PHY2505S Atmospheric Radiative Transfer and Remote Sounding

Lecture 2

- Blackbody Radiation
- Additional Laws of Radiation

Radiant Flux Density and Radiance

Blackbody Radiation

- Now, let's move from the definitions of radiant flux density and intensity/radiance, to look at some simple radiation fields.
- Consider a large insulated spherical cavity. Observations will show that
 - 1. There is a homogeneous isotropic radiation field inside the cavity.
 - 2. This field is independent of the exact size and construction of the cavity.
 - 3. The strength of the field depends on the temperature of the cavity.
- Next, consider a section of the cavity's surface. Because the field is isotropic, the energy per unit area incident on the surface is $F_{\lambda} = \pi I_{\lambda}$.
 - \rightarrow Let's look at what happens to this radiation...

Blackbody Radiation

Blackbodies

- A <u>blackbody</u> is a <u>perfect emitter</u> it emits the maximum possible amount of radiation at each wavelength.
- A blackbody is also a <u>perfect absorber</u>, absorbing at all wavelengths of radiation incident on it. Therefore, it looks black.
- Independent of the type of material
- Isotropic in nature (i.e., the same in all directions)
- Total energy is proportional to T⁴
- Peak emission is given by

 $\overline{\nu}\approx 2T$

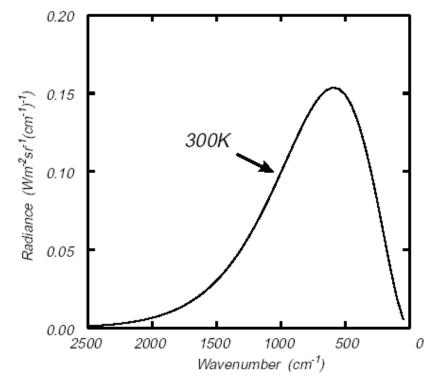
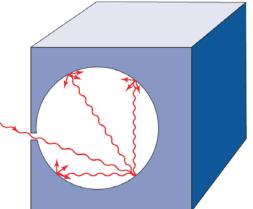


Figure 9: Blackbody Emission Curve

Blackbody energy distribution

Planck's Blackbody Function

- No real materials are perfect blackbodies. However, the radiation inside a cavity (whose walls are opaque to all radiation) is the radiation that would be emitted by a hypothetical blackbody at the same temperature. The cavity walls emit, absorb, and reflect radiation until equilibrium is reached.
- Planck postulated that atoms oscillating in the walls of the cavity have discrete energies given by: E = n h v



where

Wallace and Hobbs, Figure 4.5

 \rightarrow n = integer (quantum number), h = Planck's constant, v = frequency

 A quantum of energy emitted when an atom changes its energy state is then

$$\Delta E = h v (\Delta n = 1).$$

Planck's Blackbody Function

- Using these two assumptions, Planck derived the <u>blackbody function</u>, describing the <u>radiance</u> emitted by a blackbody: where
 - \rightarrow B_{λ} = monochromatic radiance (W m⁻² sr⁻¹ μ m⁻¹)
 - \rightarrow k = Boltzmann's constant
 - \rightarrow T = absolute temperature
- This can be written as: where
 - \rightarrow c₁ = first radiation constant (1.191 × 10⁻¹⁶ W m² sr⁻¹)
 - \rightarrow c₂ = second radiation constant (1.439 × 10⁻² m K)
- \therefore The radiance emitted by a blackbody depends only on λ and T.

 $\mathsf{B}_{\lambda}(\mathsf{T}) = \frac{\mathsf{C}_{1}\lambda^{-\mathsf{b}}}{\exp\left(\frac{\mathsf{C}_{2}}{2\mathsf{T}}\right) - 1}$

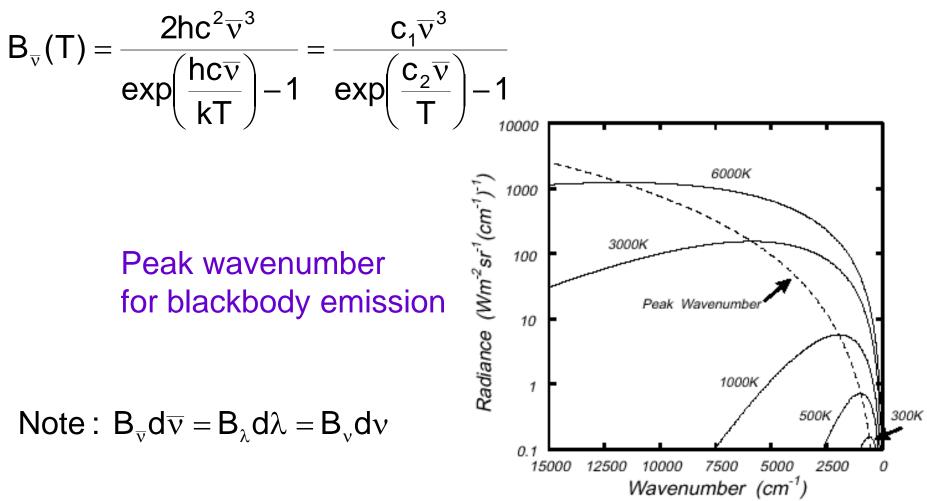
- \rightarrow B_{λ}(T) increases with temperature
- \rightarrow the λ of maximum B_{λ}(T) decreases with temperature

