is relatively more optimistidess conservative compared to
the power-law assumption, because it makes a detection@ftamally forced trend, such as
a recent anthropogenic warming, relatively more probabte.example, under the residuals’
spectrum saturation assumption the number of years reboigetect an observed trend is typ-
ically lower than under the power-law assumption (see Ghi&gxnd Sectior6.5). By making

a more conservative assumption that the observed speotredrpuildup at low-frequencies
of climatic time series continues to the zero frequency drad this buildup might be well
approximated by a power-law, one can make use of the thedigngfrange correlated pro-
cesses. In this thesis we have tested this assumption byrpenfy exploratory data analysis

of the surface and free atmosphere air temperature and tdtdleozone.

We have shown that climatic time series cannot be perfeebeiibed neither by autore-
gressive nor by power-law processes. The reality is moreptioated than these time se-
ries models. However we demonstrated that the AR1 and theemplaww models provide
parsimonious lower and upper bounds on climate persistenceonthly to decadal time
scales (see Chapt®). Thus our advice to researchers studying climate change és-
timate statistical significance of an observed trend uslregdonservative assumption that
the spectral density of the residuals increases by a pamedbwn to the zero frequency,
i.e. to use the upper bound on climate persistence for trestthy as it was done in Chap-
ter 3. This precaution would help to prevent a spurious or at Ipasmature trend detec-
tion, such as the detection of a positive trend in the Nortlamic Oscillation index in the
second half of the 20th century, which later changed the. sigrend confidence intervals

and the number of years required to detect an observed trasedbon the power-law as-
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sumption can be estimated with the help of the open sourcecdRapa, PowerSpectrum,
http://www.atmosp.physics.utoronto.ca/people/vynSPowerSpectrumd.3.tar.gz that | have

developed during my Ph.D. study in collaboration with a stenstudent. This package in-
cludes many useful functions for spectral time series amlyHurst exponent estimation,
Monte-Carlo benchmarking, etc. Most of the figures in thesithéave been produced us-
ing the PowerSpectrum package. Additional details abauPibwerSpectrum can be found in

AppendixB.

In addition to the conservative trend testing power-lanctaéfit can be successfully used
for intercomparison of temporal variability for a specifigdquency range in different obser-
vational products and climate model simulations as we detnated in Chaptes. Due to the
power-law model parsimony it is easy to compare spatiatidigion of its parameters esti-
mates, e.g. of the Hurst exponent, which characterizegrspppower buildup, across different
data sets and to identify potential inconsistencies aeuifit time scales. Also power-law
spectral approximations might be insightful for constimctof low order conceptual climate
models and a general theory of climate variability. Belowowverview the results of individual

thesis chapters.

In Chapter2 we tested two variants of five different power-law exponesiingators. We
performed the method intercomparison because most of éwéopis studies (see Tabel for
their list) usually employed only one estimator and did mose validate their results. We found
that the methods give consistent estimates provided emealéncy ranges have been used and
“contaminating” components such as long-term trends anidgie signals have been filtered
out. As a result we chose the two best methods, namely DetdeRblictuation Analysis of
the third order and Gaussian Semiparametric Estimator.ed@mmend always to use at least
two Hurst exponent estimators, especially the DFA and GansSemiparametric Estimator,
choose equivalent frequency ranges (time scales), andeodilt known climate signals, such
as trend, Quasi-Biennial Oscillation, and El Nifo-South@scillation, which might be present

in time series under study. ldeally different estimatoisusth give similar estimates, otherwise


http://www.atmosp.physics.utoronto.ca/people/vyushin/PowerSpectrum_0.3.tar.gz
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more care is needed to understand and eliminate the diswiesa

In Chapter3 we studied the uncertainty of total ozone trends and theremgeired to detect
total ozone recovery. We found that the power-law approtionas especially appropriate to
describe the residuals of a multilinear regression modehitotal ozone temporal variability
in the subtropics and the Northern Hemisphere high latgutiteChapteB we also showed that
although spatial averaging decreases the variance oftelintése and conserves the magnitude
of a signal it also increases the strength of the serial adioas in the noise, which partially
mitigates the benefits of spatial averaging for trend dietectOur results demonstrated that
the power-law based trend confidence intervals are widertti@ AR1 ones by about 50% in
the Northern Hemisphere high latitudes, which lengtheasathount of time to detect the total
ozone recovery in that region by a similar value. We iderttifleat the most optimal place for
the detection of total ozone recovery is the Southern Hemeisgphigh latitudes and especially
the area over the South Atlantic, where the total 0zone wessdnight be very well described
by the AR1 model and a positive trend is strong. In that re¢hertotal ozone recovery will be

already detected in the next decade.

In Chapterst and5 we applied the two best methods identified in Chagtey the zonal
mean tropospheric and stratospheric air temperatureadefiem two reanalyses, specialized
general circulation model simulations, and CMIP3 simolasi. We found that steep spectra are
concentrated in tropical and subtropical regions on antwudécadal time scales. It was also
established that the Hurst exponent estimates for the lyanadraged temperature are larger in
the subtropics and low-extratropics than the zonally ayeddHurst exponent estimates for in-
dividual grid point time series. Comparison between theageses and the model simulations
with various forcings demonstrated that the spectral pdwédup on annual to decadal time
scales in the troposphere is caused by an atmosphere-otegaction, and in the stratosphere
by volcanic forcing. A mismatch between the spatial disttidns of the power-law exponents
of the reanalyses and the model simulations allowed us tdifgelata inhomogeneities in one

of the reanalyses. This example demonstrated the potertmdwer-law analysis for cross-
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validation of low-frequency variability in different datets, which so far has been mainly
limited in the climate literature to comparison of lineaertd and variance estimates and eye-
balling temporal evolution of time series. The analysishaf power-law exponents estimated
on decadal to centennial time scales using the CMIP3 simukashowed that the tropospheric
and stratospheric air temperature spectra saturate oa tinos scales (see Chap®r There-
fore under the condition that the CMIP3 models correctlytgsgpthe natural climate variability
on decadal to centennial time scales, the assumption thapictral power buildup continues
to zero frequency is violated. However the power-law appnation can still be used as a
conservative and parsimonious upper bound on the tempmeatrsim of natural climate vari-

ability.

In Chapter6 we studied spectral properties of the surface air temperditam three ob-
servational products and 17 coupled atmosphere-oceaatelimodels. On annual to decadal
time scales the steepest spectra were found in the tropmsevér on longer time scales the
tropical spectra become flat or even decreasing with daagé&equency. This fact and the
conclusions of Chaptés, that the tropical sea surface temperature controls tlepsess of
the tropical troposphere temperature spectra, explaisghaation of the tropical troposphere
temperature spectra on multidecadal time scales. Thelbspadial distribution of the power-
law exponent for the surface air temperature is similar ier pre-industrial control and 20th
century simulations after removing anthropogenicallyuiced trends, which points to internal
origins of the spectral power growth on annual to multidetéiche scales. We found that there
are three regions at the Earth surface, the North AtlantartiNPacific, and Southern Ocean,
where the spectral slopes seem to be robust on time scafeslBanonths to 100 years. The
long pre-industrial control simulations demonstrated theen in these regions the slopes be-
come shallower on multidecadal to centennial scales, itrastto paleo-proxies from the same
regions. Therefore the situation on multidecadal to can&rscales is not completely clear,
because natural radiative forcing not present in the palestrial control simulations might

play an important role in boosting the spectral power ondlszsles, or the current generation
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of climate models might not capture certain physical medms and feedbacks.

The goodness of fit test demonstrated that in general the ARJawer-law models pro-
vide equally good fits to the power spectra of the simulatethsa air temperature, although
the power-law outperforms AR1 on certain time scales inatemegions. A novel diagnostic
developed in Chapted confirmed these results by showing that natural climateabdity at
the Earth’s surface as represented by the CMIP3 simulafiatissetween these two statistical
models and that the power-law model gives an upper boundifoate persistence, whereas the
AR1 model gives a lower bound. Our conclusion is that the pdaxe might serve as the best
parsimonious fit for climate spectra for certain frequereyges and in certain geographical

locations, but in general it serves as an upper bound.

