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[1] A framework for the statistical comparison of six coincident remote sounding
measurements is presented, which distinguishes between additive and multiplicative biases.
The relationship between multiplicative bias and error variance is explored, and three
methods are proposed for producing sets of values for three comparison variables: the
multiplicative bias, and the error variance for each of two instruments. We illustrate and
compare the three methods through the comparison of coincident measurements of the
relatively long-lived stratospheric species O3, N2O, and HNO3 from two independent
measurement sets: version 2.2 retrievals (with updated O3) from the Atmospheric Chemistry
Experiment-Fourier transform spectrometer onboard SCISAT-1, and version 1.51 retrievals
from the Earth Observing System Microwave Limb Sounder onboard Aura. We find
that multiplicative bias between the two measurement sets, compared on a common vertical
grid, is significant at some heights for O3 and N2O, and for all heights tested for HNO3.
The most realistic estimates of measurement error are produced by a method which
incorporates a third correlative data set into the analysis. Using this method, estimated
error standard deviations (SDs) are comparable between the two instruments for
O3 measurements, and are less than 10% of the mean measurement value between
approximately 100 and 1 hPa. ACE N2O measurements are consistent with a 10% error SD
at all heights tested, although the uncertainty of the estimates is large at heights above
5 hPa. Estimated MLS N2O error SDs are comparable with those for ACE in the lower
stratosphere, but increase steeply with height. For HNO3, estimated error SDs are
approximately 10% between 70 and 10 hPa for both instruments. At heights above 10 hPa
and below 100 hPa, estimated ACE errors are significantly smaller than those for MLS.
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1. Introduction

[2] Comparisons of atmospheric quantities retrieved from
remote sounding instruments aim to characterize the nature
of the differences between the measurement sets. The goal
of such comparisons may be the rigorous validation of a
new instrument against a standard, or simply a description
of the differences between two measurement sets (especially
if both sets are unvalidated).
[3] Commonly, comparisons focus on a data subset for

which both instruments are understood to measure approx-
imately the same true quantity. Differences between ‘‘coin-
cident measurements’’ are assumed to be a combination of
random noise and systematic bias.
[4] The characterization of bias is the primary goal of

comparison studies. Validation of an instrument requires
that no bias be present in comparison to a standard

instrument. The detection of bias signals the presence of
an inconsistency between the two measurement systems
which should be identified and corrected. Bias may be
detected through the use of statistical tests, which require a
priori information regarding the random instrument errors
[Rodgers, 1990].
[5] When bias is present, a description of its nature may

aid in the identification of its source. If the bias is only
additive in nature (i.e., a constant offset between data sets),
its magnitude can be estimated by the mean difference of
the two measurement sets. This procedure has the advan-
tage that the random error is averaged out over a large
enough data set, and so detailed knowledge of the errors is
not needed for the bias estimate. But bias may be multipli-
cative (i.e., dependent upon the magnitude of the measure-
ment) as well as additive [Hocking et al., 2001; von
Clarmann, 2006]. In section 2, we present a comparison
model which includes a multiplicative bias, as well as the
more typically assumed additive bias and instrument error,
and show that the mean difference may fail to illuminate
bias in the data.
[6] A secondary goal of comparisons is to verify that

the measurements are consistent with the predicted pre-
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cision of the measurements. We find that when multipli-
cative bias is present, its effect is confounded with the
effect of measurement error in an analysis of the variance
and covariance of the data. In section 3 we present three
methods for separating the confounded parameters and
producing sets of values for three variables: the multipli-
cative bias, and the error variance for the two measure-
ments. For methods 1 and 2 we assume values for one of
the three variables, and calculate the other two. In method
3, we incorporate a third measurement to estimate the
multiplicative bias, which then allows the estimation of
the error variances. A variation of method 1 has been
used previously by Fioletov et al. [2006] to calculate
uncertainties in ozone profile measurements from satellite,
ozonesonde, and ground-based observations.
[7] We apply the three methods to coincident measure-

ments of three stratospheric trace gases from two satellite
instruments: the Atmospheric Chemistry Experiment-Fourier
transform spectrometer (hereinafter, ACE), and the Micro-
wave Limb Sounder (MLS) onboard the satellites SCISAT-1
and Aura, respectively. Descriptions of the instruments, as
well as the process used to compose a set of coincident
measurements are included in section 4, and the results of the
analysis are discussed in section 5.

2. Comparison Framework

[8] In an idealized coincident measurement event, two
instruments, X and Y, observe the atmosphere and retrieve
some atmospheric quantity for one particular location in
space and time. For each coincidence (indexed by sub-
script i) we define the measurements xi and yi as the
quantities to be compared: in other words, we define the
measurement system as encapsulating all processes leading
to the compared quantities, including observation, retriev-
al, and any standardization to a common coordinate
system. For the purposes of comparison we then model
the two measurements as simple linear functions of the
true atmospheric state ti; a random, zero-expectation-
value, instrument-dependent error for each measurement
di and �i; and two variables describing potential bias
between the measurements, an additive bias a and a
multiplicative bias b:

xi ¼ ti þ di ð1Þ

yi ¼ aþ bti þ �i: ð2Þ

While the truth ti remains unknown, any comparison can
only describe the relative biases between instruments.
Only in the case that one instrument (for example, X) is
believed to be adequately validated can any estimated bias
be understood to be a systematic error of the second
instrument (Y).
[9] Since the underlying relationship between any remote

sounding measurement and the truth is some complex
nonlinear function of many parameters, it is quite certain
that the relationship between two sets of measurements is of
higher order than the simple model presented here. None-
theless, any statistical analysis of data explicitly or implic-

itly assumes some model of the data, and even the model
given by equations (1) and (2) represents a significant
increase in complexity over that implicitly assumed in
typical remote sounding comparisons.
[10] Because of the random error on individual measure-

ments, an ensemble of measurements is required in order to
determine measurement bias. Random errors ‘‘average out’’
when mean quantities are calculated, i.e. �x ¼ �t, �y ¼ aþ b�t,
and so, bias detection techniques often involve the compar-
ison of mean measurements. In terms of the present com-
parison model, the difference of measurement means is
given by:

�y� �x ¼ aþ �t b � 1ð Þ: ð3Þ

When there is no multiplicative bias (b = 1), the difference
of means is a viable method for calculating the additive bias
a. On the other hand, when both bias terms are present, the
difference of means may be small even if the terms a and b
are not. In other words, it is possible that the two forms of
bias compensate for one another. By differentiating between
additive and multiplicative bias, the comparison model
presented here is able to uncover bias undetectable by a
simple comparison of measurement means.
[11] Once either the additive or multiplicative bias is

found, the other can be calculated from equation (3). For
the remainder of this work we thus focus on estimating the
multiplicative bias. In order to isolate b, one must look at
higher order moments of the measurement data: specifically,
we aim to compare the variance and covariance of the
measurements with their mathematical expectations based
on the comparison model of equations (1) and (2).
[12] The expected variances of the comparison model are

simplified by some assumptions. We assume that the mea-
surement errors are independent, with zero mean and that the
two instruments’ measurement errors are also uncorrelated
with each other (i.e. Cov(d; �) = 0). We treat each vertical
level independently, thereby ignoring cross correlation of
errors between different heights. We also assume that the
errors are independent of ti. These assumptions, and the
corresponding covariance terms that are ignored in the ana-
lysis to follow are the source of uncertainties in standard
regression analysis.
[13] We describe the uncertainty or precision of each

measurement set with the error variances of each set, i.e.
sd
2 = Var(di) and s�

2 = Var(�i), and we define st
2 = Var(ti) as

the true natural atmospheric variance. From equations (1)
and (2), and the assumptions stated above, we then obtain
the following equations for the expected population
variances for x and y, and the covariance of x and y:

s 2
x ¼ s 2

t þ s 2
d ð4Þ

s 2
y ¼ b 2s 2

t þ s 2
� ð5Þ

sxy ¼ bs 2
t : ð6Þ

Thus, the expected measurement variances (sx
2, sy

2, sxy) are
functions of the true atmospheric variance (st

2), the error
variances (sd

2, s�
2), and the multiplicative bias (b).
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[14] Given a sample of n coincidences, we calculate the
unbiased sample variances sxx and syy and covariance sxy:

sxx ¼
1

n� 1ð Þ
Xn

i¼1

xi � �xð Þ2 ð7Þ

syy ¼
1

n� 1ð Þ
Xn

i¼1

yi � �yð Þ2 ð8Þ

sxy ¼
1

n� 1ð Þ
Xn

i¼1

xi � �xð Þ yi � �yð Þ ð9Þ

[15] Equating the sample statistics (sxx, syy, sxy) with their
expectations (sx2, sy2, sxy), and eliminating st2 in equations (4)
and (5) using equation (6), we obtain two equations that
relate the error variances and the multiplicative bias in terms
of the sample statistics sxx, syy, and sxy:

ŝ 2
d ¼ sxx �

1

b̂
sxy ð10Þ

ŝ 2
� ¼ syy � b̂sxy ð11Þ

[16] Such quantities derived from the data through the
sample statistics are estimates, and as such will be denoted
by a caret (^) above the variable.
[17] At this point we are faced with two equations for

three unknowns. Hocking et al. [2001] presented equivalent
expressions for the underdetermined relationship coupling
bias and instrument error variances in the analysis of radar-
measured stratospheric winds. As discussed by Hocking et
al. [2001], and explored in great detail in a more general
context by Dunn [1989], estimation of any of the three
comparison variables requires one variable to be fixed
through assumption, or through the incorporation of more
information into the analysis. We present three methods for
proceeding from equations (10) and (11) toward values for

b̂, ŝ2
d , and ŝ2

� .

3. Variable Estimation Methods

3.1. Method 1: Grubbs Estimators

[18] If there is no multiplicative bias between measure-
ments (b = 1), then the instrument error estimates given in
equations (10) and (11) simplify to:

ŝ 2
d1 ¼ sxx � sxy ð12Þ

ŝ 2
�1 ¼ syy � sxy ð13Þ

(where the subscript ‘‘1’’ refers to the method used). These
relations were derived by Grubbs [1948, 1973] and are
therefore frequently referred to as Grubbs estimators in the
statistics literature [Dunn, 1989]. Fioletov et al. [2006]
implicitly assume b = 1 in deriving estimates of instrument
error in comparisons of ozone profile measurements from

satellite, ozonesonde, and ground-based observations,
although they used an equivalent formulation using the
variance of measurement differences rather than measure-
ment covariances.