Note: some textbooks have π in denominator so different value for c₁

 $B_{\lambda}(T) = \frac{2hc^{2}\lambda^{-5}}{exp\left(\frac{hc}{\lambda kT}\right) - 1}$

Planck's Blackbody Function

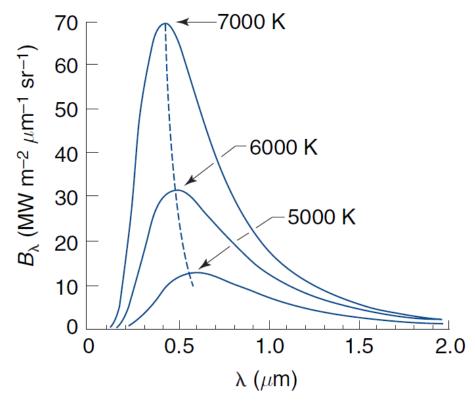
We can show that the equivalent form of Planck's function as function of wavenumber is:



Additional Laws of Radiation

Wien's Displacement Law

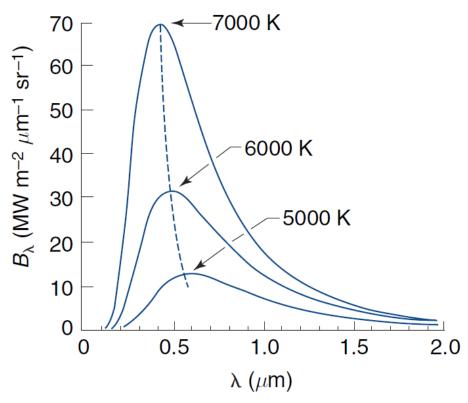
- The hotter the object, the shorter the λ of its maximum intensity (e.g., element on a stove).
- This law can be used to determine the T of a blackbody from the position of the maximum monochromatic radiance.



Wallace and Hobbs, Figure 4.6

Wien's Displacement Law

- The wavelength at which B_λ(T) is a maximum is determined using:
- This gives: $\lambda_m = \frac{2897.9}{T} \mu m$ (T in K) $\rightarrow \underline{\text{Wien's Displacement Law}}$.
- Or for wavenumbers: $\overline{v}_{m} = 1.962T \cong 2T \text{ cm}^{-1}$
- The hotter the object, the shorter the λ of its maximum intensity (e.g., element on a stove). This law can be used to determine the T of a blackbody from the position of the maximum monochromatic radiance.

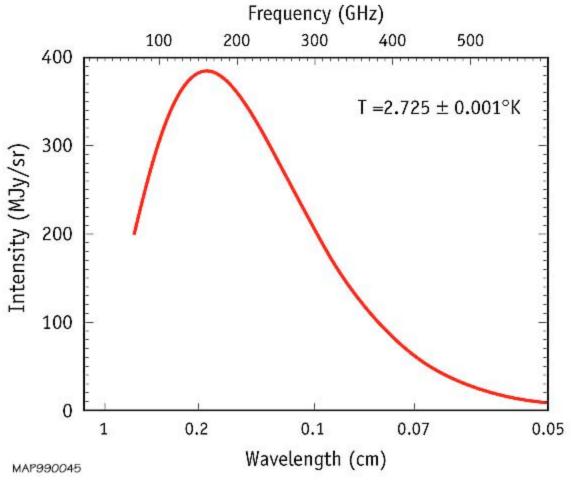


 $\frac{\partial B_{\lambda}(I)}{\partial I} = 0$

Wallace and Hobbs, Figure 4.6

Blackbody Radiation

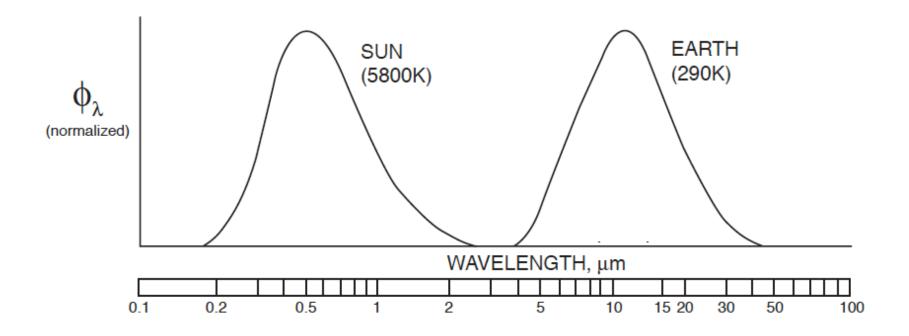
SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND



http://map.gsfc.nasa.gov/universe/bb_tests_cmb.html

PHY2505 – Spring 2020

Solar and Terrestrial Radiation



Stefan-Boltzmann Law

- The monochromatic radiant exitance is simply: $M_{\lambda}(T) = \pi B_{\lambda}(T)$ because the blackbody radiance is isotropic (independent of dir'n).
- We can use this to determine the total radiant exitance from a blackbody

$$M(T) = \int_{0}^{\infty} M_{\lambda}(T) d\lambda = \int_{0}^{\infty} \pi B_{\lambda}(T) d\lambda = \dots = \frac{\pi^{5}}{15} \frac{C_{1}}{c_{2}^{4}} T^{4}$$

$$\therefore \quad M_{BB}(T) = \sigma T^{4} \text{ or } B(T) = \frac{\sigma T^{4}}{\pi} \longrightarrow \underline{Stefan-Boltzmann Law}$$

where

 $\rightarrow \sigma$ = Stefan-Boltzmann constant = 5.67 × 10⁻⁸ W m⁻² K⁻⁴

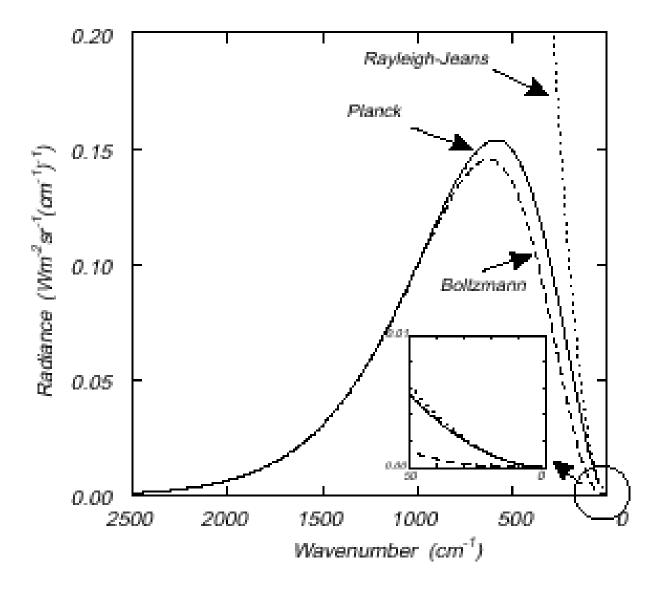
- This states that the total amount of radiation emitted from a given surface area is proportional to T^4 .
- If M_{BB} (=F) is known, this can be used to calculate an <u>equivalent</u> blackbody temperature, or effective emission temperature, T_F

•

Rayleigh Jeans Approximation

- At longer λ , the Planck blackbody function can be simplified.
- For λ in the microwave region, $c_2 / \lambda T << 1$ for T relevant to Earth.
- $\therefore \exp\left(\frac{c_2}{\lambda T}\right) \approx 1 + \frac{c_2}{\lambda T} \quad \text{giving} \quad B_{\lambda}(T) \approx \frac{c_1}{c_2} \frac{T}{\lambda^4} \rightarrow \frac{\text{Rayleigh Jeans}}{\text{Approximation}}.$
- It states that in the microwave region, the radiance is simply linearly proportional to T.
- Often the radiance will be scaled by $(c_1/c_2)\lambda^{-4}$ to get <u>brightness</u> <u>temperature</u>, T_b, which is radiance in units of temperature.
- T_b is the temperature required to match the measured intensity to the Planck blackbody function at a given λ .
- T_b is also used in the infrared (referred to as the <u>equivalent</u> <u>brightness temperature</u>), but it must be derived from the blackbody function.
- T_b is a wavelength-dependent equivalent blackbody temperature.

