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Abstract. The details of Frohlich’s theory and some recent experiments on the rouleau formation of
human erythrocytes which exhibit a strong interaction that appears to satisfy the prerequisites of the
Frohlich theory, are summarized. To verify whether the Frohlich theory of long-range coherence in
biological systems is applicable to the phenomenon of rouleau formation in human erythrocytes, the
interactions between erythrocytes are modelled as those between two large, coupled oscillating
dipoles. Relevant expressions for the resonant long-range and the van der Waals interaction are then
derived. Using the available numerical data, the eigenfrequencies and the interaction energies cor-
responding to the experimental conditions are then derived. In the range of postulated frequencies
(10'1-10'2 Hz) the effective interaction coefficient = due to the resonant long-range forces is, indeed,
found to agree with its experimental value of 3.0. However, the same value of E can also be achieved
through the ordinary van der Waals interactions between dipoles oscillating at lower frequencies. It is
concluded that the resonant long-range interaction between erythrocytes may be responsible for the
onset of rouleau formation. However, other mechanisms cannot be ruled out at this stage, especially
since the Frohlich mechanism requires a number of unconfirmed preconditions.
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1. Introduction

Due to constant supply of metabolic energy, many biological systems are con-
sidered to be far from thermodynamic equilibrium and’in regions of nonlinear
response to external forces. These systems also exhibit a high degree of order
(understood in terms of functional organization rather than spatial arrangement),
which suggests the presence of forces between the subsystems that are stronger
than short-range chemical forces and screened Coulomb forces. Frohlich (1978,
1980) suggested in his theory that if the components of a biological system undergo
coherent elastic vibrations, then long-range interactions of either a repulsive or
attractive nature can be strongly excited. This theory can be applied only to systems
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which satisfy the following prerequisites:

(i) The existence of a high degree of organization which requires collective pro-
perties at the microscopic level.

(ii) The existence of a sufficiently strong cell membrane potential difference
which will electrically polarize molecules within the membrane. A potential
difference of about 10-100 mV is known to exist across biological mem-
branes with thickness of 4—10 nm (Chance et al., 1980). This results in an
electric field of 1-25 % 10® V/m very strongly polarizing the membrane and
possibly inducing an electret state.

(iii) The rate of supply of metabolic energy S must exceed a critical value S,,.

High-frequency longitudinal dipolar oscillations of sections of biological mem-
branes can occur with displacements perpendicular to the surface (Frohlich, 1980),
so that the longest wavelength is twice the membrane thickness. The displacement
involved characterizes the magnitude of the oscillating dipole moment as, for
example, in the lipid head group. Using the speed of sound as 10° m/s as the propa-
gation velocity of these membrane waves, their frequency is found as v = 0.5-
1.3x 10" Hz or w = 2av = 3-8 X 10!! Hz. There are several other mechanisms
(Frohlich, 1978) which can produce oscillations in this frequency range. For exam-
ple, vibrations may take place through the interaction of successive ionic double
layers or within large polar molecules such as DNA, RNA, proteins and hydrogen-
bonded amides. Finally, the collective motion of ions freed in chemical reactions
may lead to plasmon-type excitations. These oscillating cellular systems may inter-
act amongst themselves, giving rise to narrow bands of coherent modes.

Various experiments were described by Frohlich (1980) that demonstrate the
sensitivity of metabolic processes to certain frequencies of electromagnetic radia-
tion (especially in the microwave region). In some cases, such life processes as syn-
thesis and reproduction exhibit resonant behavior at certain frequencies, while in
others, there is a frequency-dependent absorption of radiation. Various spectro-
scopic experiments on living cells have also been performed with the objective of
finding some nonthermal excitations of narrow frequency bands (Webb, 1980).
Frohlich (1980) concluded that these experiments cause biological effects that can-
not be explained as simply due to heating or the direct-action of an applied electric
field. Frohlich (1980) made attempts to explain the observed nonthermal, non-
linear effects dependent on frequency, intensity, and time of irradiation, in terms of
the theory of long-range coherence. However, the Frohlich theory has not been
conclusively confirmed experimentally yet.