7.2 Potential Future Research

Our work raises several questions that merit further study:

e Analysis at a regional scaleln my thesis we performed analysis at the spatial scale of
each individual grid point. However, often in climate res#aregionally and globally
averaged time series are considered, for instance in dictange detection and attri-
bution studies (e.gZwiers and Zhang2003. Thus it seems relevant to apply the meth-
ods of observations and GCMs simulations intercomparismm Chapte6 to regional
averages. This will help to evaluate GCMs ability to simeltite observed natural cli-
mate variability, to detect discrepancies between obsiena products, and ultimately
to properly estimate the uncertainty of an observed andlatedianthropogenic climate
change. Other measures or indices of large spatial scakhildy are the projections
of the leading EOFs and several first spherical harmonics.splectral power growth of
such indices derived from observations and GCMs simulatcmuld also be estimated

and compared in a useful way.
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e Understanding the spectral power growth over the extratropcal oceans. One of
the main questions left unanswered in my thesis is the palsitgins of the spec-
tral power growth in the extratropical oceariRelletier(1997); Fraedrich et al(2009);
Dommenget and Latif2008 proposed simple one dimensional stochastic models based
on vertical diffusion to explain this phenomenon. Howewdo hot think that the compli-
cated dynamics of the extratropical oceans can be realisticaptured by simple diffu-
sion. | presume that a more promising approach would be W kb specific feedbacks
increase spectral power at specific frequency ranges. Hrampsuch studies are the
analysis of Kuroshio-Oyashio extension region SST intesacvith the North Pacific
Ekman pumping $chneider et a1.2002 and the study of the subpolar gyre coupling
with the meridional overturning circulation in the Northl&atic (Zhu and Jungclaus
2008. Each of the above mentioned studies employed single G@idsefore it would
be interesting to check the robustness of their results, ®.gerify that other GCMs
reproduce these mechanisms. In case the mechanisms wibuitito be robust the next
step would be to investigate a possibility of their geneedlon. The search for dy-
namical mechanisms generating spectral power growth iBtluehern Ocean is another

potential line of future research.

e Effect of long-range correlations on the distribution of exremes. Humankind and
ecosystems are conceivably more susceptible to changedrame temperature and
precipitation than to changes in their means. A researcheeffect of long-range cor-
relations on the distribution of the extremes has been adedwnly in the past decade
(e.g.Bunde et al. 2005 Zorita et al, 2008. It was shown that long-range correlated
time series have stronger clustering of extreme eventsone extreme event is typi-
cally followed by a series of others, which makes their intpacre severe compared to
the case when they are spread out in time. Therefore it isiwgpprtant to apply the
recently developed theory to extreme temperature and ptaioon events, especially

those which we expect later in the century.
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e Characteristic time scales and testing applicability of tlke fluctuation-dissipation
theorem to climate. Recently it was suggested that a fluctuation-dissipatitation-
ship (Leith, 1979 exists in idealized GCMKRing and Plump2008 Gerber and Polvani
2009 and CMIP3 simulations of the Southern Annular Mo&@e(ber et al.2008. It
was shown that the simulated annular modes with longer ticakes exhibit stronger
response to anthropogenic forcing in agreement with théiom (Gerber and Polvani
2009. The fluctuation-dissipation theorem is based on two keyaptions: (a) the
response of a system to an external perturbation can beiedfgclinearized; (b) the
response can be decomposed into a finite number of maa#h,(19795. As a result
of these assumptions the autocorrelation function of system asymptotically should
decay exponentially. However in this thesis we have showhdh exponential decay
generally provides just a lower bound on the climate peysi. In other words the
characteristic time scales estimated using daily datayaieally lower that the charac-
teristic time scales estimated using annual data and tisistorrect to make inferences
about decadal or longer time scale trends from daily penstst. Therefore application
of the fluctuation-dissipation theorem is probably limitedidealized GCMs and cli-
mate phenomena, which have a well defined characteristecggale. Obviously, a solid

justification of the above arguments requires additiorsgaech.

e Analysis of other climate variables Air temperature and total ozone have been an-
alyzed in my thesis. However systematic analysis of tem@pectral characteristics
of other climate variables, such as winds, geopotentiaihtgiand water vapour, also
has a large theoretical and practical importance. For thé/sis of these variables one
can make use of reanalysis products, CMIP3 simulations dsas/eimulations of cou-
pled chemistry-climate models from the Chemistry-Climistiedel Validation Activity

(CCMVal) archive Eyring and Coauthor£2009.
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¢ Resolving a potential inconsistency between total ozone drair temperature spec-
tral behaviour in the Northern Hemisphere polar stratosphere. We have shown in
Chapter3 that the Northern Hemisphere high latitudes is one of thegdavhere to-
tal ozone residuals obtained after filtering of the seasoyelke, QBO, solar flux, and
EESC trend demonstrate spectral power growth on interdniawecadal time scales.
On the other hand two reanalysis products and all climateeingichulations we ana-
lyzed in Chapters 4-6 indicate that air temperature resispectra are flat in the ex-
tratropical lower stratosphere and upper troposphere osetlime scales. However
Randel and Cobl§1994 showed that total ozone and temperature residuals awkrage
between 150 and 50 hPa have correlations between 0.2-hB iMdrthern Hemisphere
extratropics for the period 1979-1992. Therefore there pet@ntial disagreement be-
tween relatively steep ozone spectra and flat temperat@ersp To understand this
disagreement one can analyze CCMVal simulations, whiclk hawe realistic represen-

tation of stratospheric ozone and temperature temporglhiiity than CMIP3 models.

e Understanding a disagreement between climate model simuians and paleo-
proxies. In Chapteré we have documented that pre-industrial control CMIP3 sanul
tions systematically underestimate the Hurst exponentsddor various reconstructions
of the past millennium surface air temperature on multidatt centennial time scales.
There are indications that at least a part of this discrepanald be explained by the
influence of solar and volcanic forcingRybski et al, 2008. Thus it seems to be use-
ful to compare spectral behaviour of different climate mederced by natural radiative
forcings for the past millennium or two. Additionally, it iateresting to compare the
simulations of those models with and without carbon cycéslfeck, which also might

boost spectral power on multidecadal to centennial timkesca



Appendix A

A list of temporal power-law analysis

studies related to climate

Table A.1: The list of several Hurst exponent estimatiouligsi of climatic variables. See

Chapter2 for the description of the methods.

Variable Method Range H value Reference
one decade
Nile river yearly
R/S - severall H ~ 0.94 Hurst(1957)
minimal water levels
centuries
Whittle
Globally averaged 2 days — 18 H = 0.828 + | Haslett and Raftery
estimator
SAT years 0.003 (1989
(ARFIMA)
Whittle
Globally averageg H = 092 or
estimator | 2- 130 years Bloomfield (1992
SAT H=0.75
(ARFIMA)
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Table A.1: (continued)

Variable Method Range H value Reference
Globally averaged several years
GPHE and
SAT, US averaged - severall 0.55 < H < 0.9 | Smith(1993
GSPE like
SAT, CET centuries
Relative air humid- 2 days - 3 Vattay and Harnos
GPHE H=~0.8
ity at Balaton years (19949
TOPEX/POSEIDON several days + Wunsch and Stamme
GPHE like H~1.0
sea surface height 2 years (1995
several months
Rainfall data from 6 5 different Montanari et al.
— several cent 0.45 < H < 0.8
Italian sites estimators (1996
turies
Globally averageg several days +
continental and mart several hun-
GPHE like 05<H<I15 Pelletier(1997
itime SAT, \ostok dred thousand
ice cores years
one week
Koscielny-Bunde et a
14 station SAT FA, DFA1 | — severall H ~ 0.65
(1998
decades
NCEP/NCAR
reanalysis  geopor one week — 1(Q
FA 0.48 < H < 0.9 | Tsonis et al(1999
tential height at years
500hPa
MTM
NAO SLP index 2—-133years | H =0.61 Wunsch(1999

GPHE
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Table A.1: (continued)

eral decades

Variable Method Range H value Reference

Whittle

Stephenson et al.
NAO SLP index estimator | 2—-135years | H = 0.63
(2000

(FAR)

Whittle like
NP index and Sitka 2-100and 2 H = 0.67 and

estimator Percival et al(200])
SST — 168 years H=0.74

(FAR)
22 station and @

Aggregated Tomsett and Toumi
HadCM2 grid point 2—22years |02< H<1.0

variance (2001
precipitation
three station tota

R/S 2-1000days| H =~ 0.78 Toumi et al.(2007)
ozone records
40 US and 7 Eu
ropean station SAT|, R/S, GPHE| 10 days — sevt 0.55 < H < | Weber and Talkner
pressure, humidity, like, DFA1l | eral decades | 0.71 (2001
precipitation
6 station SAT and 1 FA, DFA1- | one year —sev; Govindan et al.

0.5 < H<O0.38

GCMs DFA5S eral decades (2002
Idealized GCM H = 0.67 and

DFAl 1-25years Muller et al.(2002
zonal wind PC H=0.74

10 days — sev

95 station SAT DFAO-3 0.5 < H < 1.0 | Eichneretal(2003
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Table A.1: (continued)

>

Variable Method Range H value Reference
CRU,
Fraedrich and Blende
NCEP/NCAR,
1-5 and 1-15 (2003;
HADCM3 and | DFA2 03<H<14
years Blender and Fraedric
ECHAM4/0OPYC
(2003
SAT
several months
384 western US sta-
DFAl - severall 0.5 < H < 0.74 | Kurnaz(2009
tion SAT
decades
16 ground based
several months
station SAT, 16
DFA2 - several 0.5 < H < 1.0 | Vyushin et al.(2009
SSTs, 10 scenarios
decades
of NCAR PCM
Sea level pressurg
10 days — 1§ H = 0.58 and
and sea level at Trit FA Beretta et al(2005
years H=0.7
este
GRIP and GISPZ 30 - 1000| H = 0.7 and
DFA2 Blender et al(2006
Greenland ice cores years H =0.84
several days +
NCEP/NCAR re-
MTM several hun4 0.68 < H < | Huybers and Curry
analysis and various
GPHE dred thousand 1.32 (2009
SAT proxies
years
18 days — 5
9431 station SAT DFA2 0.55 < H < 1.0 | Kiraly et al. (2009

years
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Table A.1: (continued)

