PHY2505S
Atmospheric Radiative Transfer
and Remote Sounding

Lecture 9

* Vibration-Rotation Spectra
 Band Nomenclature
* Width and Shape of Spectral Lines
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Vibration-Rotation
Spectra
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Vibration-Rotation Spectra
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Band Nomenclature
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Band positions shift > for first overtone band.

Band centre and line spacing for first overtone are not exactly predicted by

—two-term” energy expansion
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Polyatomic Molecules: H,0O

Three normal modes of vibration of H,O and
the resulting infrared bands.
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(a) Fundamental vibration modes of the water molecule v 1 =3 657 cm -1 ,v2=1595cm -1, and v 1 =3 756 cm
-1 [Waewsak, 2004]. (b) Rotational degrees of freedom of the water molecule along with the respective rotational
axes. (c) Schematic energy diagram with vibrational states v 1 = 0 and v 2 = 1 and rotational states with quantum
numbers J = 0. .. 3. Transitions with AJ = +1 are denoted as R-branch, transitions with AJ = 0 are denoted as Q-
branch, and transitions with AJ = —1 are denoted as P-branch [Graybeal, 1988].

Christoph Dyroff, https://www.researchgate.net/figure/a-Fundamental-vibration-modes-
of-the-water-molecule-n-1-3-657-cm-1-n-2-1-595-cm_figl 36453728

Maayke Stomp, https://www.researchgate.net/figure/The-
three-vibrational-modes-of-the-water-molecule-and-their-

fundamental-frequencies-in_fig3_ 5803530
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The three vibrational modes of the water molecule and their fundamental
frequencies in liquid water: symmetric stretching (v1), bending (v2) and
asymmetric stretching (v3). The atoms move in the directions indicated by
arrows. (b) Absorption spectrum of pure water (Hale and Querry, 1973;
Segelstein, 1981; Pope and Fry, 1997). Peaks in the absorption spectrum
correspond to the fundamental frequencies and higher harmonics of the
vibrations of the water molecules. (c) Absorption spectrum of pure water in
the visible and infrared region. Shoulders in the absorption spectrum
correspond to the third, fourth, fifth, sixth and seventh harmonics of the
symmetric and asymmetric stretch vibrations, as indicated.
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Infrared Absorption Bands -1

Typical infrared absorption bands Al = 0
are characterized by: Al=-1 Q AJ=+1

e a central peak — due to the A
molecule changing its
vibrational state (this may
or may not exist)

e “humps” — due to the molecule
changing both its vibrational
and rotational states
(composed of many lines).
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Infrared Absorption Bands - 2

e The energy diagram shows that: J=3
—> a spectral line on the low 2 » AJ=0 (Q)
wavenumber (energy) side is 1 :/
caused by a decrease in rotational il v=1
energy (AJ = -1, where J is the 0
rotational quantum number) AJ=-1(P) Al=+1 (R)

—> a spectral line on the high
wavenumber (energy) side is
caused by an increase in rotational
energy (AJ = +1)

_ J=3

e Each band is due to the allowed 2

values of the vibrational quantum 1
number v. v=0
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Infrared Absorption Bands - 3

e The energy absorption can be written as:

hf oc hev,, +hev,

— N~

Various bands Lines within bands

e All the bands of a given gas have similar bands, as they share the
same rotational wavenumbers v,

e The large central peak is caused by the v, being slightly
affected by the rotational state and therefore even if the rotational
state does not change there are slight differences in the
absorption energy for different vibrational states.
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Infrared Absorption Bands - 4

e Cold band — the lower state of the transition is the ground state.

e Hot band — the lower state is some other state (not ground state).

—> These are generally much weaker and very temperature dependent
because the lower state population varies with exp(-hcv, /KT)

e Each infrared band consists of spectral lines

—> This means that the monochromatic absorption coefficient k, varies
wildly in a very short distance in wavenumber space.

—> A typical band may contain about A
2000 significant lines, as well as
many weak lines.

—> This makes the calculation of total
absorption and heating rates very
complex!

v

Figure 54: Typical & for a molecule
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Vibration-Rotation Band Absorption

e Accurate determination of the absorption of a band can require a
complex calculation.

e Independent line approximation
—> Applicable if the absorptions of individual lines do not overlap.
—> Each line has its own equivalent width.
—> The band absorption is just the sum of the individual lines.

A
k
® In the Case Of Overlapplng Indapendeant COwerlappad
absorptions — the band
absorption is different from
.
the sum of the absorptions v

of the lines.
Figure 57: Effect of Overlapping Lines
can vary
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Width and Shape of Spectral Lines
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