To date, the most promising evidence in support of Frohlich’s conjecture comes
from a series of experiments on the rouleau formation of human red blood cells
(erythrocytes). Erythrocytes aggregate face-to-face in columns when blood ceases
to flow and there are no shearing forces. This phenomenon exists only in mammals
with flattened erythrocytes. We can only speculate at this point that the flattening is
a result of a force acting within an erythrocyte and possibly leads to much stronger



FROHLICH THEORY AND ROULEAU FORMATION 21

inter-erythrocyte interactions which can now be axial. Clinically, the appearance of
large rouleaux is an indicator of elevated blood plasma concentrations of certain
macromolecules (Reich, 1978). Such neutral polymers as dextran, ficoll and poly-
vinyl pyrrolidone (PVP) enhance the rate of rouleau formation of erythrocytes
suspended in saline solutions and blood plasmas, provided their molecular weight
exceeds a threshold value. It is, therefore, natural to expect that these macromole-
cules are instrumental in transmitting or facilitating the attractive interactions
between erythrocytes. The objective of this paper is to investigate whether or not
the Frohlich model is capable of providing an explanation of rouleau formation.
Qualitative arguments for the Frohlich theory were put forward in several recent
papers of Rowlands er al. (1981, 1982, 1983). However, no quantitative analysis of
the problem exists in the literature.

2. Experiments on Rouleau Formation

Human erythrocytes, when metabolically active, have a biconcave disc shape and
are covered by a membrane of proteins embedded in a lipid bilayer (see Figure 1).
The mass of an erythrocyte is of the order of 107! kg, its density 1.15 X 10 kg/m?
and surface area 140 um? (Steck, 1974). Most of the cell’s membrane is composed
of proteins (52%) and lipids (40%), with a remaining 8% of carbohydrates. When
erythrocytes collide during a seemingly random motion, they slide face-to-face and
adhere together to form long, cylindrical and sometimes branched structures called
rouleaux (see Figure 2).

The first set of experiments of Rowlands et al. (1981) involved time lapse
photography. Pairs of cells that were initially less than one diameter (8 xm) apart
were observed until they collided. Assuming random motion, the theoretical aver-
age probability of such pairs colliding was calculated as approximately 0.3. In con-
trast, under normal conditions, the observed fraction of pairs colliding was
0.85+0.06 suggesting the existence of a strong attractive interaction between
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Fig. 1. A typical erythrocyte.
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Fig. 2. A typical rouleau.

erythrocytes. When the pH was reduced from 7.6 to 6.3 (drastically reducing the
membrane’s potential difference since its net isoelectric point lies in the range of
4-5 pH), the fraction of collisions decreased to 0.33. Restoring the pH to 7.6
resulted in the fraction becoming 0.76. Introducing ionophores to depolarize the
cell membrane reduced the fraction to 0.48. Metabolically depleting the erythro-
cytes by washing them and then incubating them in phosphate-buffered saline
(PBS), reduced the fraction to 0.39, and repleting them by incubation in adenosine
restored the fraction to 0.75. Finally, fixing the erythrocytes with gluteraldehyde
which cross links proteins and destroys cellular organization also decreased pair
collisions to the random value. The second set of experiments of Rowlands ez al.
(1982) resulted in the determination of an interaction coefficient based upon
Smoluchowski’s theory of colloidal coagulation. The equation governing the kine-
tics of coagulation (with the effect of cell sedimentation reducing the process from
three to two spatial dimensions) is

1 *
N, N 37 o

where N, is the total number of particles (single and aggregate) at time ¢, N, is the
initial number of particles, k; (= 1.38 X 1072® J/k) is Boltzmann’s constant, 7' is the
absolute temperature, 7 .is the viscosity, r, is the average radius of the particles and
ry is a parameter defining the radius of a zone of attraction around each cell. This
equation is based upon the Stokes—Einstein definition of the diffusion coefficient
for spheres D = kg T/6xnr,. The interaction coefficient = = ro/r, indicates how
many times faster the actual aggregation process is taking place than for Brownian
motion and its experimental values are shown in the left-hand part of Table L. It was
concluded by Rowlands et al. (1981) that the attractive interaction disappears
when the three requirements of the Frohlich theory are no longer met.