3.2. Method 2: Use of Predicted Error Variances

[19] If we are provided with a reliable estimate of the
error variance of one instrument, we can then estimate the
multiplicative bias and the other instrument error variance.
Let predictions of statistical parameters based on reported
quantities be denoted by a tilde (�) above the variable, in
contrast to the estimates marked by a caret. Then, given a
prediction of the error variance for instrument X, ~s 2

d , we
solve equations (10) and (11) for the estimates b̂ and ŝ 2

�

b̂2j~s 2
d
¼ sxy

sxx � ~s 2
d

ð14Þ

ŝ 2
�2 ¼ syy �

s2xy

sxx � ~s 2
d

ð15Þ

[20] Retrieved quantities from satellite observations typ-
ically report an error derived from the spectral fitting
residuals, and the propagation of this fitting error through
the retrieval algorithm (or some similar procedure). We take
each reported error for instrument X, di, to be a prediction of
the absolute value of di, the difference between the mea-
surement and the truth (i.e., di = jdij, di = xi � ti). Recalling
that the expected value of di is zero, we write the predicted
instrument X error population variance in terms of the
reported error di:

~s 2
d ¼ 1

n

Xn

i¼1

ðdi � �dÞ2 ¼ 1

n

Xn

i¼1

d 2
i ; ð16Þ

[21] The predicted error variance is then simply the mean
of the square of the individual measurement error predictions.
[22] If we choose instead to use the predicted error

variance for instrument Y, ~s2
� , calculated as the mean of

the square of the predicted instrument Y error terms ei, then
estimates of the multiplicative bias and instrument X error
variance are given by:

b̂2j~s 2
�
¼ syy � ~s 2

�

sxy
ð17Þ

ŝ 2
d2 ¼ sxx �

s2xy

syy � ~s2
�

ð18Þ

[23] It can be noted that in the unrealistic (but often
assumed) case of zero error in measurement x, we have

b̂2 ¼ sxy=sxx, which is equivalent to an ordinary least squares
fit of y to x. Equation (14) can easily be used to show that
ordinary least squares fitting of y to x underestimates the true
slope in magnitude when x is subject to error.
[24] Other options for incorporating a priori error informa-

tion into the analysis, including assuming ~s2
� = ~s2

d , or taking the
ratio ~s2

d=~s
2
� as a known quantity will not be explored here.
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3.3. Method 3: Instrument Variable Method

[25] If a suitable third variable, z, is measured in addition
to x and y, instrument model parameters may be estimated
directly from the data, without making assumptions regard-
ing any of the parameters. This third measurement, known
as an instrument variable [Dunn, 1989], need only be
correlated with t, while uncorrelated with the measurement
errors for x and y.
[26] We choose as our instrument variable a second

pseudo-coincident observation by instrument Y. In this
special case, this third coincident observation is modeled as:

zi ¼ aþ b ti þ hið Þ þ gi ð19Þ

where the instrument model parameters a and b are
common between the two observations by instrument Y.
We assume that each measurement error gi is uncorrelated
with di or �i, and that sg

2 = s�
2. We introduce the term h: a

perturbation to the true state t due to the fact that our
second Y observation is not perfectly coincident in time and
space with the X and first Y observation. We assume the
noncoincidence parameter h is uncorrelated with the
measurement errors, and define the variance of h over a
set of measurements as sh

2.
[27] With a third measurement, we obtain three more equa-

tions for the expected population variances and covariances:

s 2
z ¼ b 2s 2

t þ b 2s 2
h þ s 2

� ð20Þ

sxz ¼ bs 2
t ð21Þ

syz ¼ b 2s 2
t : ð22Þ

[28] We can then obtain estimates of the right-hand-sides
of equations (20), (21), and (22) (in terms of the estimates

b̂; ŝ2
t ; ŝ

2
h, and ŝ2

� ) if we replace the expected variances sz
2,

sxz, and syz with the sample variances szz, sxz, and syz. The
ratio syz / sxz is known as the instrumental variable estimate
of b [Dunn, 1989], i.e.:

b̂3 ¼
syz

sxz
: ð23Þ

It is valid in general for any suitable choice of instrument
variable, not only for the special case of a secondary
measurement by one instrument explored here.
[29] With the multiplicative bias estimated directly from

the data, it becomes possible to write equations (10) and
(11) strictly in terms of the measurement statistics:

ŝ 2
d3 ¼ sxx �

sxy sxz

syz
ð24Þ

ŝ 2
�3 ¼ syy �

sxy syz

sxz
: ð25Þ

[30] We definesn
2 as the total error variance for the secondary

Ymeasurement, the sumof the noncoincidence error (b2sh
2) and

the Y measurement error variance (s�
2), and estimate this

quantity from the data in a procedure equivalent to the two
error variances [equations (24) and (25)]:

ŝ2
n3 ¼ szz �

sxysyz

sxz
: ð26Þ

When the noncoincidence error variance sh
2 is small, we

expect ŝ2
n3 � ŝ2

�3. It should be noted that a noncoincidence
parameter comparable to h could have been used in the
original expression for y [equation (2)], explicitly describing
the imperfect coincidence of the X and the primary Y
observations. Under this model formulation, the noncoinci-
dence error variance becomes confounded with the Y error
variance. As such, we maintain the model as presented, but
stress that the estimated measurement error, ŝ2

� , calculated
through all three methods, should be understood as the sum
of the true measurement error variance and an implicit
noncoincidence error variance.

