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[1] For the first time, vertical column measurements of nitric acid (HNO3) above Eureka
(80.1�N, 86.4�W), Canada, have been made during polar night using lunar spectra
recorded with a Fourier transform infrared (FTIR) spectrometer, from October 2001 to
March 2002. This site is part of the primary Arctic station of the Network for the
Detection of Stratospheric Change. These measurements were compared with FTIR
measurements at two other Arctic sites: Thule, Greenland (76.5�N, 68.8�W), and
Kiruna, Sweden (67.8�N, 20.4�E). Eureka lunar measurements are in good agreement
with solar ones made with the same instrument. Eureka and Thule HNO3 columns are
consistent within measurement error. Differences between HNO3 columns at Kiruna and
those at Eureka and Thule can be explained on the basis of available sunlight hours and
location of the polar vortex. The measurements were also compared with results from a
chemistry-climate model, the Canadian Middle Atmosphere Model (CMAM), and from a
three-dimensional chemical transport model, SLIMCAT. This is the first time that CMAM
HNO3 columns have been compared with observations in the Arctic. The comparison of
CMAM HNO3 columns with Eureka and Kiruna data shows good agreement. The warm
2001–2002winter with almost no polar stratospheric cloudsmakes the comparison with this
version of CMAM, which has a known warm bias, a good test for CMAM under these
conditions. SLIMCATcaptures the magnitude of HNO3 columns at Eureka, and the day-to-
day variability, but generally reports higher values than were measured at Thule and Kiruna.
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1. Introduction

[2] The first Fourier transform infrared (FTIR) spectrom-
eter measurements of nitric acid (HNO3) during polar night,
using the Moon as the light source, were carried out by

Notholt in December 1992 and in February 1993 at the Ny-
Alesund Arctic NDSC station (79�N, 12�E) [Notholt et al.,
1993, 1995, 1997; Notholt, 1994a, 1994b]. At Kiruna, lunar
FTIR spectra have been recorded since the winter of 1994–
1995 [Schreiber et al., 1997]. This paper reports on the first
measurements of HNO3 vertical columns at Eureka through-
out the polar night using the FTIR system with the Moon as
the light source. These measurements were made in the
winter of 2001–2002 but solar observations have been
performed there regularly since 1993. Also, this is the first
time that HNO3 columns measured at the three NDSC Arctic
sites, Eureka, Thule and Kiruna, have been intercompared.
[3] HNO3 observations during polar night provide valu-

able information about the processes which condition the
polar stratosphere for springtime ozone depletion. HNO3 is
the primary constituent of polar stratospheric clouds (PSCs).
PSCs provide surfaces for heterogeneous chemistry through
which active chlorine (ClO, ClOOCl, OClO) is released from
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its reservoir species, thereby becoming available to partici-
pate in ozone-depleting processes [Solomon et al., 1986;
World Meteorological Organization (WMO), 2003; Grooß et
al., 2005]. Additionally, the sedimentation of large HNO3

particles removes active nitrogen (NOx = NO + NO2) from
the stratosphere and makes conditions more favorable for
destruction of ozone by preventing the formation of inactive
chlorine reservoirs such as ClONO2 [WMO, 2003].
[4] Stratospheric HNO3 has a winter maximum because of

the conversion of NO and NO2 to N2O5 and HNO3 during
periods of darkness. Also HNO3 abundances increase toward
the poles in all seasons, because of the combination of
poleward transport and decreasing solar illumination except
in regions of PSC formation [Santee et al., 2004]. These two
processes contribute to the observed seasonal behavior of
HNO3 at high latitudes [WMO, 2003]. However, Arctic
measurements show additional features that are specific to
conditions inside the Arctic polar vortex.
[5] Here we present the first comparison of the Canadian