Fritz (1984) performed quasi-elastic light scattering experiments from solutions
with suspensions of erythrocytes using a photomultiplier to detect the scattered
laser light. The solution used in these experiments was PBS at various pH, to which
human serum albumin (HSA) was added. The additional macromolecules were
PVP at several molecular weights. The PVP at the molecular weight of 360 000
caused an abnormally high diffusion coefficient under the conditions of metabolic
activity and with the presence of a transmembrane field. Once again, the influence
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Table I. The interaction coefficient =, as measured by Rowlands ez al. (1982) and the corre-
sponding values of the diffusion coefficient D and the interaction coefficient E; as measured by
Fritz (1984), under various conditions

Conditions Probability ZEjx D(in 107'° cm?/s) Eg
Normal cells 0.85 292+1.12 235 3.07
Cells at pH 6.3 0.40 1071041 19.5 1.89
Cells restored to pH 7.6 0.71 2.57+£0.99 21.5 2.49
Ionophore-treated cells 0.48 1.69£0.04 - -
Metabolically depleted cells 0.44 043+0.11 17.5 1.26
Cells repleted with adenosine ~ 0.87 3.2610.68 222 2.70
Gluteraldehyde fixed cells 0.46 0.921+0.46 15.1 0.53
Microspheres 3.4 um 0.24 0.72£0.00 15.0 0.50
Microspheres 5.9 um - 0.92+0.00 - -
Microspheres 8.0 um - 1.15+0.00 - -

of macromolecules on the rate of rouleau formation is quite dramatic, indicating
their possible role in transmitting the interaction. Several conditions of metabolic
activity and the pH were tested in order to independently verify earlier findings of
Rowlands et al. (1982). In order to make a quantitative comparison between the
two sets of experiments, the difference in dimensionality and the particle concen-
trations used in both experiments must be accounted for: pg = 5% 1073 v/v in the
first and o = 1.8 X 107 v/v in the second. Using the first order approximation in
the virial expansion, the interaction coefficient Eg corresponding to Fritz’s experi-
ment can be calculated from his diffusion constant D as (Paul ez al., 1983):

= 1 (es)?(D
]

where D, is the diffusion coefficient under Brownian motion with no forces pre-
sent. The values of = are shown in Table 1. It is clear that both types of experi-
ments yield remarkably close results for =.

Finally, Blinowska ez al. (1985) performed an experiment in order to find the
suspected resonant frequency in the microwave absorption spectra. The absorption _
spectra were measured for both normal erythrocytes and the ghosts, with highly
concentrated, thin samples, and a low-frequency range chosen, in order to reduce
the absorption effects of the buffer solution. A resonance peak indeed appeared at
0.367 x 10" Hz for both the erythrocytes and the ghosts, and was stronger for the
latter.

3. The Theoretical Model

The starting point in our analysis is to follow Frohlich (1980) and assume that
within each cell membrane there is a large number of oscillating dipolar segments
which are coupled together via a combination of elastic and electric forces. The
main conjecture is that a metabolically active cell, e.g. a red blood cell, exhibits



