LECTURE #22 – SUMMARY

SECTION IV. SIMPLE HARMONIC MOTION

Section IV.1 Definition of Simple Harmonic Motion

Simple harmonic motion is motion in which the position of a point varies with time in a sinusoidal fashion.

i.e..

A = amplitude

 ω = angular frequency (rad/sec)

 δ = arbitrary constant = phase shift (rad)

 $\omega t + \delta$ = total phase

SHM is important because a large number of physical systems will display SHM when perturbed a small amount from equilbrium. SHM thus describes the response to small departures from equilbrium.

$$T = \frac{2\pi}{\omega}$$

Period of oscillation: $T = \frac{2\pi}{\omega}$ (i.e., $\omega T = 2\pi$ and SHM repeats after 2π rad)

Frequency: $f = \frac{\omega}{2\pi}$ cycles/second \therefore $T = \frac{1}{f}$

$$f = \frac{\omega}{2\pi}$$

Properties of SHM:

Displacement: $x(t) = A \cos(\omega t + \delta)$

 $v(t) = dx(t)/dt = -A\omega \sin(\omega t + \delta)$ Velocity:

Acceleration: $a(t) = dv(t)/dt = -A\omega^2 \cos(\omega t + \delta) = -\omega^2 x(t)$

By Newton's Second Law: $F(t) = ma(t) = -m\omega^2 x(t)$

So, in SHM, acceleration \propto displacement and force \propto displacement.

Because the force has opposite sign to the displacement, this is a restoring force.

Example: A bead at the bottom of a bowl.

At equilibrium, the bead sits at the bottom of the bowl. What happens if the bead is perturbed a little bit? SHM in x?

$$\text{Have } -g \sin \phi = \frac{\text{d}^2 s}{\text{d}t^2} \quad \text{and} \quad \sin \phi \ = \ \frac{2\alpha x}{\sqrt{1+\left(2\alpha x\right)^2}} \quad \text{so} \quad -g \frac{2\alpha x}{\sqrt{1+\left(2\alpha x\right)^2}} = \frac{\text{d}^2 s}{\text{d}t^2}$$

If the bowl is small OR the motions are small, then $s \cong x$ and $2\alpha x \ll 1$.

The equation of motion becomes: $-2g\alpha x = \frac{d^2x}{dt^2}$

This is SHM with $\omega = \sqrt{2g\alpha}$ and $x = A \cos(\omega t + \delta)$.