LECTURE #12 – SUMMARY

Section III.2 Inertial vs. Noninertial Reference Frames

Newton's Laws of Motion do not hold

- (1) when $v \approx c$, i.e., motion near the speed of light
- (2) in non-inertial reference frames, i.e., in accelerating frames of reference References frames which move at constant velocity = inertial frames of reference.

Let's say that A is an inertial frame of reference.

$$\vec{\mathsf{V}}_{\mathsf{B}}^{\mathsf{P}} = \vec{\mathsf{V}}_{\mathsf{A}}^{\mathsf{P}} + \vec{\mathsf{V}}_{\mathsf{B}}^{\mathsf{A}}$$

$$\vec{v}_B^P = \vec{v}_A^P + \vec{v}_B^A$$
 and $\vec{a}_B^P = \vec{a}_A^P + \vec{a}_B^A$

First Case:

$$\vec{v}_{B}^{A}$$
 is constant

⇒ then B is also an inertial frame of reference

$$\vec{V}_B^P = \vec{V}_A^P + \vec{V}_B^A$$

so A and B measure different velocities

$$\vec{a}_{\scriptscriptstyle B}^{\scriptscriptstyle P}=\vec{a}_{\scriptscriptstyle A}^{\scriptscriptstyle P}$$

so A and B measure the same

$$\therefore$$
 $\vec{ma}_{B}^{P} = \vec{ma}_{A}^{P}$ and $\vec{F}_{A} = \vec{F}_{B}$

So observers in different inertial reference frames agree on the net force on P.

Special case: $\vec{a}_A^P = 0 \implies$ then $\vec{a}_B^P = 0$. Both observers say no net force acts on P.

This means that

- velocities can be different in different inertial frames of reference, but
- accelerations and forces CANNOT differ in different inertial reference frames
- .: "rest" is relative: can only measure relative velocities of inertial reference frames

Second Case: \vec{v}_{R}^{A} is NOT constant \Rightarrow then B is a non-inertial reference frame

$$\vec{V}_{B}^{P} = \vec{V}_{A}^{P} + \vec{V}_{B}^{A}$$

so A and B still measure different velocities

$$\vec{a}_{\scriptscriptstyle B}^{\scriptscriptstyle P} = \vec{a}_{\scriptscriptstyle A}^{\scriptscriptstyle P} + \vec{a}_{\scriptscriptstyle B}^{\scriptscriptstyle A}$$

so A and B now measure different accelerations

$$\therefore m\vec{a}_B^P = m\vec{a}_A^P + m\vec{a}_B^A \quad \text{and} \quad \vec{F}_B = \vec{F}_A + \vec{F}_f$$

Observer B sees a different force applied to P than the force that observer A sees. Observer B is mistaking his/her own acceleration for that of the object.

error = $\vec{F}_f = m\vec{a}_B^A = fictitious force$

$$\vec{a}_{R}^{P} = \vec{a}_{A}^{P} + \vec{a}_{R}^{A} = 0 + \vec{a}_{R}^{A}$$

$$\vec{F}_{\scriptscriptstyle B} = m\vec{a}_{\scriptscriptstyle B}^{\scriptscriptstyle P} \qquad \therefore \vec{F}_{\scriptscriptstyle B} = m\vec{a}_{\scriptscriptstyle B}^{\scriptscriptstyle A} = -m\vec{a}_{\scriptscriptstyle A}^{\scriptscriptstyle B}$$

Two interpretations:

- (1) a force of unknown origin is accelerating P w.r.t. B
- (2) observer B is accelerating and object P only APPEARS to be accelerating

Therefore, we conclude that Newton's Laws of motion do not hold in non-inertial frames of reference. Do NOT apply " $\vec{F} = m\vec{a}$ " in accelerating frames of reference!

at rest w.r.t. A