LECTURE #23 – SUMMARY

Uniform Circular Motion and Simple Harmonic Motion

For UCM, position vector: $\vec{r}(t) = R\cos\theta(t)\hat{i} + R\sin\theta(t)\hat{i}$

 $\theta(t) = \omega t + \delta$ phase:

 $\vec{r}(t) = R\cos(\omega t + \delta)\hat{i} + R\sin(\omega t + \delta)\hat{j}$

$$\vec{v}(t) = -\omega R \sin(\omega t + \delta)\hat{i} + \omega R \cos(\omega t + \delta)\hat{j}$$

$$\vec{a}(t) = -\omega^2 R \cos(\omega t + \delta) \hat{i} - \omega^2 R \sin(\omega t + \delta) \hat{j}$$

$$\therefore$$
 $a_x(t) = -\omega^2 x(t)$ and $a_y(t) = -\omega^2 y(t)$

equal amplitudes (R) and equal angular velocities (ω)

• $\pi/2$ phase difference since R sin($\omega t + \delta + \frac{\pi}{2}$) = R cos($\omega t + \delta$)

 $\vec{r}(t) = R\cos(\omega t + \delta)\hat{i} + R\cos(\omega t + \delta - \frac{\pi}{2})\hat{j}$ **Uniform Circular Motion:**

 $\vec{r}(t) = R_1 \cos(\omega t + \delta_1)\hat{i} + R_2 \cos(\omega t + \delta_2 - \frac{\pi}{2})\hat{j}$ Any 2-D Periodic Motion:

Section IV.2 Springs and Pendulums – Examples of SHM (1) Springs

 F_o^s = force of spring on block (restoring force): $F_o^s = -kx$, ma = -kx, $a = -\frac{k}{m}x$

This is SHM because $a \propto x$ and a is oppositely directed to x.

$$\therefore \ x(t) = A\cos(\omega t + \delta) \quad \text{and} \quad \omega^2 = -\frac{a}{x} = \frac{k}{m} \quad \text{so} \qquad \left| \omega = \sqrt{\frac{k}{m}} \right| \ T = 2\pi \sqrt{\frac{m}{k}}$$

$$\boxed{\omega = \sqrt{\frac{k}{m}}} \boxed{T = 2\pi\sqrt{\frac{m}{k}}}$$

(2) Pendulums

Force tangent to the trajectory: $F_{\hat{f}} = -mg \sin \theta$

Also have: $F_{\hat{t}} = ma_{\hat{t}} = m\frac{d^2s}{dt^2} = mL\frac{d^2\theta}{dt^2}$ using $s = L\theta$

 $\therefore \frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta \cong -\frac{g}{l}\theta$ using $\sin \theta \cong \theta$ for small θ

This is again SHM, with acceleration ∞ displacement, and in the opposing direction. Here, gravity acts as the restoring force.

In this case:
$$\theta(t) = \theta_o \cos(\omega t + \delta)$$
 with $\omega = \sqrt{\frac{g}{L}}$ and $\Delta = 2\pi \sqrt{\frac{L}{g}}$

So a simple pendulum perturbed slightly from equilibrium ($\theta \approx 0$) exhibits SHM. If θ is large, then the situation becomes non-linear and is one of the simplest systems which exhibits chaotic behaviour.