Variable Method Range H value Reference
Northern Hemi- one decade
082 < H <
sphere SAT recont DFA2 - several Rybski et al.(2006
1.04
structions centuries
ECHAM5/MPIOM various power-
GPHE like| 2 months —
and GFDL CM2.1 law regimes are Zhu et al.(2006
and DFA2 | 500 years
Atlantic MOC identified
Relative  humidity
10 days — sev
from 73 Chinesg DFA1 H ~0.75 Chen et al(2007)
eral years
stations
TOMS/SBUV GPHE and
1-27years | 0.45 < H < 1.1 | Vyushin et al.(2007)
merged total ozone | GSPE
1000y control and
several years +
historical  simula-| DFA2 0.4 < H < 1.1 | Rybskietal(2008
two centuries
tions of ECHO-G
several weeks
SeaWiFS  chloro
DFAl — more than 0.5 < H <1.2 | Zhan(2008
phyll measurements
two years
two vari-
ERA40 and
ants of 5| 18 months — Vyushin and Kushner
NCEP/NCAR 04<H<ZLI1.1
different 45 years (2009

reanalyses FAAT

estimators
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Table A.1: (continued)

Variable Method Range H value Reference

ERA40 and

NCEP/NCAR
DFA3 and| 18 months —

reanalyses and 0.4 < H <1.05 | Vyushin et al.(2009
GSPE 45 years

specialized GCM

simulations FAAT

ERA40 and

NCEP/NCAR

reanalyses, GIS$DFA3 and| 18 months — Vyushin and Kushner
02<H<11

SAT, and 17 CMIP3 GSPE 500 years (2010

GCMs SAT and

FAAT
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R-package PowerSpectrum

documentation
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Package ‘PowerSpectrum’ documentation

of
October 18, 2009

Type Package

Title Spectral Analysis of Time Series

Version 0.3

Date 2009-10-18

Author Dmitry Vyushin, Josh Mayer, Paul Kushner
Maintainer Dmitry Vyushin <dmitry.vyushin @utoronto.ca>
Depends R (>=2.2.0), fracdiff

Description Periodogram and multitaper estimation of univariate time series power spectrum,
multitaper cross spectrum estimation, Detrended Fluctuation Analysis, Geweke-Porter-Hudak
Estimator, Gaussian Semiparametric Estimator, convergence test and bias and standard deviation
test for the Hurst exponent estimators, spectral goodness-of-fit test, Portmanteau tests, estimation
of a time series linear trend with its confidence intervals based on white noise, AR(1), and
power-law models for the residuals.

License GPL-2
LazyLoad yes
LazyData yes

R topics documented:

CSE o o v e e e e e e e e e e 2
CSIMEML .« v v v vt it e e e e e e e e e e e e e e e e e 3
dataupdate . . . . ... 5
dfaffe . . . . . L 5
dfaldse . . . . . . L 7
dpss.taper . . ... e 9
e . . e 10
gfittest . . . oL 11



2 cse
hurst.conv . . . . L L 12
hursttest . . . . . . L L 13
PIOL.CSE . . o o e e e e e e e e 14
plot.ffe . . . . . e e e e 15
PIOLGLESt . . . . . . e e e e e 16
plotHconv. . . . . . . o o 17
plotHtest . . . . . . . 17
PlOtPSE . . . e 18
PMELESt . . L L e e e e e 19
psarl ..o 20
psddata . ... 21
PSE o o e 23
ps.gphe . .o 24
PS-ESPE  « o e e e e e e e 25
PSIUM . . L L e e e e e e 27
PSPErAM . . . ¢ ot e e e e e e e e e e e e e 28
sdare . . . .o 30
sAfitest . . . . 30
sdhee . . . .. 31
SINELAPET . . . . o o e e e e e e e 32
tdhee . . . . . . L 33
trend.tesSt . . . . ... e e 34

Index 36

cse Cross Spectrum Estimate Object

Description

Cross spectrum estimate object is generated by the cross spectrum estimation function cs . mtm and

can be visualized using plot function which actually calls plot . cse.

Value

An object of class cse has the following properties:

frequency a vector of frequencies.
Cross.spectrum
a multitaper cross-spectrum estimate.

coherence a multitaper spectral coherence estimate.

coherence.ci ajackknifed spectral coherence standard deviation estimate.

amplitude a multitaper amplitude spectrum estimate.
phase a multitaper phase spectrum estimate.
phase.ci a jackknifed phase spectrum standard deviation estimate.

ntaper a number of tapers used in the spectrum estimate.



cs.mtm

series
taper
weight
method
call

See Also

a name of the time series.

The data taper used

The spectrum weighting used

the type of spectrum estimation method used, in this case Multitaper.

a matched call.

cs.mtm, plot.cse, ps.mtm

cs.mtm

Multitaper Cross-Spectrum Estimator

Description

This function estimates the cross-spectrum of two given time series using K tapers [1-5]. The
DPSS tapers can be used with the adaptive or simple uniform weighting [1,5]. The "sine" tapers are
implemented only with the uniform weighting [4]. cs.mtm outputs spectral coherence, amplitude
spectrum, and phase spectrum estimates and their standard deviations obtained using a jackknife
method [2-3]. The output can be visualized using plot function which actually calls plot . cse.

Usage

cs.mtm(x,

Arguments

X

y
dt

wt

cl

isc.cl

verbose

na.action = na.fail, demean

dt = c("dpss", "sine"), wt = c("adapt", "uniform"),
cl = 0.95, isc.cl = ¢(0.1,0.5,0.9), verbose = TRUE,
= TRUE, series = NULL, ...)

a vector containing a uniformly sampled real valued time series.
a vector containing a uniformly sampled real valued time series.

a data taper to be used. If equals to either "dpss" or "sine" then the appropriate
taper will be created by a call to dpss.taper or sine.taper respectively.
If of class dpss.taper or sine.taper or a matrix of size NxK where N is
the input time series length and K is the number of tapers then dt will be used
directly.

a weighting to use during spectrum estimation. If dt is a "sine" taper or a NxK
matrix it will be forced to use uniform weighting. In case of the "dpss" taper the
adaptive weighting (see [1,5]) can also be used.

a number of tapers to be used.
a confidence level used for power spectrum confidence intervals estimation.

a confidence level for independent time series coherence confidence intervals
estimation.

a logical flag. If TRUE (the default), prints information while executing.



4 cs.mtm

na.action function to be called to handle missing values.
demean a logical flag. If TRUE (the default), the mean value of x is set to 0.
series a name for the series. Default: c(deparse(substitute(x)), deparse(substitute(y))).

Additional arguments passed to either dpss.taper or sine.taper, the
most useful of which is K, the number of data tapers to use.

Value

An object of class cse with the following values set:

frequency a vector of frequencies.
Cross.spectrum
a multitaper cross-spectrum estimate.

coherence a multitaper spectral coherence estimate.

coherence.ci ajackknifed spectral coherence standard deviation estimate.

amplitude a multitaper amplitude spectrum estimate.
phase a multitaper phase spectrum estimate.
phase.ci a jackknifed phase spectrum standard deviation estimate.
ntaper a number of tapers used in the spectrum estimate.
series a name of the time series.
taper a data taper used
weight a spectrum weighting used
method a type of spectrum estimation method used, in this case Multitaper.
call the matched call for cs . mtm.
References

[1] D.J. Thomson (1982), Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055-1096.

[2] D.J. Thomson and A. D. Chave (1991), Jackknifed error estimates for spectra, coherences,
and transfer functions, in Advances in Spectrum Analysis and Array Processing, S. Haykin, Ed.
Englewood Cliffs, NJ: Prentice-Hall, vol. 1, ch. 2, pp. 58-113.

[3] E.L. Vernon et al. (1991), Coherence of seismic body waves from local events as measured by a
small-aperture array, J. Geophys. Res. 96, 11981-11996.

[4] K. S. Riedel and A. Sidorenko (1995), Minimum bias multiple taper spectral estimation, I[EEE
Transactions on Signal Processing 43, 188-195.

[5]1 D.J. Thomson, L.J. Lanzerotti, F.L.. Vernon, M.R. Lessard, and L.T.P. Smith (2007), Solar Modal
Structure of the Engineering Environment, Proc. IEEE 95, 1085-1132.

See Also

plot.cse,dpss.taper, sine.taper, ps.mtm
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Examples

library (PowerSpectrum)

Period = seq((1856-1659+1), length(CET_1659_2008))
CET_1856_2008 = CET_1659_2008[Period]

x = cs.mtm(CET_1856_2008, AMO_1856_2008)

plot (x)

data.update Climatic Time Series Update

Description
This procedure downloads recent updates of most of the climatic time series included into the pack-
age. It can also save these time series in corresponding rda (R-Data) files in a local folder.

Usage

data.update (save = FALSE)

Arguments
save a logical flag. If TRUE, the downloaded climatic time series are saved in corre-
sponding rda (R-Data) files in a local folder. The default is FALSE.
See Also
ps.data
dfa.ffe Detrended Fluctuation Analysis
Description

Detrended Fluctuation Analysis (DFA) was originally proposed in [1] and is described in details
in [2]. It works as follows. In the beginning a cumulative sum time series is generated from the
original time series. It might be thought as a random walk which increments are equal to the values
of the original time series. Then the cumulative time series is split into segments of size s and is
approximated in the least squares sense in each segment by a polynomial of a certain order. In
most cases order is chosen between 1 and 5. The standard deviation of the best fit residuals is
calculated for each segment and then averaged over all segments. Let’s call this value F'(s). After
that the segment size is increased and the above described procedure is repeated. Therefore for each
value of s we obtain a corresponding value F'(s), which is called fluctuation function. This function
estimates F'(s).

