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PHY 140Y – Foundations of Physics, Fall Term 2001  (K. Strong) Lecture 3

LECTURE #3 – SUMMARY

Integration
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= continuum equivalent of a discrete summation (= area under curve)
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SECTION II.  CLASSICAL KINEMATICS

Section II.1  Motion in a Straight Line

(A) Position Vectors - define distance and direction to a point w.r.t. some origin
At t=t1, î)t(x)t(x 11 =
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(B) Displacement Vector
displacement = the change in position over some finite time interval
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(C) Average Velocity
= change in position over some finite time interval, over the elapsed time
i.e. average velocity = displacement / time interval
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 = slope of line

(D) Instantaneous Velocity
= change in the position vector, NOT over some finite time interval, but rather
over an infinitesimal time interval

Substitute t1 = t and t2 = t + ∆t  to get:  î
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To get the instantaneous velocity at time t, shrink ∆t→0.
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= tangent to the curve at t = rate of change of displacement at time t
Note:  this is a vector quantity x||v
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, with the instantaneous speed = v
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