3.4. Estimating Confidence Intervals for Estimates
Through Bootstrapping

[31] Without invoking any assumptions concerning the
distribution of the measurement errors (normal or other-
wise), we can estimate the variance of the instrument
variables estimated above through the use of bootstrapping
[Efron and Tibshirani, 1994]. This method allows for the
determination of the standard error in each estimate through
the sensitivity of the estimate to repeated random resam-
pling of the data. We use bootstrapping to estimate the
95% confidence intervals of b̂3, ŝ2

d3, and ŝ2
�3 based on

1000 resamplings.

4. Data

[32] Here we compare results from the satellite instru-
ments MLS and ACE over the full year of 2005. We focus
on the relatively long-lived stratospheric species O3, N2O,
and HNO3, in order to try to minimize the effect of
noncoincidence error.
[33] ACE is a Fourier transform spectrometer operating at

high spectral resolution in the infrared, measuring atmospheric
extinction by solar occultation, from which profiles of tem-
perature, pressure, and dozens of constituents are retrieved
through a global fitting algorithm [Bernath et al., 2005; Boone
et al., 2005].ACE results are from the version 2.2 data set, with
O3 results from the version 2.2 ozone update.
[34] MLS is used to retrieve atmospheric temperature and

more than a dozen atmospheric constituent profiles through
the measurement of thermally emitted radiation from the
Earth’s limb [Waters et al., 2006]. MLS version 1.51 retrieval
results are used here, and are based on an optimal estimation
method which includes use of a priori constraints [Livesey et
al., 2005a]. MLS makes limb scans in the forward direction
along the satellite orbit track, hence, consecutive scans cover
significantly overlapping regions of the atmosphere. The
MLS retrieval technique takes advantage of this fact by
dividing the collected radiance data into ‘‘chunks’’ of about
ten vertical scans, and simultaneously retrieving a similar
number of profiles of atmospheric temperature and compo-
sition from each chunk. Therefore the retrievals within each
chunk are not independent.
[35] ACE and MLS observe the atmosphere with similar

limb-viewing geometries. Consequently, the retrieved pro-
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files from both instruments have similar resolutions in the
horizontal (�500 km) and vertical (3–6 km, depending on
species and altitude and ACE occultation viewing geometry).
[36] ACE measured spectra have a signal-to-noise ratio of

greater than 300 over most of the spectral range. Uncertain-
ties provided for the ACE mixing ratio results are one-sigma
statistical errors from its global-fitting retrieval algorithm,
and do not include systematic contributions [Boone et al.,
2005]. MLS retrieval precisions are calculated as a function
of the measurement error and the a priori error covariance
matrix [Livesey et al., 2005a].
[37] Validation of the data products from ACE and MLS is

presently ongoing [e.g., Walker et al., 2005; Froidevaux et
al., 2006]. Version 1.5 MLS and ACE version 2.1 retrieved
trace gas profiles have been compared by Froidevaux et al.
[2006].

[38] MLS data used in this work is screened based on the
precision, status, and quality fields of the MLS data files as
described by Livesey et al. [2005b]. In addition, the MLS
N2O data is filtered according to flags provided by the MLS
team, in order to attempt to remove a systematic high bias in
low altitude vortex N2O retrievals (as also discussed in
Livesey et al. [2005b]). In addition, in order to remove some
suspicious ACE profiles, an ad hoc filter has been imple-
mented, excluding from consideration any ACE O3 profiles
for which the error exceeds 160 ppbv, and any N2O profiles
outside the range �10 to 800 ppbv.
[39] For the application of the instrument variable esti-

mation methods described above, we aim to produce from
the combined ACE and MLS data sets a subset of coinci-
dent measurements of stratospheric air at the same height,
latitude, longitude, and time. The latter three requirement
coordinates are dealt with by finding coincident observa-
tions of vertical profiles. In order to meet the data require-
ments of all three comparison methods, we produce a set of
coincident profile measurements for each species based on a
two-stage coincidence criterion. All coincidences are de-
fined herein as those occurring within ±5� longitude (l) and
±1� latitude (f). Primary coincidences are defined as those
occurring within ±6 hours. If multiple potential primary
coincidences are found, we choose the coincidence for
which the parameter D = Df(�) + Dt(hours) is minimized.
Secondary coincidences (defining set z) are found within
±12 hours of the primary coincidence. In order to ensure
independence between the MLS measurement errors � and

Table 1. Number of Coincidences (n) for Each Species, and Mean

(±1 s) Differences Between ACE and MLS Primary (Subscript 1)

and Secondary (Subscript 2) Measurement Latitude (f), Longitude
(l), and Local Solar Time (t)