24 J. A. TUSZYNSKI AND E. KIMBERLY STRONG

Bose condensation and from among a very large number of possible oscillation fre-
quencies the cell selects a characteristic frequency (or a narrow band). The question
of how and why this type of effect should arise is a separate problem which has
been addressed in the past by many researchers in the field and shall not be pur-
sued here. Having accepted the Frohlich conjecture on a trial basis we then model
erythrocytes as large dipoles oscillating with certain initial frequencies. Their
mutual interactions are of dipole-dipole type and, hence, the effective Hamiltonian
for a pair of interacting erythrocytes (neglecting many other degrees of freedom) is
that of two coupled harmonic oscillators (Frohlich 1972)

1 2

H=§ZM,-(L2,-2+a) )—- > u; Tu, (3)
i=1 ne j=1 .

which leads to the (coupled) equations of motion for the displacements

M(d; + w?ui) = U; ]}i i=12), 4)
where M, is the mass of the ith dipole and the interaction potential is
T; = e (Z,:Z, ) 2/r,, ge'(w). ) 5)

The following notation has been adopted above: y* = (cos ¥, — cos®y,) and y
depends on the geometry of the system as shown in Figure 3 following Pokorny
(1980). In Figure 3, S, is the circular effective interaction layer for the cells which
consists of elementary oscillating electric dipoles with their axes perpendlcular to !
S,. Since the cells slide face to face, only the most favorable orientation has been |
included, ie. when their dipole moments are parallel. In Equation (5), e
(= 1.6 x 1071 C) is the elementary charge, Z, is the number of elastically bound
particles within the ith dipole, r; is the distance between dipoles i and j (greater
than dipole diameter L) or more precisely the distance between the effective inter-
action layers, &, (= 8.85 % 10712 C>N-'m™2) is the permittivity of vacuum and &'(w)
is the real part of the frequency-dependent dielectric constant of the medium. See-
king the solutions of Equation (4) as normal modes u; = u}(w) €™*** and substitu-
ting it into Equation (4) gives the eigenfrequencies fo the interacting system as

1 1 T.T 1721172
©; = [5<w?+w§)i [Z(w%—wi)z *W] ] . (©)

Fig. 3. Geometrical illustration of two interacting erythrocytes where S, is the effective interaction
layer and r is the distance between S, and S,, following Pokorny (1980).
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This expression simplifies somewhat for the case of two identical dipoles where M,
=M,=M;T,,=T, =T1T,Z, =Z,=Z and r|, = r, so that

1 1 T2 172
232
R Ll R v ™

This becomes particularly interesting at resonance, when w; = w, = w, and the
eigenfrequencies for the two identical dipoles are

W, = (a)2 + —AY—/;) . (8)

The condition of resonance for two only approximately equal cells is, of course, an
idealization. It is assumed, however, that the external conditions which are very cru-
cial in establishing a given w are identical and that the interactions are relatively
weak between the cells to allow the present treatment. A more appropriate treat-
ment which is planned for future calculations should allow for an uncertainty in
both w and in the interaction constant. The ensuing calculation would search for
the occurrence of resonance under these imperfect conditions.

Since the dielectric constant is strongly frequency-dependent, the interaction
constant T in Equation (8) is an implicit function of w, . Thus, denoting B? =
y2erZ/Mrig,, gives

2
2 2+ :B

w; =w Tt — .
&' (w:)

©)

The dielectric constant of a biological system can be approximated as (Grant et al,
1978)

g(w) & v,e(w)tve(w)+(1—v,—v,) g (w), (10)

where v,, and v, are the volume fractions of the membrane dipoles and the bound
water, respectively, and ¢/, €}, and ¢, are the real parts of the dielectric constants
of the membrane dipoles, the bound water, and the free water, respectively. Bound
water (or hydration water) is composed of H,O molecules which are attached due
to dipole-dipole forces to the many polar macromolecules such as proteins, DNA,
RNA, etc. (Hasted, 1973). This type of water, as opposed to free water with ran-
dom arrangement of its dipole moments, is often in an electret state possessing a net
dipole moment. The contribution from bound water is quite small since v, < v,,
and since bound water relaxes at frequencies below those of interest. The mem-
brane dipoles have already been included in the dynamics analysis resulting from
the Hamiltonian of Equation (3). Although they also may be suspected of giving
rise to resonance peaks in the region of interest, there is little experimental data
allowing appropriate calculations to be made at the present time. Therefore, as a
simplification &’(w) is here approximated by that of free water, i.e. £'(w) = &, ().
The latter is given by the Debye equation (Frohlich 1958)
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&~ €w