Middle Atmosphere Model (CMAM) chemical fields with
observations in the polar regions, simulated at Eureka and
Kiruna. As CMAM is a chemistry-climate model, its years do
not correspond to any particular year and the comparison
must be statistical in nature. The 2001–2002 winter was
relatively warm, with two major stratospheric warmings, one
occurring in December 2001 and the second in February
2002, and with the calculated daily average area for PSC
occurrence near zero throughout the winter [Manney et al.,
2005]. Thus the meteorological conditions for this winter
provide an ideal opportunity to compare with observations, in
particular to see the seasonal buildup of HNO3 under con-
ditions of no PSCs, and to test CMAM given the known
warm bias of Arctic winters in this version of the model
[Austin et al., 2003]. The measurements are also compared
with the SLIMCAT chemical transport model, which has
been extensively tested in many past polar studies using a
range of observations [e.g., Singleton et al., 2005; Goutail et
al., 2005;Davies et al., 2005]. In contrast to CMAM, because
SLIMCAT is a chemical transport model driven by observed
winds and temperatures, it should capture the observed day-
to-day variability.

2. Instrumentation

[6] The Bomem DA8 FTIR spectrometer at Eureka has
been used with a light-sensitive mirror-tracking system
mounted over an opening in the flat roof above the spec-
trometer laboratory at Eureka since 1993 [Donovan et al.,
1997]. In 1999, a side-by-side intercomparison was con-
ducted at the Eureka observatory between the Bomem DA8
FTIR spectrometer and a mobile Bruker M120 FTIR spec-
trometer, operated by the British National Physical Labora-
tory (NPL) [Murphy et al., 2001]. The tracking mirror is
normally used to reflect sunlight down into the laboratory to
fill the input optics of the spectrometer. A small portion of the
solar beam is reflected into a sensitive photomultiplier tube
that works as a quadrant diode system. The output from the
photomultiplier is part of a feedback circuit that activates the
elevation and azimuth motors driving the tracking mirror so
that the most intense portion of the solar disk is always
viewed by the spectrometer. To record atmospheric absorp-
tion spectra using theMoon as the light source, the sensitivity

of the tracking system was increased by approximately five
orders of magnitude over that available with the original
system, which was required to track only the Sun. This
increase in sensitivity was obtained by employing greater
amplification of the signal from the photomultiplier tube.
With this higher sensitivity it was easy to track the Moon and
record atmospheric absorption spectra even when the Moon
was not completely full. The same system was also used for
recording absorption spectra using the Sun as the light
source, merely by inserting a neutral density filter in front
of the tracker photomultiplier tube, so as to compensate for
the much brighter Sun. The spectra for measuring HNO3

were recorded with a mercury-cadmium-telluride (MCT)
detector in combination with a 7.4 mm long-pass filter.

3. Eureka Observations

[7] The FTIR campaign started with the recording of
atmospheric absorption spectra using the Sun as the light
source, as has been carried out at Eureka every fall and late
winter/early spring since 1993. The HNO3 spectra were
recorded in the 700 to 1300 cm�1 interval at a resolution of
0.004 cm�1 with a 3.09 milliradian field of view (FOV). To
improve the signal-to-noise ratio (SNR), four interferograms
were coadded over a period of 11 min and 40 s for Fourier
transformation into one spectrum. Solar spectra were
obtained on four clear days in October, just prior to polar
sunset on 22 October 2001. The recording of atmospheric
spectra for HNO3 measurements was then continued about a
week later when the illumination of the Moon was greater
than 80%. This degree of illumination is required in order to
fill the field of view of the DA8 spectrometer. Because of the
weaker lunar intensity compared to that of the Sun, a lower
resolution of 0.02 cm�1 and the higher preamplifier gain
setting on the MCT detector were used to record the lunar
spectra in the 550 to 1350 cm�1 interval with a FOV of
7.32 milliradians. The coaddition of 16 lunar interferograms
to increase the SNR required 10 min and 18 s to obtain one
lunar spectrum. Thiswas followed by the coaddition of 16 sky
interferograms, recorded after the tracker was pointed away
from theMoon in azimuth only, to produce one sky spectrum.
The sky spectrum represented the nonnegligible background
spectrum, due to broad-band sky and instrument emission,
which was assumed to be superimposed on the lunar spec-
trum [Notholt, 1994a]. The campaign continued until the end
of March 2002, typically with four to five clear nights around
the full Moon near the end of each month. By the end of
February, polar night ended and solar spectra were again
recorded. In summarizing the Eureka observations, both solar
and lunar FTIR spectra were recorded for a few days and
nights at the end of October 2001, prior to polar night when
only lunar measurements were made, and again for about
three weeks after polar night ended near late February 2002.
Solar spectra were then recorded until the end of March.