In case time series autocorrelation function decays as at?”~2 when t — oo or equivalently its

spectral density increases as bA1 =2 when A — 0 its fluctuation function F'(s) scales as rs’ (see
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[3,4]). Thus to extract the Hurst exponent F'(s) could be regressed against a straight line in log-log
coordinates from the lower scale L to the maximum scale M (as in [1,2]). This regression is done
by the dfa. 1se function.

The output can be visualized using plot function which actually calls plot . ffe.

Usage
dfa.ffe(x, order = 1, verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL, ...)
Arguments
x a vector containing a uniformly sampled real valued time series.
order an order of the polynomials used in local detrending. It should be between 1 and
5.
verbose a logical flag. If TRUE (the default), prints information while executing.
na.action a function to be called to handle missing values.
series a name for the time series. Default: deparse(substitute(x)).
demean a logical flag. If TRUE (the default), the mean value of x is set to 0.
Value

an object of class f fe with the following values set:

fluctuation a fluctuation function.

scale a vector of scales.
order the order of the polynomials used in local detrending.
method a fluctuation function estimation method used, in this case "Detrended Fluctua-

tion Analysis".

series a name of the time series. Default: deparse(substitute(x)).
call the matched call to dfa.ffe
References

[1] C. Peng, C., S. Buldyrev, A. Goldberger, S. Havlin, M. Simons, and H. Stanley (1993), Finite-
size effects on long-range correlations: Implications for analyzing dna sequences, Phys. Rev. E 47,
3730-3733.

[2] J. Kantelhardt, E. Koscielny-Bunde, H. Rego, S. Havlin, and A. Bunde (2001), Detecting long-
range correlations with detrended fluctuation analysis, Physica A 295, 441-454.

[3] M. Taqqu, V. Teverovsky, and W. Willinger (1995), Estimators for long-range dependence: an
empirical study, Fractals 3, 785-798.

[4] C. Heneghan and G. McDarby (2000), Establishing the relation between detrended fluctuation
analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 62, 6103—6110.
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See Also

ffe,dfa.lse,plot.ffe

Examples

library (PowerSpectrum)
x = dfa.ffe(CET_1659_2008)
plot (x)

dfa.lse Detrended Fluctuation Analysis

Description

Detrended Fluctuation Analysis (DFA) was originally proposed in [1] and is described in details
in [2]. It works as follows. In the beginning a cumulative sum time series is generated from the
original time series. It might be thought as a random walk which increments are equal to the values
of the original time series. Then the cumulative time series is split into segments of size s and is
approximated in the least squares sense in each segment by a polynomial of a certain order. In most
cases order is chosen between 1 and 5. The standard deviation of the best fit residuals is calculated
for each segment and then averaged over all segments. Let’s call this value F'(s). After that the
segment size is increased and the above described procedure is repeated. Therefore for each value
of s we obtain a corresponding value F'(s), which is called fluctuation function. F(s) is estimated
by dfa.ffe.

In case time series autocorrelation function decays as at*~2 when t — oo or equivalently its
spectral density increases as bA'2 when A — 0 its fluctuation function F(s) scales as rs
(see [3,4]). Thus to extract the Hurst exponent F'(s) is regressed against a straight line in log-log
coordinates from the lower scale L to the maximum scale M (as in [1,2]). This regression is done
by this function.

The output can be visualized using plot function which actually calls plot . ffe.

Usage
dfa.lse(x, L = (3*xSorder+9), M = round(xS$scalel[length (x$scale)]/4),
verbose = TRUE, ffe = NULL, ...)
Arguments
X an object of class ffe
L a lower scale cut off.
M an upper scale cut off.
verbose a logical flag. If TRUE (the default), prints information while executing.

ffe the ffe object used
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Value

An object of class tdhee with the following values set

H an estimate of the Hurst exponent.
stdH a standard deviation of the estimator of H.
r a fluctuation function scaling factor from F(s) ~ rs'l.
q q = log(r).
stdqg a standard deviation of the estimate of g.
L a lower scale cut off.
M an upper scale cut off.
ffe the name of the ffe object used. Default: deparse(substitute(x)).
method a Hurst exponent estimation method used, in this case "Least Squares Estimate".
call the matched call to dfa.lse
Note

stdH and stdq are estimated using a crude assumption that the residuals of the linear regression of
a DFA curve in log-log coordinates are independent and normally distributed. Thus these values just
give an idea about the true uncertainties. Unfortunately the theory that would describe distributions
of stdH and stdq is still missing.

References

[1] C. Peng, C., S. Buldyrev, A. Goldberger, S. Havlin, M. Simons, and H. Stanley (1993), Finite-
size effects on long-range correlations: Implications for analyzing dna sequences, Phys. Rev. E 47,
3730-3733.

[2] J. Kantelhardt, E. Koscielny-Bunde, H. Rego, S. Havlin, and A. Bunde (2001), Detecting long-
range correlations with detrended fluctuation analysis, Physica A 295, 441-454.

[3] M. Taqqu, V. Teverovsky, and W. Willinger (1995), Estimators for long-range dependence: an
empirical study, Fractals 3, 785-798.

[4] C. Heneghan and G. McDarby (2000), Establishing the relation between detrended fluctuation
analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 62, 6103—6110.

See Also

dfa.ffe, ffe, tdhee,plot.ffe

Examples

library (PowerSpectrum)

cet.dfa.ffe <- dfa.ffe(CET_1659_2008)
cet.dfa.lse <- dfa.lse(cet.dfa.ffe)
plot (cet.dfa.ffe,h=cet.dfa.lse)



dpss.taper 9

dpss.taper Computing Thomson’s Spectral Multitapers by Inverse Iteration

Description

The following function links the subroutines in "bell-p-w.0" to an R function in order to compute
discrete prolate spheroidal sequences (dpss)

Usage

dpss.taper(n, K = 3, nmax = 2" (ceiling(log(n, 2))), ...)
Arguments

n length of data taper(s)

K number of data tapers

nmax maximum possible taper length, necessary for FORTRAN code
Details

Spectral estimation using a set of orthogonal tapers is becoming widely used and appreciated in sci-
entific research. It produces direct spectral estimates with more than 2 df at each Fourier frequency,
resulting in spectral estimators with reduced variance. Computation of the orthogonal tapers from
the basic defining equation is difficult, however, due to the instability of the calculations — the
eigenproblem is very poorly conditioned. In this article the severe numerical instability problems
are illustrated and then a technique for stable calculation of the tapers — namely, inverse iteration
— is described. Each iteration involves the solution of a matrix equation. Because the matrix has
Toeplitz form, the Levinson recursions are used to rapidly solve the matrix equation. FORTRAN
code for this method is available through the Statlib archive. An alternative stable method is also
briefly reviewed.

Value

an object of class dpss . taper with the following properties:

eigenvectors matrix of data tapers (cols = tapers)

eigenvalues eigenvalue associated with each data taper

Author(s)

B. Whitcher, modified by J. Mayer
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References

B. Bell, D. B. Percival, and A. T. Walden (1993) Calculating Thomson’s spectral multitapers by
inverse iteration, Journal of Computational and Graphical Statistics, 2, No. 1, 119-130.

Percival, D. B. and A. T. Walden (1993) Spectral Estimation for Physical Applications: Multitaper
and Conventional Univariate Techniques, Cambridge University Press.

See Also

sine.taper.

ffe Fluctuation Function Estimate Object

Description

Fluctuation function estimate object is generated by dfa . £ fe and is used as an inputinto dfa. lse.
The f fe object can be visualized using plot function which actually calls plot . ffe.

Value

An object of class f fe has the following properties:

fluctuation a fluctuation function.

scale a vector of scales.
order the order of the polynomials used in local detrending.
method a fluctuation function estimation method used.
series a name of the time series.
call a matched call.

See Also

dfa.ffe,dfa.lse,plot.ffe
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gfit.test

Test of the goodness-of-fit tests

Description

This functions performs a Monte-Carlo kind of test of the two goodness-of-fit tests, Ljung-Box (see
pmt . test) and spectral density (see sdf.test) tests [1-2]. It generates s time series of length
n using a power law and an AR(1) models. Then it fits the power law time series by an AR(1)
model and the AR(1) time series by a power law model and estimates the probability of rejecting
the null hypothesis of a "true" model by the two goodness-of-fit tests. The gfit .test replicates
the procedure described in [2] using functions implemented in this R package.

Usage

gfit.test(H = 0.8, phi
=0, h

Arguments

H

phi
sd.fd.res
sd.ar.res
1lfc

hfc

s

n

verbose

plot

Value

1fc

i = 0.5, sd.fd.res = 1, sd.ar.res = 1,
fc =2, s = 100, n = seqg(400,2000,100),

verbose = TRUE, plot = TRUE)

a Hurst exponent value to be tested.

a lag one autocorrelation value to be tested.

the standard deviation of the fractionally differenced process.

the standard deviation of the AR(1) process.

a number of the lowest Fourier frequences trimmed. Used in sdf.test only.
a lower scale cut off. Thus M=trunc(n[i]/hfc). Used in sdf .test only.

the number of samples to average over.

a vector of time series lengths.

a logical flag. If TRUE (the default), prints information while executing.

a logical value for whether or not to plot the results. Default: TRUE.