Species O3 N2O HNO3

n 664 590 701

Df1 (�) 0.04 ± 0.47 0.03 ± 0.47 0.03 ± 0.47

Df2 (�) 0.01 ± 0.46 �0.01 ± 0.47 �0.01 ± 0.46

Dl1 (�) 0.27 ± 2.87 0.14 ± 2.9 0.18 ± 2.89

Dl2 (�) 0.16 ± 2.92 0.31 ± 2.93 0.1 ± 2.91

Dt1 (hr) 3.37 ± 5.66 3.54 ± 5.84 3.75 ± 6.15

Dt2 (hr) 3.45 ± 10.28 3.76 ± 9.9 3.66 ± 10.08

Figure 1. Scatterplots of MLS versus ACE-measured O3 anomalies for selected pressure surfaces. Lines
have slope: b = 1 (black), b̂2j~s2

d
(red), b̂2j~s2

�
(red dashed), and b̂3 (blue). Color coding of points is based

on the absolute value of latitude, with equatorial measurements in blue and polar measurements in red.
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g, we require that the secondary coincidence be from a
different retrieval ‘‘chunk’’ from the primary coincidence
(in practice we conservatively require a difference of at least
three ‘‘chunks’’). Again, if multiple secondary coincidences
are found, the parameter D defined above is minimized to
find the best secondary coincidence. If no secondary
coincidence is found, the primary coincidence is thrown
out. Table 1 gives some statistics for the number of
coincidences found and the space-time proximity of the
coincidences.
[40] ACE and MLS measurements must then be mapped

onto a common vertical grid. A fair comparison should take
into account the differing characteristics of the observing
systems. Comparison methods incorporating differences
described by the instrument averaging kernels and error
covariances have been described [e.g., Rodgers and Connor,
2003]. Many comparisons [e.g., Froidevaux et al., 2006]
proceed by the simpler route of interpolating to a common
vertical grid. When the vertical resolutions of the two
instruments are similar (as is the case for ACE and MLS),
it is generally assumed that this simpler procedure will not

adversely affect the statistics of the comparison. Also, this
technique is applicable when averaging kernels and error
covariances are unavailable for the data. In this comparison,
retrieved ACE mixing ratio and uncertainty profiles, orig-
inally reported on a geometric height vertical grid of 1-km
resolution, are linearly interpolated to the MLS pressure
grid of six surfaces per decade change in pressure, using the
ACE retrieved pressure profile for each measurement. This
process adds an unquantifiable error to the resultant ACE
mixing ratio profiles due to an unquantified error in the
ACE retrieved pressure (C. D., Boone, personal communi-
cation, 2006). Furthermore, we expect that interpolation
introduces its own unquantifiable sampling error.

5. Results

5.1. O3

[41] In a comparison of global mean coincident profiles
from MLS and other instruments, Froidevaux et al. [2006]
showed that MLS retrieved O3 values tend to be, in general,
slightly higher than the comparison results in the lower

Figure 2. O3 biases and errors: (a) Three estimates of the multiplicative bias [b̂2j~s2
d
derived from

predicted ACE error variances, b̂2j~s2
�
derived from predicted MLS error variances, and b̂3; equations (14),

(17) and (23)] compared to b1 = 1. (b) Predicted and estimated ACE error standard deviation (SD) profiles
[equations (12), (16), (18), and (24)]. (c) Predicted and estimated MLS error SD profiles [equations (13),
(15), (16), (25), and (26)]. (d) Predicted (~s) and method 3 estimated (ŝ) measurement error SD profiles
for ACE (blue) and MLS (green), in percent of mean measurement. 95% confidence intervals for all
quantities estimated by method 3 are shown with error bars.
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stratosphere, and slightly lower in the upper stratosphere. The
degree of ‘‘tilt’’ in the slope of the average differences was
shown to depend on the measurement compared to:MLSwas
shown to agree with HALOE results to within 5% over
essentially the whole range from 100 to 1 hPa, and similarly
well with SAGE II results, except in the region near 1 hPa,
where MLS was lower by 10 to 15%. ACE version 2.2 O3

update results represent a significant improvement upon the
results compared to MLS in the same study.
[42] Figure 1 shows MLS versus ACE O3 volume mixing

ratio (VMR) anomalies (means subtracted) for some selected
pressure surfaces. The points of the scatterplots are color-
coded based on the absolute value of latitude, with polar values
in red and equatorial values in blue. The widest range of O3

mixing ratio values is seen between 21.54 and 10 hPa, i.e., the
absolute natural variance st

2 is maximum at these heights.
[43] In the absence of multiplicative bias (i.e., under the

assumptions of method 1), themeasurements should lie along
a 1:1 line with slope of one (shown in black on the scatter-
plots), with scatter about the line due to the error variance of
eachmeasurement. Any deviation of slope from the 1:1 line is
evidence of amultiplicative bias in the data. Lines with slopes
corresponding to the multiplicative bias estimates b̂2j~s2

d
,

b̂2j~s2
�
and b̂3 (calculated by equations (14), (17), and (23)]

are plotted on each scatterplot. Multiplicative bias estimate
b̂2j~s2

d
is visibly less than one for all but one (100 hPa)

pressure surface shown here, while b̂2j~s2
�
is quite close to

one for all plots. Estimated multiplicative bias b̂3 is less
than one below 10 hPa, and quite close to one otherwise.