£(0) = e0 t T (1)
where ¢, is the static dielectric constant &, = £'(0), €., is the optical dielectric con-
stant, £, = £'(), and 7 is the relaxation time. At room temperature the free water
parameters are (Grant et al., 1978): ¢, = 4.5,e,=78.5and =09 X 107! s. Now
substituting @ = w, into Equation (11) and then substituting Equation (11) into
Equation (9) yields an equation for the resultant frequency which can now be split
into up to four different values w;(i=*1and j=£1)

w,; = |G+ CT+ de T (g, + 1,7/ 2607} 7, (12)

where C, = e, w? 12 — ¢, + n;82 7% and ;= %1, 7, =+ 1. Using the data elabora-
ted on in the next section, we have plotted the split frequencies in Figure 4. Note
that the splitting first occurs at w* = 0.41 x 10" Hz and persists up to approximately
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Fig. 4. (a) A graph of log,w; as a function of log,,  based on Equation (12) and the data pre-
sented in Section 4; (b) A close-up of the graph of w; asa function of w in the vicinity of @*.
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Fig. 5. A graph of ¢, and ¢_ as a function of log,, w based on Equation (13) and the data presented
in Section 4.

10'2 Hz. This, then is the range of frequencies within which the long-range interac-
tion predicted by Frohlich (1980) may exist. An explicit expression can also be
obtained for £);(w;) as

£ = ta ¥ (6~ €x)/ [260 + G+ CT + 4o T (60" +1;87)] (13)

Using the data of the next section, we have plotted the behavior of ¢ as a function
of frequency in Figure 5.

Tuszynski (1985) recently demonstrated that long-range interactions may also
occur at resonance in systems comprised of N interacting dipole moments (ery-
throcytes). Then, the interaction energy resulting from changing the distribution of
oscillation frequencies from {w;; i =1,..., N} to{Q;; i =1,..., N} is given by

N .
AE = kT3 In s%nh(hQ,-/2kBT) '
sinh(hw,;/ 2k T)

i=1
" Such an approach is much more realistic in our applications to rouleau formation,
since each erythrocyte can be viewed as a multi-mode rather than a single-mode
. oscillator. Therefore, assuming the total number of quasi-particles (longitudinal
phonons) to be n in each erythrocyte and that the resultant occupation numbers of
the extremal frequencies (w, = max{Q,; 1<i<N} and w_ = min{Q; 1<i<N})
are n, and n_, respectively, Equation (14) becomes

: . kT
sz.nh(hw+/2kBT) + fin sz‘nh(hw kg T) s
sinh(hw, 2kgT) sinh(hw,/2kgT)

(14)

AE = 2nkBT[f+ln[

where f, = n, /n represents the fraction of quasi-particles occupying the mode
w. . Note that in nonequilibrium situations, f, depends on the rate of pumping of
energy into the mode w, . In thermodynamic equilibrium, f, represents an average

*
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Fig. 6. A graphof f{’and f*asa function of log,, w based on Equation (16) and the data presented
in Section 4.

occupation number of the mode w, and is, in general, given by Bose—Einstein dis-
tribution

iq - [eh(wi—;z)/k,,T__ 1]—1 (16)
where the chemical potential 4 can be easily found as
u =—kyT In{le, +e_+ (el +e— e.e ) /e e}, (17)

where e, = exp(hw. /kgT). The plot of ff¢ for the relevant data is given in Figure
6. In particular, if Aw < kg7, then a classical approximation is obtained: ff7 =
kyT/H(w, — ) with 4 = 2kgT/h. On the other hand, if Aw > kg7, then a quan-
tum approximation is obtained:

h

Y= eXp[— ;B—T(wi —#)]

with

kT nle hw., te hw_
= — xp|——— xpl——=1|. .
K=" A R W

Since, in general, such considerations must include nonequilibrium conditions, f,
and f_ will be left as parameters yet to be specified. Assuming that the dipole coup-
ling is sufficiently weak (w? > B2/ ¢), Equation (9) is expanded showing an explicit
dependence on the separation between the dipoles.

