PHY 499S EARTH OBSERVATIONS FROM SPACE Spring Term 2005 Mid-Term Test 1:00 - 2:00 PM, Friday, March 4

NOTES: Answer <u>ALL</u> five questions. Each question is worth a total of 20 marks. Marks will be given for workings and units, as well as for final answers. Non-programmable pocket calculators may be used. A list of constants and equations is provided. No other aid sheets are allowed.

QUESTIONS:

- 1. Indicate whether the following statements are true or false. If false, give a <u>BRIEF</u> (one sentence) correct version, but not simply the negative of the original statement. *[Each part is worth 2 marks.]*
- (a) CO₂ and H₂O are two of the most important atmospheric absorbers at microwave wavelengths, where electronic transitions in the molecules give rise to discrete spectral lines.
- (b) The inverse problem is complicated by non-uniqueness of the solution, discreteness of the measurements, and instability due to errors on the observations.
- (c) The solar constant is the average radiant exitance leaving the surface (photosphere) of the Sun.
- (d) The radiant exitance and the irradiance are both directionally defined terms for the radiant flux density.
- (e) If the wavelength-dependent monochromatic intensity is directly proportional to wavelength, $I_{\lambda} \propto \lambda$, then the frequency-dependent monochromatic intensity is $I_{\nu} \propto \nu$.
- (f) The Rayleigh-Jeans Approximation states that wavelength at which the Planck blackbody function peaks is inversely proportional to temperature.
- (g) Cross-track or whiskbroom scanning is usually accomplished by using a scanning mirror, however, changing the pitch of a satellite will result in a similar scan pattern.
- (h) The scattering behaviour of clouds depends on the wavelength of light being scattered. At ultraviolet wavelengths, clouds act almost like blackbodies, absorbing nearly all of the radiation incident on them.
- (i) The terrestrial irradiance spectrum peaks in the ultraviolet near 0.5 μ m, and is therefore often referred to as shortwave radiation.
- (j) Newton's Laws of Motion and Gravitation can be used to show that the velocity of an Earth-orbiting satellite depends only on the mass of the satellite.

- Sweden's third satellite, FREJA, was launched in 1992, and carried an Ultraviolet Auroral Imager 2. from the University of Calgary to study the auroral regions. FREJA was launched into a highly elliptical polar orbit, having a perigee altitude of 597 km, an apogee altitude of 1763 km, an inclination of 63.0° , and a period of 108 minutes.
- (a) What are the semi-major axis and eccentricity of FREJA's orbit? [4 marks]
- (b) If the time of perigee passage is 0, what are the eccentric anomaly, the mean anomaly, and the satellite altitude when the true anomaly is $\pi/2$ radians? Sketch the geometry. [6 marks]
- (c) How many orbits did FREJA make in a day? How often would FREJA revisit a given site, and after how many orbits? [4 marks]
- (d) What was the difference in longitude between successive ascending nodes (in degrees at the equator)? [4 marks]
- (e) Did FREJA have a prograde or retrograde orbit? Explain. [2 marks]
- The intrinsic sensitivity of a radiometric observation of thermal emission is determined by the 3. $S = \frac{1}{B_{\lambda}} \frac{\partial B_{\lambda}}{\partial T}$

Planck blackbody function, and is given by

as this is the fractional change in the detected power for a unit change in the blackbody temperature of the source. Derive an explicit expression for this sensitivity in terms of λ , T, c₁, and c₂, and calculate this sensitivity at a temperature of 290 K for 4 µm and for 11 µm, wavelengths that lie in two of the Earth's IR atmospheric windows. Comment briefly on your results. [20 marks]