[44] Multiplicative bias estimates b̂2j~s2
d
, b̂2j~s2

�
and b̂3 are

plotted in Figure 2a as a function of the MLS retrieval
pressure surfaces. b̂3 is generally consistent with a slope of
one, except above 1 hPa, and below 100 hPa, and at 14.68
and 23.54 hPa. Estimates calculated via method 2 bracket

b̂3, and generally follow its vertical structure.
[45] Figures 2b and 2c show the measurement error esti-

mates corresponding to each multiplicative bias profile in
Figure 2a. Error variance estimates calculated by methods 1,
2, and 3, are converted to standard deviation (SD) estimates by
taking the square root. The error SD profiles are in units of
parts per billion. Also shown are the predicted error SD
profiles, calculated as the square root of equation (16).
[46] Method 1 leads to negative error variance estimates

at a number of heights. The error SD is undefined for such
cases, but is set to zero for the profile plots (for example, at
10 hPa for ACE; 0.7, 14, 23, and 100 hPa for MLS).
Negative variance estimates can result from a mis-specified
model or an insufficient sample size [Dunn, 1989]. In this
case, comparing Figures 2a–2c shows that the negative
variances calculated by method 1 for MLS occur at those
heights for which the multiplicative bias estimates are
furthest from a value of 1. Hence at these heights the b =
1 assumption of method 1 is most suspect, and the method
leads to erroneous estimates. To be more specific, the form
of equation (11) shows that if the true multiplicative bias is
less than 1, then assuming b1 = 1 gives too much weight to
the second term on the right-hand-side, leading to a nega-
tive value for the error variance. Similarly, the form of
equation (10) shows that if the true multiplicative bias is

Figure 3. Scatterplots ofMLS versus ACEmeasured N2O anomalies for selected pressure surfaces. Lines
have slope: b = 1 (black), b̂2j~s2

d
(red), b̂2j~s2

�
(red dashed), and b̂3 (blue). Color coding of points is based on

the absolute value of latitude, with equatorial measurements in blue and polar measurements in red.
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greater than 1, then assuming b = 1 will lead to negative
values for the ACE error variance. This fact occurs at 10 hPa
(Figure 2b). Such unphysical estimates of the error variances
motivate the use of methods 2 and 3.
[47] In method 2, the error estimate for each instrument is

calculated based on the predicted error (~s) for the other
instrument. It should be noted that by assuming the pre-
dicted error of one instrument is correct, we attribute any
noncoincidence error to the other instrument. Thus while the
estimated MLS error variance contains the implicit nonco-
incidence error like the other methods, the method 2
estimated ACE error variance contains noncoincidence error
as well. This fact explains why the method 2 estimated ACE
error variance is generally slightly larger than the estimate
given by methods 1 and 3. However, these estimates are all
much larger than the predicted ACE error variance, which
explains why the method 2 estimated MLS error variance,
based on the ACE error predictions, is significantly larger
than the other estimates and the prediction.
[48] Method 3 error SD estimates generally agree with the

results of method 1, except for the problem heights discussed

above, for which method 3 leads to more realistic values.
Comparison of ŝ�3 and ŝn3 in Figure 2c shows that the effect
of noncoincidence error is negligible below 30 hPa. Above
20 hPa the diurnal variability of O3 likely produces signifi-
cant noncoincidence error variance. The 95% confidence
intervals calculated for method 3 estimates exclude the
predicted error SD profiles in all cases.
[49] Figure 2d shows predicted error SDs and those

estimated by method 3 in terms of percent of the mean O3

profile measured by each instrument. Below 100 hPa, the
estimates for both instruments are up to 20% higher than the
predictions. Between 100 and 4 hPa, MLS estimates are�1–
8% larger than the predictions, while ACE estimates are�3–
8% greater than the predictions. Between 10 and 1 hPa,
MLS estimates are within 2% of the predictions, and ACE
estimates are 3–10% greater than the predictions, although
the 95% confidence intervals at these higher altitudes imply
the ACE error SD estimates could easily be within 5% of
the predictions.

Figure 4. N2O biases and errors: (a) Three estimates of the multiplicative bias [b̂2j~s2
d
derived from

predicted ACE error variances, b̂2j~s2
�
derived from predicted MLS error variances, and b̂3; equations (14),

(17) and (23)] compared to b1 = 1. (b) Predicted and estimated ACE error standard deviation (SD) profiles
[equations (12), (16), (18), and (24)]. (c) Predicted and estimated MLS error SD profiles [equations (13),
(15), (16), (25), and (26)]. (d) Predicted (~s) and method 3 estimated (ŝ) measurement error SD profiles for
ACE (blue) and MLS (green), in percent of mean measurement. 95% confidence intervals for all quantities
estimated by method 3 are shown with error bars.
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5.2. N2O

