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LECTURE #25 – SUMMARY

(1) Grouping together the “sin(ωt+δ)” terms gives:

( ) 0)tsin(Ae  bmm t =δ+ωω−αω+ωα α− so
m2
b=α

 (2) Grouping together the “cos(ωt+δ)” terms gives:

( ) 0)tcos(Ae  kbmm t22 =δ+ω+α−α+ω− α− so
m
b

m
k22 α−+α=ω

where  
m
k

o =ω  = natural angular frequency of oscillation

and 2

2
2

o m4
b−ω=ω  = damped angular frequency

Note:  ω < ωo (damping reduces frequency)
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Special case: no damping, b = 0: )tcos(Ax δ+ω= ⇒ SHM !

As b (damping) increases:
→ ω decreases and T increases,

slower (more sluggish) oscillation
→ α increases, amplitude decreases

more rapidly

If ω = 0, then 2

2
2

o m4
b=ω

⇒ om2b ω=

If  om2b ω< , then the motion is underdamped.
→ oscillation occurs with an amplitude that decreases with time (as shown)

If  om2b ω= , then the motion is critically damped.
→ the damping force is the same as the spring force and the system returns to

its equilibrium state with no oscillations

If  om2b ω> , then the motion is overdamped.
→ the damping force is so large that the equation for x(t) is no longer a valid

solution of the equation of motion, and the system slowly returns to its
equilibrium state with no oscillations
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x(t) weakly damped motion:
sinusoidal oscillations within
envelope of a decaying exponential
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Driven Harmonic Motion
Now add an external harmonic forcing to the system.

Driving force: tcosFF do ω=
where ωd = driving angular frequency

The equation of motion is now maFFF ds =++

0tcosFkx
dt
dxb

dt
xdm do2

2

=ω−++

What is the solution to this equation?
→ on short time scales - complicated transient solution
→ on longer time scales - not complicated

If  tcosF do ω   is applied for long enough, then the response will eventually have
the frequency of the driving force, ωd.  So, we expect a solution of the form

)tcos(Ax d δ+ω= … after the transients die off.

Calculate v and a, and substitute in the terms:
0tcosF)tcos(kA)tsin(Ab)tcos(Am dodddd

2
d =ω−δ+ω+δ+ωω−δ+ωω−

Apply the trigonometric relations:

)sin()tcos()cos()tsin()tsin(
)sin()tsin()cos()tcos()tcos(

ddd

ddd

δω+δω=δ+ω
δω−δω=δ+ω

First, group together the )tcos( dω  terms:
0F)cos(kA)sin(Ab)cos(Am od

2
d =−δ+δω−δω−

Next, group together the )tsin( dω  terms:
0)sin(kA)cos(Ab)sin(Am d

2
d =δ+δω−δω

Solve for A and δ - messy but not hard!

The result:
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This has a general form - a resonance curve.
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