A list of class Gtest with the following elements:

P

References

An array of probabilities of rejecting the null hypothesis that a fitted model
(AR(1) or Power Law) is adequate for a realization of a process (Power Law
or AR(1)) using the Ljung-Box and Spectral density tests. The output can be
visualized using plot function which actually calls plot .gfit.test.

[1] J. Beran (1992), A Goodness-of-Fit Test for Time Series with Long Range Dependence, J.R.
Statis. Soc. B 54, 749-760.

[2] D.B. Percival, J.E. Overland, and H.O. Mofjeld (2001), Interpretation of North Pacific Variabil-
ity as a Short- and Long-Memory Process, J. Climate 14, 4545-4559.
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See Also

hurst.conv

pmt.test, sdf.test

Examples

library (PowerSpectrum)
gfit.test (s=10, n = seqg(400,1000,100))

hurst.conv

Test of the Hurst exponent estimators convergence

Description

This function estimates the biases of a given list of the Hurst exponent estimators for a given set of
time series lengths for a fixed value of H. Synthetic time series are generated using ARFIMA(0,H —
0.5,0) model (fracdiff.sim function from fracdiff package). Results can be nicely plotted
using the plot function.

Usage

hurst.conv (H
lfc = 0, hfc = 18, methods = c("dfa.lse", "pgram.gphe",
"mtm.gphe", "pgram.gspe", "mtm.gspe"),
verbose = TRUE, plot = TRUE, ...)

Arguments

H
T
s
order

1fc

hfc
methods

verbose

plot

= 0.8, T = seq(270,910,by=90), s = 100, order = 3,

a value of the Hurst exponent to be tested, where 0 < H < 2.
a vector of time series lengths.

a number of samples to use.

the order of the polynomials used in local detrending in DFA

anumber of the lowest Fourier frequences trimmed. In case 1fc=0 then dfa.M=T[i],
otherwise ps.L=lfc and dfa.M=round(T[i]/lfc).

a lower scale cut off. Thus dfa.L=hfc and ps.M=trunc(T[i]/hfc).

a character string list specifying the methods for the Hurst exponent estimation.

non "non non

Default: c("dfa", "pgramgphe", "mtmgphe", "pgramgspe", "mtmgspe").
a logical flag. If TRUE (the default), prints information while executing.
a logical value for whether or not to plot the results. Default: TRUE.

Additional arguments passed to any of dfa.ffe,dfa.lse,ps.pgram ps.mtm,
ps.gphe,ps.gspeand plot. Note: Neitherm (dfa.lse)norM(ps.gphe
and ps . gspe) should be set since they depend on the length of the time series

and are therefore generated accordingly.
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Value

A list of class Hconv with the following elements:

H a true value of the Hurst exponent tested.

T a vector of time series lengths.

methods a character string list specifying the methods for the Hurst exponent estimation.
bH abias of the estimated H. It is a matrix of size length (methods)xlength (T)

which (¢, 7) element is equal to the bias of the method number ¢ for the time se-
ries length number j.

Note

To get a clear distinction between the different methods set s at least equal to 1000.

See Also

dfa.ffe,ps.pgram, ps.mtm, ps.gphe, ps.gspe, plot.Hconv

Examples

library (PowerSpectrum)
hurst.conv (s=10)

hurst.test Test of the Hurst exponent estimators bias and standard deviation

Description

This function generates s time series of length n using ARFIMA(0,H —0.5,0) model (fracdiff.sim
function from fracdiff package) for a vector of the values of H and calculate the bias and the stan-
dard deviation for a given list of the Hurst exponent estimators.

Usage

hurst.test (H = seq(0.5,1.1,by=0.1), T = 540, s = 100, order=3, 1fc=0,
hfc=18, methods = c("dfa.lse", "pgram.gphe", "mtm.gphe",
"pgram.gspe", "mtm.gspe"), verbose = TRUE, plot = TRUE, ...)

Arguments
H a vector of the Hurst exponent values to be tested, where 0 < H[*] < 2.
methods a character string list specifying the methods for the Hurst exponent estimation.
By default it includes all the supported methods.
T a length of the time series to use.
s a number of samples to use.

order the order of the polynomials used in local detrending in DFA



14 plot.cse

1fc anumber of the lowest Fourier frequences trimmed. Thus ps.L=Ifc and dfa.M=round(T[i]/Ifc).
In case 1fc=0 then dfa.M=T[i].

hfc a lower scale cut off. Thus dfa.L=hfc and ps.M=trunc(T[i]/hfc).

verbose a logical flag. If TRUE (the default), prints information while executing.

plot a logical value for whether or not to plot the results. Default: TRUE.

Additional arguments passed to any of dfa.ffe,dfa.lse,ps.pgram, ps.mtm,
ps.gphe, ps.gspe and plot.
Value
A list of class Htest with the following elements:

H a vector of the true values of the Hurst exponent tested.

bH a bias of the estimated H. It is a matrix of size 1ength (methods) xlength (H)
which (2, j) element is equal to the bias of the method number ¢ for the true value
of H number j.

sdH a standard deviation of the estimated H. It has the same structure as bH.

Note

To get a clear distinction between the different methods set s at least equal to 1000.

See Also

dfa.ffe,ps.pgram ps.mtm, ps.gphe, ps.gspe, plot.Htest

Examples

library (PowerSpectrum)
hurst.test (s=10)

plot.cse Function for plotting objects of class cse

Description

This function plots spectral coherence, amplitude spectrum, and phase spectrum estimated by the
multitaper method for two time series. It takes as input an object of class cse, which can be
generated, for instance, by the cs .mtm function.

Usage

## S3 method for class 'cse':
plot (x, type = "o", main = rep(NULL,3), xlab = rep(NULL, 3),
ylab = rep(NULL,3), plot.ci = TRUE, ...)
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Arguments
x an object of class cse.
type a type of curve used in the plot. See t ype option of the plot function.
main a main title of the plot.
xlab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
plot.ci a logical flag. If TRUE (the default), include confidence intervals in plot
Additional arguments passed to plot.
See Also
cs.mtm
Examples

library (PowerSpectrum)

Period = seq((1856-1658), length(CET_1659_2008))
CET_1856_2008 = CET_1659_2008[Period]

x <— cs.mtm(CET_1856_2008, AMO_1856_2008)

plot (x)

plot.ffe Visualisation of Detrended Fluctuation Analysis

Description

Function for plotting objects of class f fe generated by the PowerSpectrum package.

Usage

## S3 method for class 'ffe':
plot(x, h = NULL, plot.ci = TRUE, type = "o", xlim = NULL,
ylim = NULL, main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

X an object of class ffe.

h optional object of class tdhee. It could be generated by dfa.lse. Adds a
fitted power law spectral density to the plot.

plot.ci a logical value for whether or not to plot confidence intervals for a fluctuation
function approximation. Default: TRUE.

type a type of curve used in the plot. See t ype option of the plot function.

x1lim, ylim  numeric vectors of length 2, giving the x and y coordinates ranges.

main a main title for the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.
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See Also

dfa.ffe

Examples

library (PowerSpectrum)
cet.dfa <- dfa.ffe(CET_1659_2008)
plot (cet.dfa)

plot.Gtest

plot.Gtest Plot of the goodness-of-fit tests results

Description

Function for plotting objects of class Gtest generated by gfit.test.

Usage

## S3 method for class 'Gtest':
plot(x, ...)

Arguments

x an object of class Gtest generated by gfit.test.

See Also

gfit.test

Examples

library (PowerSpectrum)
Gtest <- gfit.test (s=10, n = seqg(400,1000,100), plot =
plot (Gtest)

FALSE)
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plot.Hconv Plot of the Hurst exponent estimators convergence test

Description

Function for plotting objects of class H. conv generated by hurst . conv.

Usage

## S3 method for class 'Hconv':
plot (x, plot.color = TRUE, ...)

Arguments

X an object of class Hconv generated by hurst . conv.
plot.color a logical value for whether or not to plot with color. Default: TRUE.

See Also

hurst.conv

Examples

library (PowerSpectrum)
conv <- hurst.conv(s=10, plot = FALSE)
plot (conv)

plot.Htest Plot of the Hurst exponent estimators bias and standard deviation test

Description

This function plots objects of class Htest generated by hurst . test.

