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LECTURE #24 – SUMMARY

Section IV.3  Energy in Simple Harmonic Motion

No dissipation in the system, so use ∫ •−+=+=
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Notice that U(t) and K(t) are 90° out of phase.

For maximum displacement x:
U(x) = max, v(x) = min, K(x) = min
(spring extended or compressed)

For minimum displacement x:
U(x) = min, v(x) = max, K(x) = max
(spring at equilibrium)

Energy flows back and forth between U and K.
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Simple Harmonic Motion – A Summary

SPRING PENDULUM
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Both equations have the same form.

SOLUTION: SOLUTION:
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A and so are the maximum displacements.

ENERGY
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(we showed for small angles)
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Mechanical energy is conserved.
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Section IV.4  Damped and Driven Harmonic Motion, Resonance

Damped Harmonic Motion
Simple harmonic motion includes no forces which can dissipate energy so
mechanical energy is conserved.  However, in real oscillating systems, the
energy IS usually dissipated by forces like friction.  The result is NOT simple
harmonic motion.  Such motion is called damped harmonic motion.

In many systems, the damping force is approximately proportional to velocity and
is in the opposite direction:
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where
b = constant that describes the strength of the damping
"– " sign indicates that the damping opposes the motion
If v > 0, then Fd < 0.   If v < 0, then Fd > 0.

Reconsider the case of a spring with no damping:
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Now, what if damping is active?  The equation of
motion becomes:
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This is a second order ordinary differential equation.  How do we solve it?
b = 0 : )tcos(Ax δ+ω= SHM

b ≠ 0 : try a solution of the form )tcos(Aex t δ+ω= α−

where te α−  takes the damping into account
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Substitute these expressions back into the equation of motion…
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