4. Spectral Analysis

[8] The time corresponding to the average interferogram
zero-path difference of a coadded spectrum was used to
calculate the astronomical solar zenith angle with an in-house
algorithm. The lunar zenith angles were obtained by applying
an appropriate algorithm (the U.S. Naval Observatory online
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resources at: http://aa.usno.navy.mil/). The atmospheric ab-
sorption spectra recorded with the MCT detector, using the
Sun as the source, exhibited a zero-level offset due to detector
nonlinearity. This is seen in the line centers of saturated
absorption lines where the intensity level was above zero and
is a few percent of the maximum intensity in the spectral
region of interest. This zero-level offset was determined by
fitting a parabola through the minimum intensity level of
several fully absorbed spectral features and then subtracted
from the MCT spectra prior to spectral fitting with SFIT1.
The saturated features in the solar spectra, in the nitric acid
spectral regions, appeared unsaturated in the spectra recorded
with the Moon as light source. This was due to the lower
resolution of the lunar spectra and the relatively high lunar
elevation angles. The zero-level offsets for these spectra,
mainly due to self-emission of the instrument, were therefore
determined from the sky spectra recorded at the lunar zenith
angle immediately after acquiring each lunar spectrum. That
is, the continuum intensity level of the sky spectrum was
subtracted from the lunar spectrum before spectral fitting
with SFIT1.
[9] The retrieval of HNO3 column amounts from our

atmospheric absorption spectra is based on the SFIT1 spec-
tral fitting routine [Rinsland et al., 1982, 1988]. SFIT1.09e
was applied to narrow spectral microwindows containing
absorption features of the target molecules. The HNO3

microwindow used is defined as the narrow interval from
868.3 to 869.6 cm�1; typical fits for solar and lunar spectra
are seen in Figure 1. To calculate the synthetic spectra with
SFIT1, we adopted the line parameters in the HITRAN 1992
compilation [Rothman et al., 1992] plus updates. For com-

parison, applying the more recent HITRAN 2000 compila-
tion [Rothman et al., 2003] to a sample of our spectra reduces
the retrieved HNO3 vertical columns by only 2%. Our set of a
priori volumemixing ratio (VMR) profiles (REFTOON41) is
based on low-latitude balloon measurements [Peterson and
Margitan, 1995] but modified, as described below, for the
high-latitude location of Eureka. Temperature, pressure and
relative humidity profiles were obtained from radiosondes
launched twice daily from Eureka. Above the maximum
sonde altitude, the profiles of temperature and pressure are
extended to approximately 50 km with data from the U.S.
National Center for Environmental Predictions (NCEP).
Above 50 km the winter sub-Arctic U.S. Standard Atmo-
sphere is used to 100 km.
[10] The set of VMR a priori profiles used for the solar

retrievals were modified with the equation described by
Meier [1997] to reflect the tropopause height, determined
from Eureka radiosondes, and to allow for an atmospheric
Degree of Subsidence or Ascent (DOSA) above the tropo-
pause, on the basis of the findings of Toon et al. [1992b]. The
DOSA parameter was determined by considering N2O and
CH4 as dynamical tracer molecules, unaffected by atmo-
spheric chemistry during the measurement campaign. SFIT1
was applied to the solar absorption spectra of these target
gases by iterating through a sequence of values for the DOSA
parameter, scaling the correspondingmodified a priori profile
until the best fit was achieved and noting the DOSAvalue for
the best spectral fit in the sequence. A daily mean DOSAwas
then determined by obtaining a daily average from the two
tracer gases. This mean DOSAvalue was then used to modify
the a priori VMR profiles for the rest of the gases in the

