LECTURE #21 – SUMMARY

Section III.8 Force and Potential Energy Potential Energy Curves

How fast must a train be coasting at A to reach D? The normal force and gravity act on the train.

 $\vec{N} \perp d\vec{r}$ so only gravity (conservative) does work. Apply conservation of E_m .

To get to D, the train has to get over the top at C. Say that the train JUST gets over C, i.e., $K_C=0$. So the energy at C will be all gravitational potential energy.

$$E_{C} = U_{reference} + mgh_{C}$$

Therefore, to get to D, the actual energy of the system must be larger than this.

$$E_A = \frac{1}{2} m v_A^2 + U_{reference} + mgh_A$$

So:
$$E_A \ge E_C$$
, $\frac{1}{2}mv_A^2 + U_{reference} + mgh_A \ge U_{reference} + mgh_C$, $v_A \ge \sqrt{2g(h_C - h_A)}$

If $\frac{1}{2}mv_A^2 > \Delta U$ between A and C, then there is enough energy to get over C.

If v_A is not greater than $\sqrt{2g(h_C-h_A)}$, then the energy of the system will be insufficient to get the train over the hill at C

This hill acts as a potential barrier preventing the train from reaching D. \rightarrow

 $\Delta U = mg\Delta y$, so the shape of the roller coaster is the same as the shape of the gravitational potential energy \rightarrow potential energy curve \equiv plot of U vs. position

Force and Potential Energy

For 1-D nonconstant force:
$$U(x) = U(x_s) - \int_{x_s}^{x} F_x^c dx$$
. Differentiate: $\frac{dU(x)}{dx} = -F_x^c$

Potential energy curve for a spring: $F = F_o^s(x) = -kx$

(A) compression:
$$x < 0$$
, $\frac{dU}{dx} < 0$, $F > 0$

(A) compression:
$$x < 0$$
, $\frac{dU}{dx} < 0$, $F > 0$
(B) equilibrium: $x = 0$, $\frac{dU}{dx} = 0$, $F = 0$
(C) stretching: $x > 0$, $\frac{dU}{dx} > 0$, $F < 0$

(C) stretching:
$$x > 0$$
, $\frac{dU}{dx} > 0$, $F < 0$

When nonconservative forces are acting:

$$\begin{aligned} & \text{W}_{\text{net}}^{\text{ C}} \text{ W}_{\text{net}}^{\text{ C}} + \text{W}_{\text{net}}^{\text{ NC}} = \text{K}_{\text{f}} - \text{K}_{\text{i}} & \text{(generally true)} \\ & \text{W}_{\text{net}}^{\text{NC}} = \text{K}_{\text{f}} - \text{K}_{\text{i}} - \text{W}_{\text{net}}^{\text{C}} = \text{K}_{\text{f}} - \text{K}_{\text{i}} + \Delta \text{U}_{\text{i} \rightarrow \text{f}} = \text{E}_{\text{m}}^{\text{f}} - \text{E}_{\text{m}}^{\text{i}} & \rightarrow & \boxed{\text{W}_{\text{net}}^{\text{NC}} = \Delta \text{E}_{\text{m}}} \end{aligned}$$

Note: The change in U is associated with conservative forces only. When nonconservative forces are acting, $\Delta E_m \neq 0$. The change in mechanical energy = net work done by the nonconservative forces (i.e., dissipation).

Can $\Delta E_m = 0$ when nonconservative forces are present? Yes when $\vec{F}_{net}^{NC} \bullet d\vec{r} = 0$.