PHY2505S Atmospheric Radiative Transfer and Remote Sounding

Lecture 8

- Molecular Absorption and Emission
- Vibration-Rotation Spectra

Greenhouse Gases

• Water vapour (H₂O)

- \rightarrow most common greenhouse gas
- \rightarrow increases as surface temperature rises

• Carbon dioxide (CO₂)

- \rightarrow released by plant and animal life, decay, and burning of fuels
- \rightarrow removed by plant photosynthesis and absorption by the oceans

Methane (CH₄)

- \rightarrow not as common in volume as H₂O or CO₂
- \rightarrow very effective at trapping heat powerful greenhouse gas
- → wetlands, rice paddies, animal digestion, fossil fuel extraction, decaying garbage

• Nitrous oxide (N₂O)

 \rightarrow soils and the oceans, some from burning fossil fuels and fertilizer use

• Ozone (O_3)

 \rightarrow most ground level ozone is from chemical reactions involving pollutants

• Halocarbons

- \rightarrow anthropogenic chemicals containing bromine, chlorine, or fluorine, and carbon
- \rightarrow extremely powerful greenhouse gases

Greenhouse Gases (GHGs)

Greenhouse gases = gases with vib-rot absorption features at ~5-50 μ m

VIBRATIONAL MODES OF CO₂

- Major greenhouse gases: H₂O, CO₂, CH₄, O₃, N₂O, CFCs,...
- <u>Not</u> greenhouse gases: N₂, O₂, Ar, ...

Adapted from D. Jacob

Molecular Absorption and Emission

Rotational Energy Levels

Figures are from C.N. Banwell, Fundamentals of Molecular Spectroscopy, 3rd Edition, 1983.

These diagrams are relevant to material on pages 2-3 of the notes.

Figure 2.2 shows the energy levels: E = BJ(J+1) in cm⁻¹ = 0, 2B, 6B, 12B, 20B, etc.

Figure 2.3 shows the locations of spectral lines based on energy transitions:

 $\Delta E = 2B(J+1)$ in cm⁻¹

= 2B, 4B, 6B, 8B, etc.

so they are equally spaced

Figure 2.2 The allowed rotational energy levels of a rigid diatomic molecule.

Figure 2.3 Allowed transitions between the energy levels of a rigid diatomic molecule and the spectrum which arises from them.

Vibration-Rotation Spectra