Figure 1. (left) A typical solar HNO3 spectral fit and its residual. (right) A typical lunar HNO3 spectral fit
and its residual. Both are for spectra recorded with the Eureka FTIR.
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REFTOON41 set. The column amounts of the target trace
gases were determined by allowing SFIT1 to scale the
DOSA-modified a priori profiles in the target gas micro-
window until the best fit was attained.
[11] In view of the anticipated large uncertainty in derived

DOSA parameters from the lower-resolution lunar spectra,
and the time required, the authors decided to omit the DOSA
modification of the VMR a priori profiles for the lunar
retrievals, with the assumption that it would not significantly
affect the retrieved columns. The a priori profiles were only
modified by the Meier [1997] equation to be consistent with
the radiosonde tropopause height and then scaled by SFIT1 to
achieve the best fit to the HNO3 spectral windows. Although
subtracting the zero-level offset from the lunar spectra should
correct to a large degree for the broad-band intensity offset
due to sky and instrument emission, it is also necessary to
account for discrete sky emission. We therefore multiplied
our lunar-retrieved column amounts by a small correction
factor, given by equation (5) ofNotholt and Lehmann [2003].
The correction factor is approximately equal to the light
source irradiance divided by the difference between the light
source and sky irradiances. We calculated this factor using an
algorithm developed by J. Notholt (private communication,
2001) and found it to be approximately 1.08 for the retrieved
Eureka HNO3 columns.
[12] A mean daily vertical column was calculated from the

individual HNO3 column measurements at Eureka from two
or more spectra recorded each day or night. Error estimates of
the retrieved column amounts were determined according to
the method described byMurphy et al. [2001], to account for
instrument effects, choice of algorithm, microwindows, line
parameters, a priori volume mixing ratio profiles, and uncer-

tainty in the temperature profile. These sources of uncertainty
were estimated to be the same for solar and lunar measure-
ments and yield a total error of 13.6%. Of this, 12.9% is
attributed to systematic error and 4.2% to random error.
Figure 2 shows the time series of HNO3 mean daily columns
from October 2001 to March 2002. The error bars in Figure 2
are the estimate of random error, while the systematic error is
shown as a single large error bar on the first data point.

5. Additional Arctic Measurements

[13] The HNO3 columns observed at Eureka were com-
pared with HNO3 columns measured at two other Arctic
NDSC sites: Thule, Greenland (76.5�N, 68.8�W) andKiruna,
Sweden (67.8�N, 20.4�E). The Thule measurements
were obtained from spectra recorded with a 250 cm Optical
Path Difference (OPD) Bruker 120M FTIR spectrometer
[Goldman et al., 1999]. Currently the autonomously operated
Thule FTIR spectrometer records data for�30% of available
days between 21 February and 20 October. In the winter of
2001–2002 Thule HNO3 measurements were carried out
from the end of February to the end of April 2002, using only
the Sun as the light source.
[14] The Thule data for the period shown here were

analyzed using the SFIT2 v3.82 program which uses a
semiempirical optimal estimation algorithm [Rodgers,
1976] to perform a point-by-point fitting of the observed
spectra with a 41-layer, line-by-line spectral forward model
calculation [Chang and Shaw, 1977;Hase et al., 2004]. Total
column amounts are the integrated retrieved HNO3 vertical
profiles. Two microwindows in the 870 cm�1 region from all
spectra recorded on a given day (1 to 5 spectra) were used for
each daily average column retrieval. The random error on the

Figure 2. Time series of HNO3 columns measured at the three Arctic sites, Eureka, Thule, and Kiruna,
from October 2001 to April 2002. Error bars indicate random errors. The single large error bar on the first
Eureka data point represents the systematic error of 12.9% for Eureka observations. For Thule and Kiruna,
the systematic error is 10% (not shown).
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daily column measurement is 4% and the systematic com-
ponent of the error is estimated to be 10%. The forwardmodel
uses the HITRAN 2000 database with updates to November
2001 [Rothman et al., 2003] and temperatures from the
NCEP analyses [Lait et al., 2005].
[15] FTIR observations have been made at the Swedish