Usage

## S3 method for class 'Htest':
plot (x, plot.panel = 2, plot.color = TRUE, ...)

Arguments

X an object of class Htest generated by hurst .test.

plot.panel an integer value of 1 or 2, determining whether to make a one panel or two panel
plot. Default: 2.

plot.color a logical value for whether or not to plot with color. Default: TRUE.
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See Also
hurst.test
Examples
library (PowerSpectrum)
test <- hurst.test (s=10, plot = FALSE)
plot (test)
plot.pse Function for plotting objects of class pse, generated by the Power-
Spectrum package.
Description
This function produces a plot of a power spectrum estimate and its approximations.
Usage
## S3 method for class 'pse':
plot (x, ar = NULL, h = NULL, plot.ci = TRUE, plot.are.ci = TRUE,
type = "o", xlim = NULL, ylim = NULL, main = NULL, xlab =
ylab = NULL, xaxt="s", ...)
Arguments
X an object of class pse.
ar optional object of class sdare. It could be generated by ps . arl. Adds a fitted
ARI spectral density to the plot.
h optional object of class sdhee. It could be generated by ps . gphe or ps. gspe.
Adds a fitted power law spectral density to the plot.
plot.ci a logical flag. If TRUE (the default), plot power spectrum confidence intervals
plot.are.ci alogical flag. If TRUE (the default), plot AR1 fit confidence intervals
type a type of curve used in the plot. See t ype option of the plot function.
x1lim, ylim  Numeric vectors of length 2, giving the x and y coordinates ranges.
main a main title of the plot.
xlab a label for the x axis, defaults to a description of x.
ylab a label for the y axis, defaults to a description of y.
xaxt a character which specifies the x axis type. Specifying "n" suppresses plotting
of the axis. The default value is "s".
See Also

ps.pgram, ps.mtm, ps.gphe, ps.gspe
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Examples

library (PowerSpectrum)

pse = ps.pgram(CET_1659_2008)
sdare = ps.arl (pse)

sdhee = ps.gphe (pse)

plot (pse, sdare, sdhee)

pmt .test Portmanteau tests

Description

The portmanteau test is designed to see if the sample autocorrelations of the residuals for lags
t =1,...lag is consistent with a hypothesis of zero mean white noise, where "lag" is taken to be
relatively small in relation to the sample size N. Here we consider two variations on the portmanteau
test, namely, the Box-Pierce test statistic and the Ljung-Box-Pierce test statistic [1]. pmt .test
estimates the residuals for a given sample and a given model, AR1 or power law, and then calls
Box.text function, which is a standard R function.

Usage

pmt.test (x, m, lag = max (10, round(length (x)/20)),
type = c("Ljung-Box", "Box-Pierce"),
na.action = na.fail, demean = TRUE,
series = NULL)

Arguments
X a vector containing a uniformly sampled real valued time series.
an object of class sdhee (generated by ps.gphe or ps.gspe) or sdare
(generated by ps.arl)
lag a maximum autocorrelation function time lag.
type test type, "Ljung-Box" or "Box-Pierce".
na.action a function to be called to handle missing values.
demean a logical flag. If TRUE (the default), the mean value of x is set to 0.
series a name for the series. Default: deparse(substitute(x)).
Value
Bt an output of the Box . text function.
model a character string specifying the fitted model.
References

[1] D.B. Percival, J.E. Overland, and H.O. Mofjeld (2001), Interpretation of North Pacific Variabil-
ity as a Short- and Long-Memory Process, J. Climate 14, 4545-4559.
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See Also

sdf.test

Examples

library (PowerSpectrum)
h <- ps.gspe(ps.mtm(hadcrut3gl_1850_2008))
pmt .test (hadcrut3gl_1850_2008, m=h)

ps.arl Spectral Domain Lag One Autocorrelation (ARI1) Estimator

Description

Spectral domain lag one autocorrelation coefficient estimate object is obtained by fitting the spec-
tral density of ARI process to an estimate of the power spectrum. It outputs an object of type
sdare, which serves as an input into a goodness-of-fit test (sdf.test), a linear trend test
(trend.test),and ps.plot.

Usage

ps.arl (x, method = c("mle", "lse"), verbose = TRUE, pse = NULL,

Arguments
b an object of class pse, output from either ps.pgram or ps.mtm.
method the method used to estimate the lag one autocorrelation coefficient
verbose a logical flag. If TRUE (the default), prints information while executing.
pse the name of the pse object. Default: deparse(substitute(x)).

Value

An object of class sdare with the following values set:

phi an estimate of the lag one autocorrelation coefficient.
sdphi a standard deviation of the estimator of phi.
pse the name of the pse object used.
method a lag one autocorrelation estimation method used.
call the matched call to ps.arl

See Also

sdare, sdf .test, trend.test
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Examples

library (PowerSpectrum)
ps.arl (ps.pgram (AMO_1856_2008))

ps.data Climatic Time Series

Description

The list of climatic time series included into the package is shown below. Most of these time series
can be updated using data.update.

AMO_1.1856_7.2009 - monthly data of Atlantic Multidecadal Oscillation index
http://www.cdc.noaa.gov/Timeseries/AMO/.

AMO_1856_2008 - annual data of Atlantic Multidecadal Oscillation index.

CET_1.1659_7.2009 - monthly data of Central England Temperature
http://hadobs.metoffice.com/hadcet/.

CET_1659_2008 - annual data of Central England Temperature.

crutem3gl_1.1850_6.2009 - Land Surface Temperature Anomalies (Global, monthly means)
http://www.cru.uea.ac.uk/cru/data/temperature/

crutem3gl_1850_2008 - Land Surface Temperature Anomalies (Global, annual means)

crutem3nh_1.1850_6.2009 - Land Surface Temperature Anomalies (Northern Hemisphere,
monthly means)

crutem3nh_1850_2008 - Land Surface Temperature Anomalies (Northern Hemisphere, an-
nual means)

crutem3sh_1.1850_6.2009 - Land Surface Temperature Anomalies (Southern Hemisphere,
monthly means)

crutem3sh_1850_2008 - Land Surface Temperature Anomalies (Southern Hemisphere, an-
nual means)

Donard_752_1992 - Donard Lake (Baffin Island) summer temperature reconstruction based on
lake varve thickness
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/paleolimnology/northamerica/canada/baffin/donard_2001 . txt

giss_ghcn_gl_1.1880_12.2008 - GISS Global Temperature Anomalies (base period: 1951-
1980, monthly means). Sources: GHCN (meteorological stations only)
http://data.giss.nasa.gov/gistemp/
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giss_ghcn_gl_1880_2008 - GISS Global Temperature Anomalies (base period: 1951-1980,
annual means). Sources: GHCN (meteorological stations only)

giss_ghcn_nh_1.1880_12.2008 - GISS Northern Hemisphere Temperature Anomalies (base
period: 1951-1980, monthly means). Sources: GHCN (meteorological stations only)

giss_ghcn_nh_1880_2008 - GISS Northern Hemisphere Temperature Anomalies (base pe-
riod: 1951-1980, annual means). Sources: GHCN (meteorological stations only)

giss_ghcn_sh_1.1880_12.2008 - GISS Southern Hemisphere Temperature Anomalies (base
period: 1951-1980, monthly means). Sources: GHCN (meteorological stations only)

giss_ghcn_sh_1880_2008 - GISS Southern Hemisphere Temperature Anomalies (base pe-
riod: 1951-1980, monthly means). Sources: GHCN (meteorological stations only)

giss_ghcn_sst_gl_1.1880_12.2008 - GISS Global Temperature Anomalies (base period:
1951-1980, monthly means). Sources: GHCN + SST.

giss_ghcn_sst_gl_1880_2008 - GISS Global Temperature Anomalies (base period: 1951-
1980, annual means). Sources: GHCN + SST.

giss_ghcn_sst_nh_1.1880_12.2008 - GISS Northern Hemisphere Temperature Anoma-
lies (base period: 1951-1980, monthly means). Sources: GHCN + SST.

giss_ghcn_sst_nh_1880_2008 - GISS Northern Hemisphere Temperature Anomalies (base
period: 1951-1980, annual means). Sources: GHCN + SST.

giss_ghcn_sst_sh_1.1880_12.2008 - GISS Southern Hemisphere Temperature Anoma-
lies (base period: 1951-1980, monthly means). Sources: GHCN + SST.

giss_ghcn_sst_sh_1880_2008 - GISS Southern Hemisphere Temperature Anomalies (base
period: 1951-1980, monthly means). Sources: GHCN + SST.

hadcrut3gl_1.1850_6.2009 - Combined Land and Marine Surface Temperature Anoma-
lies (Global, monthly means)

http://www.cru.uea.ac.uk/cru/data/temperature/

hadcrut3gl_1850_2008 - Combined Land and Marine Surface Temperature Anomalies (Global,
annual means)

hadcrut3nh_1.1850_6.2009 - Combined Land and Marine Surface Temperature Anoma-
lies (Northern Hemisphere, monthly means)

hadcrut3nh_1850_2008 - Combined Land and Marine Surface Temperature Anomalies (North-
ern Hemisphere, annual means)

hadcrut3sh_1.1850_6.2009 - Combined Land and Marine Surface Temperature Anoma-
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lies (Southern Hemisphere, monthly means)

hadcrut3sh_1850_2008 - Combined Land and Marine Surface Temperature Anomalies (South-
ern Hemisphere, annual means)

NAO_DJFM_Hurrell_ 1864_2008 - Jim Hurrell’s winter (December through March) index of
the NAO based on the difference of normalized sea level pressure (SLP) between Lisbon, Portugal
and Stykkisholmur/Reykjavik, Iceland
http:/fwww.cgd.ucar.edu/cas/jhurrell/Data/naodjfmindex.asc.

PDO_1.1900_6.2009 - monthly data of Pacific Decadal Oscillation index
http:/fwww.jisao.washington.edu/pdo/.

PDO_1900_2008 - annual data of Pacific Decadal Oscillation index

Rarotonga_1726_1996 - annual data of Rarotonga coral Sr/Ca SST reconstruction
[ftp://ftp.ncdc.noaa.gov/pub/data/paleo/coral/east_pacific/rarotonga_sr-ca.txt.