[50] Figure 3 shows MLS versus ACE N2O VMR anoma-
lies for selected pressure surfaces. At high altitudes (for
example, 1 hPa), the absolute variance of MLS anomalies is
much larger than that for ACE. This discrepancy in variance
is likely more significantly due to noisy MLS retrievals (for
which significant averaging is suggested for useful signals
[Livesey et al., 2005b]) rather than insensitivity in the ACE
retrievals. As will be discussed below, the reported MLS
N2O error variances used as predictions of the error variance
in method 2, are larger than the true random error in the
measurements. This leads to anomalously small (for exam-
ple, at 3.2 hPa) and even negative (at 1 hPa) estimates of
multiplicative bias given by method 2 when using these
predicted errors.
[51] Throughout the middle stratosphere, the natural

absolute variance of N2O is larger than at high altitudes,
and the scatter lies roughly along the 1:1 line. At 100 hPa,
the effects of the reported noisy retrievals at high latitudes
is apparent, as the mask used to filter the N2O data is seen
to filter most, but not all of the anomalously noisy data.
[52] Figure 4a shows the multiplicative bias estimates. At

high altitudes, the small natural variability, and the largeMLS
variance leads to large uncertainties in the slope estimates,
and the uncertainties in the estimate from method 3 include
a slope of one.
[53] Moving down in altitude, between �4 and 14 hPa,

the estimated bias is slightly, but significantly less than one.
At heights below 30 hPa, b̂2j~s2

�
and b̂3 values are anoma-

lously large due to the noisy MLS polar measurements,
while b̂2j~s2

d
remains in close agreement with b = 1.

[54] The error SD estimates corresponding to the bias
estimates in Figure 4a are shown in Figures 4b and 4c. As
was the case for O3, method 1 leads to a number of negative
error variance estimates (as shown by plotted error SD values
of zero) at heights where multiplicative bias is significant.
[55] Focussing on theMLS error SD estimates of Figure 4c,

at low altitudes the estimates based on methods 1 and 2 agree
closely and are �30% larger than the predicted values, as
might be expected due to the anomalous polar retrievals.
Method 3 apparently underestimates the error SD at these
low altitudes, as the slope estimate b̂3 is seen instead to
compensate for the noisy polar measurements. Between 14
and 68 hPa, the 95% confidence intervals of ŝ�3 include the
predicted error SD profile.
[56] At heights above 10 hPa, all three methods lead to

MLS error SD estimates that converge as the altitude
increases. At these heights, the large variance of the MLS
measurements (syy) dominates all other terms in the
expressions for MLS error variance. The MLS error SDs
above 10 hPa are smaller than the predicted values. This
result is consistent with simulation results discussed by
Livesey et al. [2005b] in which the variance of quantities
retrieved from simulated, noisy spectra was less than the error
variance (or precision) predicted by the retrieval algorithm.
This occurs when the effect of ‘‘retrieval smoothing’’ artifi-
cially relaxes retrievals toward a mean or an a priori value.

Figure 5. Scatterplots of MLS versus ACE measured HNO3 anomalies for selected pressure surfaces.
Lines have slope: b = 1 (black), b̂2j~s2

d
(red), b̂2j~s2

�
(red dashed), and b̂3 (blue). Color coding of points is based

on the absolute value of latitude, with equatorial measurements in blue and polar measurements in red.
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[57] Where the estimated MLS error SDs are smaller than
the predicted values, the estimation of ACE error SD based
on the MLS predictions via method 2 leads to anomalously
negative variance values. Only method 3 leads to physically
acceptable error SD profiles for ACE over the vertical
measurement range.
[58] Figure 4d shows the estimated and predicted error SD

profiles in percent of the mean measured profile. The ACE
error SD estimates are roughly 8% higher than the predictions
between 100 and 5 hPa. Above 5 hPa, the ACE error SD 95%
confidence intervals become exceedingly large. The esti-
mated MLS percent-error SD profile is in good agreement
with the predicted profile, although the estimate is smaller than
the prediction at heights above 10 hPa, as discussed above.

5.3. HNO3

[59] HNO3 provides an interesting test case as the scatter-
plots in Figure 5 are markedly sloped, signaling the definite
presence of multiplicative bias. The slopes estimated via
methods 2 and 3 (Figure 5a) peak in magnitude at 21 hPa,
where the absolute natural variance is largest.

[60] By erroneously ignoring multiplicative bias, method 1
leads to negative error variance estimates for ACE (Figure 5b)
and simultaneously, MLS error SD estimates (Figure 5c) up to
five times the predicted error SD values over the vertical
measurement range.
[61] Method 2 leads to error SD estimates generally more

realistic than method 1. Themethod 2MLS error SD estimate
(Figure 5c) is smaller than the prediction above 10 hPa, which
is again consistent with the simulation results discussed by
Livesey et al. [2005b], wherein HNO3 scatter was found to be
smaller than the predicted variance due to retrieval smoothing
at these heights. Using predicted error variances for MLS that
are greater than the observed measurement variances in
method 2 again leads to anomalously small b̂2j~s2

�
estimates

(Figure 5a) and correspondingly negative error variance
estimates for ACE between 10 and 4 hPa.
[62] Figure 5d shows the estimated and predicted error SD

profiles in percent of the mean measured profile. Between 10
and 70 hPa, method 3 error SD estimates for ACE are roughly
constant with height, and are approximately 10% (of the
mean measurement value) larger than the predictions. The