Institute of Space Physics in Kiruna since March 1996 within
the framework of the NDSC [Blumenstock et al., 2003;Meier
et al., 2005] in collaboration with IMK Karlsruhe, IRF
Kiruna and the University of Nagoya. Infrared solar absorp-
tion spectra are recorded with a Bruker 120 HR FTIR
allowing a maximum optical path difference of 360 cm,
equivalent to a spectral resolution of up to 0.0025 cm�1.
Typically, a spectral resolution of 0.005 cm�1 is applied.
Spectra are coadded for up to 15 min during noon and 5 min
during sunrise and sunset in order to limit the variation of the
solar zenith angle to 0.2�. For the winter of 2001–2002
Kiruna reported only solar measurements of HNO3, during
October and November in 2001 and again starting from polar
sunrise in January 2002 until the end of April.
[16] The Kiruna FTIR spectra are analyzed with the

inversion program PROFFIT (PROFile FIT) [Hase, 2000;
Hase et al., 2004] using the forward model KOPRA
(Karlsruhe Optimized Precise Radiative transfer Algorithm)
[Hopfner et al., 1998; Kuntz et al., 1998; Stiller et al., 1998].
The synthetic spectra are calculated using daily pressure and
temperature data from NCEP [Kanamitsu, 1989]. Spectro-
scopic data are taken from the HITRAN 2000 database
[Rothman et al., 2003]. The inversion code PROFFIT allows
the retrieval of vertical profiles from the absorption line shape
using the Optimal Estimation Method of Rodgers [Rodgers,
1976, 1990], the Phillips-Tikhonov approach [Phillips, 1962;
Tikhonov, 1963], or scaling of a priori profiles in user defined
altitude intervals. Two microwindows are fitted simulta-
neously: 867.0–869.6 and 872.8–875.2 cm�1. Column
amounts of HNO3 measured at Kiruna have been studied
for different winters [Wegner et al., 1992; Blumenstock et al.,
2003; Kopp et al., 2003]. The precision error for the Kiruna
data is 2.5%; there is an additional systematic spectroscopic
error of �10%.
[17] Eureka solar and lunar measurements started in late

October 2001 and continued through March 2002, while
Thule solar measurements cover the period from the end of
February to the end of April 2002. Kiruna reported a few
solar measurements duringOctober andNovember 2001 then
resumed solar observations in January 2002 at polar sunrise
and HNO3 measurements until the end of April are included
in this paper.

6. Atmospheric Models

[18] Two atmospheric models, CMAM and SLIMCAT,
were used for comparison with the measurements. CMAM
and SLIMCAT are different types of models and thus the
nature of the comparison with the measurements is quite
different in the two cases. CMAM is an upward extension of
the Canadian Centre for Climate Modeling and Analysis
spectral General Circulation Model (GCM) up to 0.0006 hPa
(roughly 100 km altitude), described in detail by Beagley et
al. [1997]. CMAM incorporates radiation, interactive chem-
istry, gravity wave drag, as well as all the processes in the
GCM. The model has a comprehensive representation of

stratospheric chemistry [de Grandpré et al., 1997]. A recent
comparison of CMAMwith other Chemistry-Climate models
is provided by Austin et al. [2003].
[19] The CMAM version used here, known as version 7,