See Also

data.update

pse Power Spectrum Estimate Object

Description

Power spectrum estimate object is generated by power spectrum estimation functions (ps . pgram,
ps.mtm) and serves as an input into a goodness-of-fit test (sdf . test) and functions estimating
power spectrum approximations (ps.arl, ps.gphe, ps.gspe).

Value

An object of class pse has the following properties:

frequency a vector of frequencies.
spectrum a power spectrum estimate.

spectrum.ci an asymptotic in case of the periodogram or a jackknifed in case of the multita-
per confidence interval for the power spectrum estimate.

cl a confidence level used for power spectrum confidence interval estimation.
ntaper a number of tapers used in the spectrum estimate.

taper The data taper used

weight The spectrum weighting used

series a name of the time series.

method a spectrum estimation method used.

call a matched call for ps.mtm.
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See Also

ps.pgram, ps.mtm, sdf.test, ps.arl, ps.gphe, ps.gspe

ps.gphe Geweke-Porter-Hudak Estimator

Description

Geweke-Porter-Hudak Estimator (GPHE) is a linear fit of the time series power spectrum in log-
log coordinates within a given frequency bandwidth. GPHE estimates the Hurst exponent together
with its confidence intervals and a scaling factor b by fitting function f(\) = b|A|* 72 to a low-
frequency part of the time series power spectrum by the least squares method. GPHE was originally
proposed in [1] and rigorously justified in [2] and [3] for the case of the periodogram and in [4] for
the multitaper.

Usage

ps.gphe(x, L = 0, M = length(f), calcSD = FALSE,

verbose TRUE, pse = NULL, ...)
Arguments
X an object of class pse, output from either ps.pgram or ps.mtm.
L a number of the lowest Fourier frequences trimmed.
M a number of the highest Fourier frequency used.
calcSD a logical flag. If TRUE, calculates the standard deviations (see equation (11)
in [4]) for the estimates of H and ¢ = log(b) . It is a time consuming option.
Default: FALSE.
verbose a logical flag. If TRUE (the default), prints information while executing.
pse the name of the pse object. Default: deparse(substitute(x)).
Value

An object of class sdhee with the following values set:

H an estimate of the Hurst exponent.
sdH a standard deviation of the estimator of H (see equation (11) in [3]). GPHE only.
asdH an asymptotic value of the standard deviation of the estimator of H based on the

periodogram (see equation (7) on page 24 in [2] for GPHE and equation (4.1)
on page 1640 in [1] for GSPE).

b an estimate of the scaling factor b from f(\) = bA1 =21,
c ¢ =log(b).

sdc a standard deviation of the estimator of ¢ = log(b) (see equation (11) in [3]).
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L a number of the lowest Fourier frequences trimmed.
M a number of the highest Fourier frequency used.
psa a power spectrum approximation of the form bA1~2H
series a name of the time series.
method a Hurst exponent estimation method used.
call a matched call.

References

[1] J. Geweke and S. Porter-Hudak (1983), The estimation and application of long-memory time
series models, J. Time Series Anal. 4,221-238.

[2] P.M. Robinson (1995), Log-periodogram regression of time series with long range dependence,
Ann. of Statist. 23, 1048—-1072.

[3] C. Hurvich, R. Deo, and J. Brodsky (1998), The mean squared error of geweke and porter-
hudak’s estimator of the memory parameter of a long-memory time series, J. Time Series Anal. 19,
19-46, 10.1111/1467-9892.00075.

[4] E.J. McCoy, A.T. Walden, and D.B. Percival (1998), Multitaper Spectral Estimation of Power
Law Processes, IEEE Transactions on Signal Processing 46, 655—668.

See Also

pse, sdhee, ps.pgram, ps.mtm, ps.gspe

Examples

library (PowerSpectrum)
ps.gphe (ps.mtm (Donard_752_1992))

ps.gspe Gaussian Semiparametric Estimator

Description

Gaussian Semiparametric Estimator (GSPE) is a maximum likelihood fit of the time series power
spectrum within a given frequency bandwidth. GSPE estimates the Hurst exponent and a scaling
factor b by fitting the function f(\) = b|A\|'~2 to a low-frequency part of the time series power
spectrum by the maximum likelihood method. It was originally proposed in [1] and rigorously
justified in [2].

Usage

ps.gspe(x, L = 0, M = length(f), interval = c(0,1.5),
verbose = TRUE, pse = NULL, ...)
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Arguments
b4
L
M
interval
verbose

pse

Value

ps.gspe

an object of class pse, output from either ps.pgramor ps.mtm.

a number of the lowest Fourier frequences trimmed.

a number of the highest Fourier frequency used.

an interval over which to estimate H.

a logical flag. If TRUE (the default), prints information while executing.

the name of the pse object. Default: deparse(substitute(x)).

An object of class sdhee with the following values set:

H

asdH

b

c

L

M

psa
series
method
call

References

an estimate of the Hurst exponent.

an asymptotic value of the standard deviation of the estimator of H based on the
periodogram (see equation (7) on page 24 in [2] for GPHE and equation (4.1)
on page 1640 in [1] for GSPE).

an estimate of the scaling factor b from f(\) = bA1 =24,
¢ =log(b).

a number of the lowest Fourier frequences trimmed.

a number of the highest Fourier frequency used.

a power spectrum approximation of the form bA*—2H
a name of the time series.

a Hurst exponent estimation method used.

a matched call.

[1] R. Fox and M. Taqqu (1988), Large sample properties of parameter estimates for strongly de-
pendent stationary gaussian time series, Ann. of Statist. 17, 1749-1766.

[2] P.M. Robinson (1995), Gaussian estimation of long range dependence, Ann. of Statist. 23,

1630-1661.

See Also

pse, sdhee, ps.pgram, ps.mtm, ps.gphe

Examples

library (PowerSpectrum)
ps.gspe (ps.mtm (AMO_1856_2008))
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ps.mtm Multitaper Spectrum Estimator

Description

Multitaper is an average of several direct spectrum estimators, which use a set of orthogonal tapers
(for details see [1-6]). The DPSS tapers can be used with the adaptive or simple uniform weighting
[1,3,6]. The "sine" tapers are implemented only with the uniform weighting [4]. Confidence inter-
vals are estimated using a jackknife method [2]. The output can be visualized using plot function
which actually calls plot .pse.

Usage
ps.mtm(x, dt = c("dpss", "sine"), wt = c("adapt", "uniform"),
K =3, ¢l = 0.95, verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL, ...)
Arguments
X a vector containing a uniformly sampled real valued time series.
dt a data taper to be used. If equals to either "dpss" or "sine" then the appropriate
taper will be created by a call to dpss.taper or sine.taper respectively.
If of class dpss.taper or sine.taper or a matrix of size NxK where N is
the input time series length and K is the number of tapers then dt will be used
directly.
wt a weighting to use during spectrum estimation. If dt is a "sine" taper or a NxK
matrix it will be forced to use uniform weighting. In case of the "dpss" taper the
adaptive weighting (see [1,3,6]) can also be used.
K a number of tapers to be used.
cl a confidence level used for power spectrum confidence intervals estimation.
verbose a logical flag. If TRUE (the default), prints information while executing.
na.action function to be called to handle missing values.
demean a logical flag. If TRUE (the default), the mean value of x is set to 0.
series a name for the series. Default: deparse(substitute(x)).
Additional arguments passed to either dpss.taper or sine.taper, the
most useful of which is K, the number of data tapers to use.
Value

An object of class pse with the following values set:

frequency a vector of frequencies.
spectrum a power spectrum estimate.

spectrum.ci a jackknifed confidence interval for the power spectrum estimate.
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cl a confidence level used for power spectrum confidence interval estimation.
ntaper a number of tapers used in the spectrum estimate.
taper The data taper used
weight The spectrum weighting used
series a name of the time series.
method a spectrum estimation method used.
call a matched call for ps.mtm.

References

[1] D.J. Thomson (1982), Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 1055-1096.

[2] D.J. Thomson and A. D. Chave (1991), Jackknifed error estimates for spectra, coherences,
and transfer functions, in Advances in Spectrum Analysis and Array Processing, S. Haykin, Ed.
Englewood Cliffs, NJ: Prentice-Hall, vol. 1, ch. 2, pp. 58-113.

[3] D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge
University Press, 611 pp.

[4] K.S. Riedel and A. Sidorenko (1995), Minimum bias multiple taper spectral estimation, /IEEE
Transactions on Signal Processing, 43, 188-195.

[5] E.J. McCoy, A.T. Walden, and D.B. Percival (1998), Multitaper Spectral Estimation of Power
Law Processes, IEEE Transactions on Signal Processing, 46, 655-668.

[6] D.J. Thomson, L.J. Lanzerotti, F.L.. Vernon, M.R. Lessard, and L.T.P. Smith (2007), Solar Modal
Structure of the Engineering Environment, Proc. IEEE, 95, 1085-1132.

See Also

pse,plot.pse, cs.mtm, ps.pgram

Examples

library (PowerSpectrum)
x = ps.mtm(Rarotonga_1726_1996)
plot (x)

ps.pgram Periodogram Spectrum Estimator

Description

Periodogram is the simplest power spectrum estimator (for details see [1]). It estimates the power
spectrum through the square of absolute value of discrete Fourier transform of the time series di-
vided by the time series length.
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Usage

ps.pgram(x, cl = 0.95, verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL, ...)