Figure 6. HNO3 biases and errors: (a) Three estimates of the multiplicative bias [b̂2j~s2
d
derived

from predicted ACE error variances, b̂2 j ~s2
�
derived from predicted MLS error variances, and b̂3;

Equations (14), (17), and (23)] compared to b1 = 1. (b) Predicted and estimated ACE error standard
deviation (SD) profiles [Equations (16), (12), (18), and (24)]. (c) Predicted and estimated MLS error
SD profiles Equations (16), (13), (15), (25), and (26). (d) Predicted (~s) and Method 3 estimated (ŝ)
measurement error SD profiles for ACE (blue) and MLS (green), in percent of mean measurement.
95% confidence intervals for all quantities estimated by Method 3 are shown with error bars.
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method 3 error SD estimates for MLS are within ±5% of the
predicted values between 10 and 147 hPa. While the pre-
dicted ACE error SD profile is a factor of 10–25% smaller
than that for MLS, we find the estimated percent-error
SD profiles are of comparable magnitude between 10 and
100 hPa. Only at high (above 10 hPa) and very low (146 hPa)
heights does the comparison confirm the prediction of greater
precision for the ACE measurements, as shown by the
separation of the estimated percent-error profiles.
[63] In contrast with the error SD estimates for N2O and

O3 (below heights of 10 hPa), the secondary coincidence
error SD (ŝn3) profile lies outside the 95% confidence
interval of the ŝ�3 estimate. This means that the noncoinci-
dence variance sh

2 is significant in this case, which suggests
a tighter coincidence criterion may be required for HNO3

compared to the other species.

6. Conclusions

[64] In this work we have presented a framework for the
comparison of coincident measurement sets which distin-
guishes between additive and multiplicative bias. We find
multiplicative bias is a significant source of differences
between coincident measurements of O3, N2O, and HNO3

by the satellite instruments ACE and MLS.
[65] Differentiation between bias types promises to aid

the identification of the underlying source of inconsistencies
between measurement systems. Multiplicative bias is sig-
nificant at some, but not all heights for O3 and N2O. This
suggests that the source of the multiplicative bias within the
respective measurement systems is due to height-dependent
retrieval processes or parameters. Conversely, the multipli-
cative bias estimated for HNO3 is significant for all heights
tested. In this case, it seems likely that the source of the
multiplicative bias is some aspect(s) of the measurement
systems affecting all heights, such as spectroscopic param-
eters. Conceivably, future validation work could proceed by
producing multiplicative and additive bias profiles through
comparison to a standard instrument, and comparing these
to profiles of the sensitivity of the retrieval system to the
known component error sources produced through a for-
ward modeling simulation. In this way the underlying
source of the bias might be uniquely identified.
[66] We have shown that multiplicative bias and mea-

surement error are analytically coupled: any estimated or
prescribed value of multiplicative bias leads directly to error
variance values for the two instruments.
[67] The existence of significant multiplicative bias leads

to unphysically negative estimates of measurement error
variances when an estimation technique that assumes no
multiplicative bias (method 1) is used. Consequently, mul-
tiplicative bias between two data sets should be thoroughly
proven negligible if such a method is to be used to estimate
measurement error variances.
[68] Knowledge of the measurement errors can in theory

be used to estimate the multiplicative bias (method 2). We
find though that the measurement errors reported with the
measurement data used here are generally unsatisfactory for
this purpose. MLS reported errors are in some cases
dominated by smoothing error, rather than the strictly
random error assumed in our model. ACE reported errors
are understood to be lower limits based on the spectral

fitting residuals, and do not take into account error intro-
duced by the interpolation to a standard 1-km grid, or the
subsequent interpolation to the MLS pressure grid.
[69] We have presented an analysis technique which does

not rely upon assumptions concerning the magnitude of the
multiplicative bias or the error variances. The ‘‘instrument
variable’’ technique (method 3) relies upon a third variable
(such as the secondary pseudocoincident measurement used
here) which is correlated with the two measurements. We
find that the instrument variable method leads to the most
realistic error variance profiles for all three species studied.
Qualitatively allowing for discrepancies at heights for which
smoothing error is significant in the MLS error SD predic-
tion, MLS error SD estimates are generally in good agree-
ment with the predictions. For O3, at heights below 10 hPa,
a significant and unexplained difference between MLS error
SD estimates and predictions is seen: the estimates are
roughly 5–15% greater than the predictions. HNO3 error
SD estimates are also on the order of 5% greater than the
predictions for MLS at heights below 20 hPa. For ACE, the
estimated error SD profiles are in almost all cases larger
than the predictions. Estimated ACE error SDs are less than
or approximately equal to 10% of the mean measurement
value: for O3 between 100 and 2 hPa, for N2O between
100 ad 10 hPa, and for HNO3 between 30 and 10 hPa. ACE
error SDs are significantly smaller than those for MLS at the
highest and lowest heights compared for HNO3, and over
most of the vertical range for N2O. On the other hand, O3

error SDs are comparable between the two instruments.
[70] We propose that the instrument variable method of

statistical comparison of coincident observations shows
promise for future comparison and validation exercises, as
it leads to an assumption-free estimate of multiplicative bias,
and hence allows the direct estimation of random measure-
ment errors.
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