has prognostic variables computed in spectral space using
T32 resolution (corresponding to resolution of about 6� in
latitude and longitude) and 65 vertical levels (about 2 km
vertical resolution in the middle atmosphere). This version
also contains a chemical module to account for heteroge-
neous reactions that occur on stratospheric ternary solutions
(STS), and water ice in polar regions without sedimentation;
however during this run of CMAM, temperatures at the
closest grid point to Eureka (80.3�N, 84.4�W) were not low
enough for the heterogeneous module to be activated. For the
model comparison presented here, mean HNO3 columns are
generated from CMAM HNO3 profiles at the closest grid
point to Eureka and to Kiruna (the values close to Thule were
not saved). The model outputs HNO3 profiles at every time
step, resulting in 144 profiles per day. These profiles are
interpolated to a common altitude grid and averaged to obtain
daily mean profiles. Daily columns come from integrating
these daily mean profiles. Because CMAM is a free-running
chemistry-climate model, and here is run under fixed forcing
representative of the present day, a given day in the obser-
vations cannot be expected to match any particular day in
CMAM, but at best be consistent with the ensemble of such
days given by 20-year simulations. Thus mean HNO3 col-
umns result from averaging daily columns for the same day of
the year over 20 years of the CMAM simulation, and the
standard deviation represents the interannual variability of
daily means in the model. The interannual variability in
CMAM version 7 is generally underestimated because the
quasi-biennial oscillation (QBO), solar variability, and aero-
sol variability are not included. Also, although this CMAM
version adopts climatological sea-surface temperatures
(SSTs) which vary from month to month, they stay the same
for each year of the model simulations.
[20] SLIMCAT is an off-line 3-D Chemical Transport

Model (CTM) which has been widely used in previous
studies of stratospheric chemistry (described in detail by
Chipperfield [1999]). The model has a detailed treatment of
stratospheric chemistry. The model temperatures and hori-
zontal winds are specified from analyses and the vertical
transport in the stratosphere is diagnosed from radiative
heating rates. In the stratosphere the model uses an isentropic
coordinate and this has been extended down to the surface
using hybrid sigma-theta levels [Chipperfield, 2006].
[21] In the SLIMCAT run 323 shown here, the model was

integrated with a horizontal resolution of 7.5� � 7.5� and
24 levels extending from the surface to about 55 km. The
model was forced by European Centre for Medium Range
Weather Forecasts (ECMWF) analyses and the simulation
started on 1 January 1977. Above 350 K, where the model
used pure theta levels, vertical advection was calculated
from heating rates diagnosed using the CCMRAD scheme
[Chipperfield, 2006]. Feng et al. [2005] showed that using
this radiation scheme gave a better simulation of vertical
transport (i.e., more descent) than the previously used
MIDRAD scheme. This improved the modeled polar ozone
loss. Below 350 K, vertical motion is calculated from the
forcing analyses and the troposphere is assumed to be well
mixed.

D01305 FARAHANI ET AL.: ARCTIC NITRIC ACID

5 of 10

D01305



[22] In the SLIMCAT simulation used here, the model
halogen loading was specified from observed tropospheric
CH3Br and halon loadings [e.g., WMO, 2003] with an
additional 6 pptv contribution assumed from short-lived
bromine sources. Accordingly, the stratospheric bromine
loading near the year 2000 was approximately 21 pptv.
Photochemical data were generally taken from paper by
Sander et al. [2003], except for some details related to polar
Cl2O2 chemistry [Feng et al., 2005]. Output from the
simulation was saved every 2 days at 0000 UT for the
location of Eureka.

7. Measurement and Model Comparisons

[23] The daily mean HNO3 vertical columns for the three
Arctic sites are plotted in Figure 2 as a time series from
October 2001 to April 2002. For clarity, the error bars shown
are just the random component of the total error: 4.2%, 4%,
and 2.5% for Eureka, Thule, and Kiruna respectively. To
illustrate the relative magnitude of the systematic error, this is
shown on the first Eureka data point. From Figure 2, it is
evident that solar and lunar observations made at Eureka are
in good agreement. HNO3 columns over Eureka steadily
increased from October through to about 15 March, starting
near 1.8 � 1020 molec/m2 and reaching a peak value of
approximately 3.5 � 1020 molec/m2. This observed trend in
HNO3 is consistent with the reduction in HNO3 photolysis by
sunlight and the conversion of NOx back to N2O5 and HNO3

during periods of darkness which tends to produce more
HNO3 in winter than in summer [Wood et al., 2004]. The
HNO3 column densities and their trend observed at Eureka
are also consistent with the lunar FTIR HNO3 measurements
in the winters of 1992–1995 by Notholt et al. [1997] over
Ny-Alesund, close to Eureka’s latitude.