- 4. Answer each of the following.
- (a) Derive an expression relating the atmospheric pressure at which the Lorentz line width equals the Doppler line width $(\alpha_I = \alpha_D)$ to the wavenumber at line centre $(\overline{\nu}_a)$. [8 marks]
- (b) Calculate this pressure and the corresponding line width for the H_2O absorption line at 6.25 μ m, assuming $\alpha_{I}(T_{a},p_{a})=0.1$ cm⁻¹ and a constant temperature of 300 K. In which regions of the atmosphere is Lorentz and Doppler line broadening each more important for this line? [12 marks]
- The Dobson spectrometer is a ground-based instrument used to determine the total vertical column 5. abundance of ozone from measurements of the intensity of sunlight at a pair of wavelengths in the ultraviolet region, one at which absorption by ozone is strong and one at which absorption by ozone is weak.
- (a) Sketch the viewing geometry for a Dobson instrument observing the sun at a solar zenith angle of 55°, assuming a plane parallel (i.e., not spherical) atmosphere. [5 marks]
- (b) Ignoring emission and scattering, write down Beer's Law for the monochromatic intensity, $I(\lambda)$, as a function of the intensity of the solar radiation incident on the top of the atmosphere (I_0) , the absorption cross section (k_a) , and the total optical mass (u) in the slant path. Explain any assumptions. [5 marks]
- (c) The terms I_{λ} , I_0 , and k_a are all wavelength dependent, so the equation from (b) is applied at both wavelengths, typically $\lambda_1 = 325.4$ nm and $\lambda_2 = 305.5$ nm. Derive an expression for optical mass u in terms of $I(\lambda_1)$, $I_0(\lambda_1)$, $k_a(\lambda_1)$, $I(\lambda_2)$, $I_0(\lambda_2)$, and $k_a(\lambda_2)$. [5 marks]
- (d) Given the known constant values $I_0(\lambda_1)/I_0(\lambda_2) = 1.57$, $k_a(\lambda_1) = 1.149 \times 10^{-20}$ cm²/molecule, and $k_a(\lambda_1) = 1.149 \times 10^{-20}$ cm²/molecule, and ka(\lambda_1) = 1.149 \times 10^{-20} cm λ_2) = 1.62 × 10⁻¹⁹ cm²/molecule, and a measured value of I(λ_1)/I(λ_2) = 6.20, what are the slant path optical mass and the vertical path optical mass? Ozone optical masses, or column amounts, are usually expressed in Dobson units (DU), with 1 DU equivalent to 2.687×10^{16} molecules/cm². What are the ozone slant column and vertical column in DU? [5 marks]

TABLE OF CONSTANTS

CONSTANT	SYMBOL	VALUE
speed of light in a vacuum	С	$3.00 \times 10^8 \text{ m s}^{-1}$
gravitational constant	G	$6.673 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
orbital constant	G M _E	$3.986 \times 10^{14} \text{ m}^3 \text{ s}^{-2}$
standard gravitational acceleration	G	9.81 m s ⁻¹
Planck's constant	Н	$6.626 \times 10^{-34} \text{ J s}$
Boltzmann's constant	К	1.381 × 10 ⁻²³ J K ⁻¹
first radiation constant	c ₁	$1.191 \times 10^{-16} \text{ W m}^2 \text{ sr}^{-1}$
second radiation constant	c ₂	$1.439 \times 10^{-2} \text{ m K}$
Stefan-Boltzmann constant	σ	$5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
Wien's displacement law constant	None	2.8979 × 10 ⁻³ m K
Avogadro's number	NA	6.022×10^{23} molecules mole ⁻¹
Dobson unit	DU	$1 \text{ DU} = 2.687 \times 10^{16} \text{ molecules/cm}^2$
molar gas constant	R	8.3143 J mole ⁻¹ K ⁻¹
angular velocity of Earth	$d\Omega_E / dt$	$7.292 \times 10^{-5} \text{ rad s}^{-1}$
solar day	T _{solar}	86,400 s
sidereal day	T _{sidereal}	86,164.1 s
mean radius of Earth	R _E	$6.371 \times 10^6 \mathrm{m} = 6371 \mathrm{km}$
mass of Earth	M _E	$5.9737 \times 10^{24} \text{ kg}$
standard pressure	p _o	$1013.25 \text{ mbar} = 1.01325 \times 10^5 \text{ N m}^{-2}$
standard temperature	T _o	273.15 K
scale height of Earth's atmosphere	H = RT/Mg	~ 7 km
radius of Sun (visible disk)	R _{sun}	$6.96 \times 10^8 \text{ m}$
mean Earth-Sun distance	d _{sun}	$1.50 \times 10^{11} \text{ m}$
solar constant	S _{sun}	1368 W m ⁻²
molecular mass of CO ₂	М	44 g/mole=7.3065×10 ⁻²⁶ kg/molecule
molecular mass of H ₂ O	М	18 g/mole=2.9890×10 ⁻²⁶ kg/molecule
molecular mass of O ₂	М	32 g/mole=5.3138×10 ⁻²⁶ kg/molecule