Equations for Blackbody Radiation



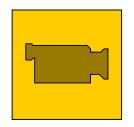
The Blackbody Spectrum

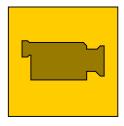
PhET Interactive Simulations, University of Colorado,

https://phet.colorado.edu/en/simulation/blackbody-spectrum

Interactive blackbody animation:

 https://phet.colorado.edu/sims/html/blackbodyspectrum/latest/blackbody-spectrum_en.html





Grey Bodies

 Thus far, we have been discussing only blackbody radiance. In order to quantify how closely a material approximates a blackbody, the <u>emissivity</u> of the material is defined.

$$\epsilon_{\lambda} \equiv \frac{\text{emitted radiance at } \lambda}{\text{blackbody radiance at } \lambda} = \frac{I_{\lambda}}{B_{\lambda}(T)}$$

Wavelength-dependent

- For a blackbody, $\varepsilon_{\lambda} = 1$.
- For other materials, called grey bodies, $0 \le \varepsilon_{\lambda} < 1$.
- Can also define:
 - \rightarrow absorptivity $\alpha_{\lambda} \equiv$ absorbed radiance at λ / incident radiance at λ
 - \rightarrow <u>reflectivity</u> R_{λ} , $\rho_{\lambda} \equiv$ reflected radiance at λ / incident radiance at λ
 - \rightarrow transmittivity $\tau_{\lambda} \equiv$ transmitted radiance at λ / incident radiance at λ
- These three quantities describe the three possibilities for incident radiation. All have values between 0 and 1.

Kirchoff's Radiation Law

 By the conservation of energy, the sum of the absorptance, the reflectance, and the transmittance must be unity:

$$\alpha_{\lambda} + \mathsf{R}_{\lambda} + \tau_{\lambda} = 1.$$

- <u>Kirchoff's radiation Law</u> states that for a body in local thermodynamic equilibrium (LTE): $\alpha_{\lambda} = \varepsilon_{\lambda}$
 - → so the monochromatic emittance must be equal to the monochromatic absorptance, and
 - \rightarrow a medium may absorb radiation of a particular λ , and at the same time also emit radiation of the same λ .
- The rate at which emission takes place is a function of T and λ .
- Note: LTE is characterized by uniform T and isotropic radiation \rightarrow true in the atmosphere below ~40 km (Liou; 100 km K&VH).

Infrared Emittance

 Any planetary surface looks reasonably "black" when considering thermal (i.e., infrared) radiation emitted from it.

Some examples:

Material	Infrared Emissivity
Sand (wet)	0.962
Sand (dry)	0.949
Peat (dry)	0.970
Grass (thick, green)	0.986
Fresh Snow	0.986
Dirty Snow	0.969

- So we will not be too much in error if we treat planetary surfaces as blackbody surfaces.
- In contrast, many polished surfaces have $\varepsilon_{\lambda} \sim 0$ in the infrared (e.g., gold has $\varepsilon_{\lambda} = 0.01$ despite its "brightness" in the visible).

Planetary Radiation Balance

- A planet radiates energy at a rate of $M_{BB} = \sigma T^4$ per unit area (W/m²).
- For Earth (mean radius R = 6371 km), 1.2×10^{17} W are emitted continuously at an effective radiating temperature of 255 K.

Consider what would happen if this were the only energy flux.

- Earth would cool at a rate given by the simple Newtonian formula: $A_{surface}M_{BB} = 4\pi R^2 \sigma T^4 = \frac{4\pi R^3}{3}C\frac{dT}{dt}\left(=V_{Earth}C\frac{dT}{dt}\right)$
- $C = \rho c_p$ is the volumetric heat capacity of the Earth in J m⁻³ K⁻¹. Let's use the value for granite (2.2 × 10⁶ J m⁻³ K⁻¹).
- Cooling rate solution: $\frac{dT}{dt} = \frac{4\pi R^2 \sigma T^4}{\frac{4}{3}\pi R^3 C} = \frac{3\sigma T^4}{RC} = 5.3 \times 10^{-11} \text{ K s}^{-1}$
 - This is equivalent to 1.6 K per 1000 years.

Planetary Radiation Balance

- A planet radiates energy at a rate of $M_{BB} = \sigma T^4$ per unit area (W/m²). Consider what would happen if this were the only energy flux.
- Over the geological age of the Earth (~4.5 billion years), it would lose all its heat if there were no other source!

Thus:

- Any long-term model of the climate of a planet must have an overall energy balance for the system as a boundary condition.
- The time scales for the radiation problem can be very long. In the short term there are heat flows in the land, ocean and atmosphere – but in the long time only the overall heat balance will matter as everything else averages out.

Later, we'll look at the "other source" of radiation - the Sun.

• Virtually all the energy that the Earth receives and that sets the Earth's atmosphere and oceans in motion comes from the Sun.