ﬁz i ﬁ4

2weL 8(1)38;2

b

wy = wt

where ¢, = & (w, ). Using Equation (15) in the extreme quantum case, which at
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room temperatures 7 = 300 K implies frequencies much greater than 103 Hz, AE
can be approximated by

A B
= -, (19)

AE, = nhlfw, +fo.— (0, +tw)]—— —
w=w, P F

q
where we have shown the transition to resonance with A, being the long-range
coefficient arising only under the special conditions of resonance between dipolar
oscillations on the two erythrocytes

2.2
Aq_z__”_hyez _LLE (20)
2w\ gM g, &
and B, being the van der Waals coefficient arising for arbitrary values of frequen-
cies
nh (v €2\ f.  f
B g2 —|—| |5 +—]. 21
] e 8a)3( eOM) e ¢t (21)

In the extreme classical case with weak coupling, which at room temperature
implies frequencies much lower than 10'* Hz, the interaction energy is given by

A, B,
AE, = 2nkp T [f. In(w,/ ) + f- In(w_/ ,)] — = r—; > (22)
where A, is the long-range coefficient
ky Ty’ e’ Z -
- _fﬁ_zyf;(_LL) 23)
wegM e &
and B, is the van der Waals coefficient.
kyT[y’ € Z\? a
BCEZB4(}’€ ) SESCA (24)
w \ egM &y el

Typical plots of A, and B, as functions of @ are shown in Figures 7a and 7b,
respectively. For the general case, in between these two extremes, the interaction
energy Equation (15) can be expanded and dropping the terms of orders higher
than B* its coefficients are found as follows: the long-range coefficient

A; = A, coth x (25)
and the van der Waals coefficient

B; = B,[coth x—x(1 —coth x)], (26)
where x = hw/2k,T. Note that these expressions are valid in both regimes since

when x < 1, then coth x = x™! and

1 2
A—> A, (—) =A, and B,—— B (—) = B..
x=0 X x=0 q X
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Fig. 7. A graph of (a) A, of Equation (23) and (b) log,, B, of Equation (24), as a function of log ,

plotted using the data presented in Section 4 and assuming thermal equilibrium conditions. Note that
B, is i1. units of JmS.

On the other hand, when x > 1, then cothx = 1 and

Ai——"" Aq and B,'—“) Bl/‘
X X—

The effect of temperature on the values of long-range coefficient A; and the van
der Waals coefficient B, is shown in Figure 8.

It should be emphasized that the long-range contribution to AE proportional to
A exists only under the conditions of resonance between the dipoles. In all other
situations, i.e. when the two dipoles vibrate at arbitrary frequencies, the van der
Waals contribution completely dominates AE with A being identically equal to
zero. Hence, long-range interactions are very specific. Although in the present cal-
culations we have assumed that w, = w, when calculating both the long-range and



FROHLICH THEORY AND ROULEAU FORMATION 31

Ai,
Aq

ql (b)

Bi
B
2.00}

1501
[ {a)
|.25~E

L0051 02 03 04 05 06 07 08 09 10 Il 12

o 2keT
how
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the van der Waals contributions, that assumption is not needed in the latter case.
Even if w, # w, the van der Waals term exists and the inclusion of the resonance
condition was mainly provided for comparison purposes. Should we wish to make
use of our resonance calculations in the general case, provided w, and w, do not
differ too drastically, the value of w in Equation (26) can be interpreted as an aver-
age frequency of the two dipole oscillations.