LIST OF EQUATIONS

$$\begin{split} F &= \frac{Gm_1m_2}{r^2} \qquad T = 2\pi\sqrt{\frac{r^3}{Gm_E}} \qquad v = \sqrt{Gm_E\left(\frac{2}{r} - \frac{1}{a}\right)} \qquad r = \frac{a(1 - \varepsilon^2)}{1 + \varepsilon \cos\theta} \\ M &= e - \varepsilon \sin e = n(t - t_p) \qquad \cos\theta = \frac{\cos e - \varepsilon}{1 - \varepsilon \cos e} \qquad \cos e = \frac{\cos \theta + \varepsilon}{1 + \varepsilon \cos\theta} \qquad \tilde{T} = \frac{2\pi}{\bar{n} + \frac{d\omega}{dt}} \\ LT &= UT + \frac{\Psi}{15^\circ} \qquad ECT = UT + \frac{\Psi_N}{15^\circ} = 12 + \frac{\Delta\Psi}{15^\circ} \qquad \tilde{S} = c^2 \varepsilon_0 \vec{E} \times \vec{H} \\ I &= \int_0^{\infty} I_{\lambda} d\lambda = \int_0^{\infty} I_{\nu} d\nu = \int_0^{\infty} I_{\bar{\nu}} d\bar{\nu} \qquad B_{\lambda} = \frac{2hc^2 \lambda^{-5}}{\exp\left(\frac{hc}{\lambda kT}\right) - 1} = \frac{c_1 \lambda^{-5}}{\exp\left(\frac{2}{\lambda T}\right) - 1} \\ \lambda_{\max}(\mu n) &= \frac{2897.9}{T(K)} \qquad M_{BB} = \sigma T^4 \qquad B_{\lambda} \cong \frac{c_1 T}{c_2 \lambda^4} \qquad \alpha_{\lambda} + R_{\lambda} + \tau_{\lambda} = 1 \qquad \alpha_{\lambda} = \varepsilon_{\lambda} \\ dI_{\lambda} &= -\sigma_a(\lambda)I_{\lambda}ds = -\rho k_a(\lambda)I_{\lambda}ds = -k_a(\lambda)I_{\lambda}du \\ \tau_{\lambda}(z_1, z_2) &= \exp\left[-\int_{z_1}^{z_2} \frac{k_a(\lambda)\rho}{\mu} dz\right] = \exp\left[-\int_{u_1}^{u_2} k_a(\lambda)du\right] \\ \frac{\mu}{\rho k_e(\lambda)} \frac{dI_{\lambda}}{dz} &= -I_{\lambda}(\theta, \phi) + \tilde{\alpha}_{\lambda} B_{\lambda}(T) + \tilde{\omega}_{\lambda} < I_{\lambda} > \qquad < I_{\lambda} > = \frac{1}{4\pi} \int_{0}^{2\pi} I_{\lambda}(\mu', \phi') p(\Psi_S) d\mu' d\phi' \end{split}$$

$$\begin{split} \widetilde{\alpha}_{\lambda} &= \frac{\sigma_{a}(\lambda)}{\sigma_{e}(\lambda)} \qquad \widetilde{\omega}_{\lambda} = \frac{\sigma_{s}(\lambda)}{\sigma_{e}(\lambda)} \qquad \frac{\mu}{\rho k_{e}(\lambda)} \frac{dI_{\lambda}}{dz} = -I_{\lambda}(\mu, \phi) + B_{\lambda}(T) \\ k_{a}^{L} &= \frac{S}{\pi} \frac{\alpha_{L}}{(\overline{v} - \overline{v}_{o})^{2} + \alpha_{L}^{2}} \qquad \alpha_{L}(T, p) = \alpha_{L}(T_{o}, p_{o}) \frac{p}{p_{o}} \sqrt{\frac{T_{o}}{T}} \\ k_{a}^{D} &= \frac{S}{\pi} \frac{\alpha_{L}}{\sqrt{\pi}} \exp\left[-\frac{(\overline{v} - \overline{v}_{o})^{2}}{\alpha_{D}^{2}}\right] \qquad \alpha_{D}(T, \overline{v}_{o}) = \sqrt{\frac{2kT}{M}} \frac{\overline{v}_{o}}{c} \\ \chi &= \frac{2\pi r}{\lambda} \qquad Q_{s} = \frac{k_{s}}{\pi r^{2}} \qquad \sigma_{s} = \int_{0}^{\infty} \pi r^{2} Q_{s} N(r) dr \qquad \sigma_{s}(\lambda) \cong \frac{8\pi^{3}}{3\lambda^{4}} \frac{\left[n_{o}(\lambda)^{2} - 1\right]^{2}}{N_{s}^{2}} f(\delta) \\ m &= n - i n' \qquad I_{r}(\theta_{r}, \varphi_{r}) = \int_{0}^{2\pi\pi/2} \int_{0}^{2} I_{i}(\theta_{i}, \varphi_{i}) \gamma_{r}(\theta_{r}, \varphi_{r}; \theta_{i}, \varphi_{i}) \cos \theta_{i} \sin \theta_{i} d\theta_{i} d\varphi_{i} \\ \gamma_{r}(\theta_{r}, \phi_{r}; \theta_{sun}, \phi_{sun}) = \frac{I_{r}(\theta_{r}, \phi_{r})}{I_{sun} \Omega_{sun} \cos \theta_{sun}} = \frac{I_{r}}{E_{sun}} \\ A &= \frac{M}{E} = \int_{0}^{2\pi} \gamma_{r}(\theta_{r}, \varphi_{r}; \theta_{sun}, \varphi_{sun}) \cos \theta_{r} d\Omega_{r} \end{split}$$

PHY499S Mid-Term Test (Spring Term 2005)