LECTURE #2 – SUMMARY

Vector Addition

To add two vectors, place them head-to-tail. The vector sum is the vector from the tail of the first to the head of the second.

- commutative \rightarrow order is not important: $\vec{C} = \vec{A} + \vec{B} = \vec{B} + \vec{A}$
- associative \rightarrow grouping is not important: $\vec{S} = \vec{A} + \vec{B} + \vec{C} = (\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$

Vector Subtraction

Subtraction of a vector just means adding the negative of this vector, i.e., adding a vector of the same length but opposite direction: $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = \vec{r}_2 + (-\vec{r}_1)$

The new position vector is $\vec{r}_2 = \vec{r}_1 + \Delta \vec{r}$ where $\Delta \vec{r}$ is the displacement vector.

Scalar Multiplication

e.g. $3\vec{B}$ is a vector in the same direction as \vec{B} , having 3 times the magnitude of \vec{B} Unit Vectors

The <u>unit vector</u> in the direction of \vec{B} is $n\vec{B}$, such that the magnitude of $n\vec{B}$ is 1 (no units), i.e., $\hat{b} = n\vec{B}$ with $|\hat{b}| = |n\vec{B}| = 1$.

Vectors in 2-D

The x and y <u>coordinate axes</u> define a <u>coordinate system</u> in a plane. We can define unit vectors along the x and y axes as \hat{i} and \hat{j} , with length 1 and no units.

<u>position vector</u>: $\vec{P} = x_1 \hat{i} + y_1 \hat{j}$ (vector starts at origin)

For vector \vec{A} in a plane: $\vec{A} = A_x \hat{i} + A_y \hat{j} = A \cos \theta \hat{i} + A \sin \theta \hat{j}$,

with
$$A = \sqrt{A_x^2 + A_y^2} = |\vec{A}|$$
, $\theta = tan^{-1}(A_y/A_x)$.

Vectors in 3-D

Add a third axis to x-y coordinate system using the Right Hand Rule (RHR).

In a 3-D co-ordinate system,
$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 with $A = \sqrt{A_x^2 + A_y^2 + A_z^2} = |\vec{A}|$.

 $\vec{A} = \vec{B} + \vec{C} + \vec{D} + \vec{E}$ is a set of eqns for: (1) x, (2) y, and (3) z components.

Components vs. Coordinates (in 2-D)

<u>coordinates</u> = pair of numbers specifying a given position in a coordinate system <u>components</u> (of a vector) = the lengths of a vector in the coordinate system These are equivalent if the vector starts at the origin.

Section I.3 Differentiation and Integration Differentiation

Mathematically:
$$\frac{dx}{dt} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Geometrically: = slope of line through
$$(x,t)$$
 and $(x(t + \Delta t), t + \Delta t)$ as $\Delta t \rightarrow 0$

e.g. for
$$x(t) = at^m$$
, the derivative is $\frac{dx(t)}{dt} = mat^{m-1}$