From Equation (26) it is obvious that the van der Waals interaction is always
attractive, irrespective of the frequency range, temperature range or the type of the
dielectric medium. However, as can be seen from Equation (25), the long-range
interaction constant A; may be repulsive (A; < 0), attractive (A; > 0) or zero de-
pending on a delicate balance between f, and ¢} . The form of A; is too compli-
cated to make general predictions for arbitrary values of w and 7, but a few special
cases can be discussed. First of all, in thermodynamic equilibrium and for very high
frequencies (but still within the classical limit), ie. w? > (8?/¢, —&,/€, 1%), the
difference between &, and &_ practically disappears (¢, = ¢”). Since f, <f, we
obtain A, < 0 which means that the long-range contribution is repulsive. However,
it is expected to be of negligible strength since (f, — f.) is normally extremely close
to zero. Also in thermodynamic equilibrium, if the coupling constant 82 is small,
then the difference between w, and w_ is negligible resulting in €} = ¢’ and
fi = f_. Since &, < e_, for a vast majority of biological materials and arbitrary fre-
quency ranges (&'(w) is almost always a monotonically decreasing function of fre-
quency), we obtain A > 0 which means that the long-range contribution is very
weak and attractive. Compared to thermodynamic equilibrium conditions, arbitrary
population distributions via nonequilibrium pumping mechanisms, lead to much
stronger interactions, since cancellation effects bet'een the pairs of f, and f. and
€, and e_ may be eliminated. If, for example, the w_ mode is pumped (i.e. f, =~ 0
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Fig. 9. A graph of (a) log,, A, of Equation (23) and (b) log,, B, of Equation (24), as a function of
log,,  plotted using the data presented in Section 4 and assuming nonequilibrium conditions of occu-
pation inversion (i.e. f, = 1.0, . = 0.0). Note that A_ is in units of Jm? and B, in units of Jm®.

while £ — 1), then a very strong repulsive long-range force arises in the system in
agreement with Frohlich’s earlier predictions. On the other hand, if the w, -mode 1s
pumped (population inversion, i.e. f. = 0 while f, —~ 1), then a very strong attrac-
tive long-range force arises in the system. These nonequilibrium situations lead to
A, whose absolute value is greater by several orders of magnitude than that under
equilibrium conditions. At the same time, the values B, are essentially unchanged.
This has been illustrated in Figure 9. Of course, in all cases the total potential
vanishes as r = < and is attractive on short distances due to the stronger diver-
gence of the van der Waals potential as r — 0. In the case of repulsive long-range
forces (A, < 0), however, there will be a potential barrier whose maximum height is
A?/4B, which occurs at the distance 7= (2B./ |A_])Y/3. Thus, the stronger the
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repulsion through A, the more difficult it is to overcome this barrier and the far-
ther away it is felt by the interacting particles.

4. The Kinetics of Rouleau Formation

A general description of the kinetics of rouleau formation has recently been given
by Paul et al. (1983) using the formalism of colloidal coagulation. The basic kinetic
equation is
dN

- — = 8aDr N?, (27)
dt
* where the symbols used have been explained below Equation (1). In order to de-
scribe the process, it is sufficient to parameterize it by the interaction coefficient
= =r,/r,, where r; is defined through the inter-particle potential as

(ry)”" = J drr? exp(AE/k,T). (28)
It is useful to note that if the resonant long-range interaction is dominant,
(AE,=—A,/r%), then the interaction coefficient can be expressed using the incom-
plete gamma function and its power series expression (valid only for small values of
the argument) as

_ 1
B = (ro/3)(ky T/A)"" y(g, Ak Try

> -1)" A " 29
—am) 3~ 1 (29)
weo MW (n+1/3) \kgTr,
On the other hand, if the van der Waals interaction is dominant (AE = — B,/r%),

then the interaction coefficient can be expressed as
_1 176 1 6
Evaw = (ro/6)(ksT/B;)"" vy 8, B;/kgTr

