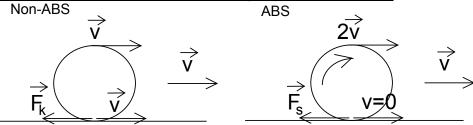
LECTURE #16 – SUMMARY

Application of Friction: Antilock Braking Systems (ABS)



- locked, skidding wheel
- all points move at same speed v
- kinetic friction between wheel and road
- rolling wheel
- bottom momentarily at rest
- static friction acts

Because $\mu_s > \mu_k$, the stopping distance is greater for the ABS case.

Centrifugal Force

= a fictitious force that arises in a rotating (i.e., non-inertial) reference frame. Looked at several examples of how centrifugal forces arise.

Inertial vs. Gravitational Mass

<u>Inertial mass</u> is the scalar that appears in Newton's Second Law: $\dot{F}_{net} = m_{inertial} \vec{a}$. <u>Gravitational mass</u> appears in Law of Universal Gravitation: $\vec{F}_{grav} = GM_{grav}m_{grav}/r^2$. There is no reason why these masses should be equal, but experiments suggest

they are to 1 part in 10^{12} . Einstein's Principle of Equivalence (1915): $m_{grav} = m_{inertial}$

Section III.6 Work, Energy, and Power **Kinetic Energy**

Given a particle of mass m, travelling at speed v, its kinetic energy is $|K = \frac{1}{2}mv^2|$

- units \rightarrow kg (m²/s²) = (kg m/s²) m = N m = Joule (J)
- scalar quantity, always positive, a relative quantity depends on v

Work-Energy Theorem for 3-D Constant Applied Force

Consider an object moving along some trajectory from \vec{r}_i to \vec{r}_f , with \vec{F}_{net} , \vec{a} constant. We applied the equations for \vec{r}_i , \vec{r}_i , \vec{v}_i , \vec{v}_i in the x, y, z directions, eliminated time [e.g., $t_f - t_i = (v_{f,x} - v_{i,x})/a_x$], and used $\vec{a} = \vec{F}_{net}/m$ to get:

$$F_{net,x}(x_f - x_i) = \frac{1}{2} m v_{f,x}^2 - \frac{1}{2} m v_{i,x}^2$$

$$F_{\text{net},y}\big(y_{_f}-y_{_i}\big)\!=\!\tfrac{1}{2}m{v_{_{f,y}}}^2-\tfrac{1}{2}m{v_{_{i,y}}}^2\qquad\text{Hence \vec{F}_{net}}\bullet\big(\vec{r}_{_f}-\vec{r}_{_i}\big)\!=\!\tfrac{1}{2}m{v_{_f}}^2-\tfrac{1}{2}m{v_{_i}}^2\,.$$

$$F_{\text{net},z}(z_f - z_i) = \frac{1}{2} m v_{f,z}^2 - \frac{1}{2} m v_{i,z}^2$$

Work-Energy Theorem for Constant (3-D) Force:

$$\vec{F}_{net} \bullet \Delta \vec{r} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

$$\vec{F}_{net} \bullet \Delta \vec{r} = K_f - K_i$$