[24] The March 2002 solar and lunar HNO3 vertical
columns at Eureka generally agree with the Thule solar
measurements within the error bars. This is consistent with
ECMWF potential vorticity (PV) values at 475 K for the
same period, shown in Figure 3, which indicates that similar
dynamical conditions were experienced at these two sites.
The larger differences observed between Eureka and Thule
HNO3 columns on 22 March (day 81) 2002 is due to the
relative position of the polar vortex based on ECMWF
Northern Hemisphere PV maps at 475 K. For example in
Figure 4, on 22 March 2002 (day 81) Eureka is inside the
polar vortex while Thule is at the edge of the vortex [Nash et
al., 1996]. This explains why on this day, Eureka, located in a
high-PVarea, observed higher HNO3 columns typical of the
HNO3-rich air mass inside the polar vortex than did Thule,
situated only at the edge of the vortex as shown by the lower
PV value. In contrast, on 25 March 2002 (day 84) both
Eureka and Thule are at the edge of the polar vortex, as seen
in Figure 4, and therefore both report similar lower HNO3

columns associated with the lower PV values.
[25] The Kiruna solar HNO3 vertical columns from

October to November 2001 and again from January to April
2002 are consistently lower than those measured at Eureka
and Thule. This can be attributed to different dynamical
conditions experienced at Kiruna compared to the other two
sites as shown in Figure 3. That is, Kiruna remained mostly
outside the vortex during the observation period. Also
Kiruna’s latitude is exposed to more sunlight than the
higher-latitude stations. This results in more rapid photolysis
of HNO3 to NOx species at Kiruna than at Eureka and Thule.
[26] Figure 5 presents the measured HNO3 columns at

each of the sites, with systematic errors indicated as dis-
cussed in section 5. CMAM climatological HNO3 columns

Figure 3. Time series of ECMWF potential vorticity (PV) values at 475 K at Eureka, Thule, and Kiruna,
from October 2001 to April 2002. The solid line is at PV = 3.0� 10�5 Km2kg�1s�1, which is an indication
of the edge of the vortex [Nash et al., 1996].
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at Eureka and Kiruna are also included in Figure 5; this
represents the first comparison of CMAM HNO3 with
observations in the polar regions. The CMAM climatological
HNO3 columns at the closest grid point to Eureka show
excellent agreement with the Eureka lunar measurements
through the winter, with an average difference of 1.9%
((FTIR-CMAM)/FTIR) for the 21 measurement days. The
CMAM climatological HNO3 columns are also in agreement
with the Eureka solar measurements during fall 2001 and
spring 2002 within the 1s interannual variability of CMAM
(and with an average difference of 12% for 27 days).
Combining the lunar and solar results gives an average
difference of 7% between CMAM and the FTS measure-
ments. In Figure 3, the ECMWF PV time series shows that
Eureka and Thule did not stay inside the polar vortex for any
extended period, while Kiruna rarely experienced vortex
conditions during the observation period. The climatological
nature of CMAM prevents it from capturing the observed
day-to-day variations in PV. However, because 2001–2002

was a particularly warm winter, comparisons between the
measurements and CMAM provide an excellent opportunity
to assess how well the model captures the chemistry under
non-PSC conditions. The agreement of CMAM version 7
with the observations is consistent with the lack of cold
winters in this version of the model [Austin et al., 2003] and
shows the seasonal build up of HNO3 in the absence of PSCs
and denitrification.
[27] The CMAM climatological HNO3 columns at the