Arguments
X a vector containing a uniformly sampled real valued time series.
cl a confidence level used for power spectrum confidence intervals estimation.
verbose a logical flag. If TRUE (the default), prints information while executing.
na.action a function to be called to handle missing values.
demean a logical flag. If TRUE (the default), the mean value of "x" is set to 0.
series a name for the time series. Default: deparse(substitute(x)).

Value

An object of class pse with the following values set:

frequency a vector of frequencies.
spectrum a power spectrum estimate.

spectrum.ci an asymptotic confidence interval for the power spectrum estimate.

cl a confidence level used for power spectrum confidence interval estimation.
ntaper a number of tapers used in the spectrum estimate.
series a name of the time series.
method a spectrum estimation method used.
call a matched call for ps . pgram.
References

[1] D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge
University Press, 611 pp.

See Also

pse, ps.mtm, ps.gphe, ps.gspe

Examples

library (PowerSpectrum)
ps.pgram (AMO_1856_2008)
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sdare Spectral Domain Lag One Autocorrelation (ARI1) Estimate Object

Description

Spectral domain lag one autocorrelation estimate object is generated by ps.arl by fitting the
spectral density of AR1 process to an estimate of the power spectrum. It serves as an input into a
goodness-of-fit test (sdf . test) and a linear trend test (t rend.test).

Value

An object of class sdare has the following properties:

phi an estimate of the lag one autocorrelation coefficient.
sdphi a standard deviation of the estimator of phi.
pse the name of the pse object used.
method a lag one autocorrelation estimation method used.
call a matched call.

See Also

ps.arl, sdf.test,trend.test

sdf.test Spectral Goodness-of-Fit Test

Description

This test compares a given estimate of the spectrum to the spectral density corresponding to a
fitted model, AR1 or a power law, in the frequency range specified by the indices L and M. The
null hypothesis is that the AR1 or the power law is a correct model for the given spectrum [1-2].
sdf.test outputs the spectral density of the fitted model, a test statistic and a p-value, which is
the smallest significance level for which we would end up rejecting the null hypothesis.

Usage

sdf.test(x, m, L = 0, M = length(x$frequency), verbose = TRUE)

Arguments
X an object of class pse. It could be generated by ps .pgram.
an object of class sdhee (generated by ps.gphe or ps.gspe) or sdare
(generated by ps.arl)
L a number of the lowest Fourier frequences trimmed.
M a number of the highest Fourier frequency used.

verbose a logical flag. If TRUE (the default), prints information while executing.
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Value

T the test statistic.

P the test p-value.

model a character string specifying the fitted model.
References

[1] J. Beran (1992), A Goodness-of-Fit Test for Time Series with Long Range Dependence, J. R.
Statis. Soc. B 54, 749-760.

[2] D.B. Percival, J.E. Overland, and H.O. Mofjeld (2001), Interpretation of North Pacific Variabil-
ity as a Short- and Long-Memory Process, J. Climate 14, 4545-4559.

See Also

pse, sdare, sdhee, pmt.test, ps.gphe, ps.gspe

Examples

library (PowerSpectrum)

pse = ps.pgram(Rarotonga_1726_1996)
sdare = ps.arl (pse)

sdhee = ps.gspe (pse)

plot (pse, sdare, sdhee)

sdf.test (pse, m = sdare)

sdf.test (pse, m = sdhee)

sdhee Spectral Domain Hurst Exponent Estimate Object

Description

Hurst exponent estimate object is generated by Hurst exponent estimation functions (ps . gphe,
ps.gspe) and serves as an input into a goodness-of-fit test (sdf.test), a linear trend test
(trend.test),and ps.plot.

Value

An object of class sdhee has the following properties:

H an estimate of the Hurst exponent.

sdH a standard deviation of the estimator of H (see equation (11) in [3]). GPHE
only.

asdH an asymptotic value of the standard deviation of the estimator of H based on the

periodogram (see equation (7) on page 24 in [2] for GPHE and equation (4.1)
on page 1640 in [1] for GSPE).

b an estimate of the scaling factor b from f(\) = b|\|1 72,
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sdc

L

M
series
method
call

References

sine.taper

¢ =log(b).
a standard deviation of the estimator of ¢ = log(b) (see equation (11) in [3]).
GPHE only.

a number of the lowest Fourier frequences trimmed.
a number of the highest Fourier frequency used.

a name of the time series.

a Hurst exponent estimation method used.

a matched call.

[1] PM. Robinson (1995), Gaussian estimation of long range dependence, Ann. of Statist. 23,

1630-1661.

[2] C. Hurvich, R. Deo, and J. Brodsky (1998), The mean squared error of Geweke and Porter-
Hudak’s estimator of the memory parameter of a long-memory time series, J. Time Series Anal. 19,
19-46, 10.1111/1467-9892.00075.

[3] E.J. McCoy, A.T. Walden, and D.B. Percival (1998), Multitaper Spectral Estimation of Power
Law Processes, IEEE Transactions on Signal Processing 46, 655—668.

See Also

ps.gphe, ps.gspe, sdf.test, trend.test

sine.taper

Computing Sinusoidal Data Tapers

Description

Computes sinusoidal data tapers directly from equations.

Usage
sine.taper(n, K = 3, ...)
Arguments
length of data taper(s)
number of data tapers
Details

See reference.
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Value

an object of class sine.taper that is a vector or matrix of data tapers.

Author(s)
B. Whitcher, modified by J. Mayer

References

Riedel, K. S. and A. Sidorenko (1995) Minimum bias multiple taper spectral estimation, /EEE
Transactions on Signal Processing, 43, 188-195.

See Also

dpss.taper.

tdhee Time Domain Hurst Exponent Estimate Object

Description
Time domain Hurst exponent estimate object is generated by a time domain Hurst exponent estima-
tion function (dfa. lse).

Value

An object of class t dhee has the following properties:

H an estimate of the Hurst exponent.
sdH a standard deviation of the estimator of H.
r a fluctuation function scaling factor from F(s) ~ rs'’.
q q = log(r).
sdg a standard deviation of the estimate of q.
L a lower scale cut off.
M an upper scale cut off.
ffe the name of the ffe object used.
method a Hurst exponent estimation method used.
call a matched call.
See Also

dfa.ffe,dfa.lse, sdhee
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trend.test Univariate time series linear trend estimation and detection

Description

This function estimates a linear trend for a univariate time series using linear regression and then
estimates its confidence intervals relatively to three competing hypothesis regarding residuals’ au-
tocorrelation structure: white noise, AR(1), power law. The function also estimates the number of
data points (desired time series length) required to detect the observed trend for a given significance
level and a test power under each hypothesis.

Usage

trend.test (x, ar = NULL, h = NULL, a = 0.05, p = 0.5,
verbose = TRUE, na.action = na.fail,
demean = TRUE, series = NULL)

Arguments
x a vector containing a uniformly sampled real valued time series.
ar optional object of class sdare. It could be generated by ps.arl. Tests the
trend of AR(1) model.
h optional object of class sdhee. It could be generated by ps . gphe or ps . gspe.
Tests the trend of Power Law model.
a significance level
power of the test specified for calculation of a number of data points required to
detect the observed trend
verbose a logical flag. If TRUE (the default), prints information while executing.
na.action function to be called to handle missing values.
demean a logical flag. If TRUE (the default), the mean value of x is set to 0.
series a name for the series. Default: deparse(substitute(x)).
Value

A list with the following elements:

intercept an intercept estimate.

trend a slope estimate.

sd a standard deviation of the linear trend residuals.

trend.est a matrix of size 3x2 which first column contains estimated confidence intervals

for the trend and the second column contains the number of data points required
to detect the estimated trend for the given power. The rows correspond to dif-
ferent assumptions about trend residuals autocorrelation structure. Thus the first
row corresponds to the case of white noise residuals, the second to AR1, and the
last one to power law.

length the length of the time seires
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Note

All periodical signals have to be removed from the time series prior to t rend. test application!

References

[1] R.L. Smith (1993), Long-range dependence and global warming, In Statistics for the Environ-
ment (V. Barnett and F. Turkman, eds.), John Wiley, Chichester, 141-161.

[2] D. Vyushin, V. Fioletov, and T. Shepherd, (2007), Impact of long-range correlations on trend
detection in total ozone, J. Geophys. Res. 112, 10.1029/2006JD008168,
http://www.atmosp.physics.utoronto.ca/people/vyushin/Papers/Vyushin_
Fioletov_Shepherd Trend Detection_in_Total Ozone.pdf.

See Also

sdare, sdhee, ps.pgram, ps.mtm, ps.gphe, ps.gspe

Examples

library (PowerSpectrum)

NAO = NAO_DJFM_Hurrell_ 1864_2008[seq((1946-1864+1), (1995-1864+1)) ]
plot (seq(1946,1995), NAO, type="o", xlab="")

NAOres = 1m(NAO ~ seq(l,length(NAO)))Sresiduals

pse = ps.pgram(NAOres)

sdare = ps.arl (pse)

sdhee = ps.gspe (pse)

tr = trend.test (NAO, ar=sdare, h=sdhee)
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