closest grid point to Kiruna were compared with solar
HNO3 values measured at Kiruna, also shown in Figure 5.
The CMAM climatological HNO3 columns are consistent
with the measured values at Kiruna: 33 out of 51 days are
within 1s variability, even when only the random errors on
the Kiruna measurements are considered. This increases to
39 out of 51 days when the 10% systematic error is also taken
into account.
[28] In Figure 5, the SLIMCAT 323 output is also com-

pared with the measured HNO3 vertical columns at Eureka,

Figure 4. (top left) Observed HNO3 columns at the three Arctic sites during spring 2002 and (bottom left)
ECMWF PVat 475 K. ECMWF global maps of PV at 475 K for (top right) day 81 (22 March 2002) and
(bottom right) day 84 (25 March 2002).
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Thule and Kiruna. Day-to-day comparison of SLIMCAT 323
HNO3 columns with the Eureka lunar and solar columns
results in an average difference ((FTIR-SLIMCAT)/FTIR) of
�8% for the 20 coincident days, which is within the mea-
surement uncertainty at Eureka. Thus SLIMCAT results are
in good agreement with Eureka measurements, while also
capturing the observed day-to-day variability. SLIMCAT 323
HNO3 columns are about 19% higher than both the Thule and
Kirunameasurements averaged over the 14 and 25 coincident
days, respectively, although SLIMCATalso captures the day-
to-day variability observed at Kiruna. SLIMCAT 323 gener-
ally reports higher HNO3 columns than those observed. This
is likely due to an overestimate of descent with the new
CCMRAD radiation scheme, which appears to be too large
for the 2001–2002 winter. SLIMCAT O3 columns are also

slightly too large for this period (not shown), which is
consistent with this strong descent.

8. Conclusions

[29] Vertical columns of HNO3 have been measured for
the first time at Eureka using the Moon as a light source.
These lunar measurements are in good agreement with the
solar values also obtained at Eureka just before and after
polar night. This provides us with a consistent HNO3 time
series from fall to spring throughout the polar night. The
combination of solar and lunar measurements at Eureka
shows a nearly constant increase in HNO3 values from
�1.8 � 1020 molec/m2 in October to �3.5 � 1020 molec/m2

at the end of March which is the typical seasonal behavior of
HNO3 in the absence of PSCs and heterogeneous chemistry.

Figure 5. (top) HNO3 columns measured at Eureka compared with CMAM version 7 chemical fields at
the closest grid point to Eureka and with SLIMCAT 323 at Eureka. (middle) HNO3 columns measured at
Thule compared with SLIMCAT 323 at Thule. (bottom) HNO3 columns measured at Kiruna compared with
CMAM version 7 chemical fields at the closest grid point to Kiruna and with SLIMCAT 323 at Kiruna. The
CMAM variability range is one standard deviation. Error bars indicate random errors for Eureka, Thule and
Kiruna. The single large error bar at the left of each panel indicates the estimate of the systematic error on the
first data point at each site, which is 12.9% for Eureka and 10% for Thule and Kiruna.
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[30] The first comparison of CMAM with HNO3 obser-
vations in the polar regions is presented. CMAM version 7
climatological HNO3 columns are in good agreement with
measurements at Eureka and Kiruna, considering CMAM’s
small interannual variability. Note that the interannual vari-
ability in CMAM version 7 is generally underestimated
because there is no quasi-biennial oscillation, solar variabil-
ity, or aerosol variability taken into account, and the sea
surface temperatures are the same in each year of the model’s
simulation. Also this version of CMAM does not exhibit
extremely cold winters, which means no sequestration of
HNO3 in PSCs at these sites. Nevertheless, the comparison
reveals that CMAM simulates well the winter buildup and
early spring maximum of HNO3 in the high Arctic during
winters without PSCs.
[31] SLIMCAT 323 captures the magnitude of lunar and

solar HNO3 measurements at Eureka as well as the day-
to-day variability at Eureka and Kiruna; however
SLIMCAT HNO3 columns are somewhat higher than Thule
and Kiruna measurements. This is thought to be due to the
strong descent generated by the CCMRAD radiation scheme.
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