° (=1 ( B, ) (30)

(1/6) Z(, ni(n+1/6) \kgTrg
. We have written a short FORTRAN program to calculate both =, and =;,,. The
results of these calculations are plotted in Figures 10a and 10b, respectively. Only
the cases when both the long-range interaction and the van der Waals interaction
are attractive (A; > 0; B, > 0) need be shown since in the case of repulsive poten-
tials, it is well-known that = does not exceed 1.0. Thus, it is clear from Figure 10a
that in order for E to exceed 3.0 (pertaining to the case of metabolic activity)
u=r,/(A,/kzT)"? must be less than 0.4. Using the known value of r, =
4x107° m, and T =293 K, the lower limit on A; in this situation is obtained as
A; 2 4x1073¢ Jm3. On the other hand, for the long-range interaction to be negligi-
ble in the process of rouleau formation under the cor:nditions of metabolic activity, it
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is found from Figure 10a that u must be greater than approximately 1.25 which
translates itself into the requirement that A; < 1.3 X 1077 Jm®. Similarly, using the
the data for the van der Waals interaction plotted in Figure 10b, it is found that in
order for this interaction to yield £ = 3.0, it is required that v=ry/(B;/ksT)"/® be
less than 0.4 which means that B; > 4 X 107! Jm®. On the other hand, for the van
der Waals interaction to be negligible in this process, it is clear from Figure 10b,
that v must be greater than 1.0 which means that B, < 1.7x 107%* Jm°®. ‘
Based on these results, a number of interesting conclusions can be inferred. First
of all, assuming that the resonant long-range interaction is entirely responsible for
the process of accelerated rouleau formation, this can only be possible in a non-
equilibrium situation with £ =0.0 and f, = 1.0 (occupation inversion). Assuming
after Frohlich (1980) that w ~ 10" Hz, it is fully justified to adopt the classical limit
in the calculations. Therefore, with these assumptions from Equation (23) and (24),
the condition is obtained that A2/B, = 2nkgT > 10718 J. This gives the lower limit
on the number of quasiparticles occupying the selected dipole mode (w,) as
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n = 120. If the other case is to be realized, i.e. that under occupation inversion con-
ditions the van der Waals attraction is to be predominantly responsible for the rou-
leau formation, then the corresponding condition is 7 < 107 (i.e. no dipole modes
may be excited in the system) and, thus, can be excluded as a viable option. How-
ever, in the thermodynamic equilibrium case, by and large, the long-range interac-
tion can be excluded as a possible cause of rouleau formation, as discussed earlier.
The feasibility of the process being carried out through the van der Waals attraction
will be discussed later. In order to be able to estimate the frequencies involved in
the process some important parameters must be evaluated. In agreement with the
experimental conditions, the dipole separation  is chosen to be twice the diameter
of an erythrocyte, i.e. = 16 um. The mass M is that of each of the Z elastically
bound particles, protons, i.e. M = 1.67 X 1077 kg. With the configuration of Figure
3, substituting the relevant data, i.e. the distance between the effective dipolar
layers = 10 um and y, = 20°, into the formula for y given below Equation (5) it is
found that y = 0.1. The three main polypeptides of an erythrocyte ghost are known
as spectrin, tektin A and myosin and their combined number reaches approximately
N = 1.5% 108 per ghost (De Robertis and De Robertis, 1980). Using n = 200 for
the number of dimers per polypeptide (Rabinowitz, 1984) and also for the occupa-
tion number of the dipole mode, their product is obtained as Z = Nn = 3X 108.
This when used in Equation (23) requires the resonant frequency of o =
2 x 10'2 Hz (or less) in order for E ., = 3.0. This is somewhat high on the frequency
range predicted by Frohlich but nonetheless within the general ballpark. It must be
emphasized here that several of the numbers used for this calculation are only
rough estimates than exact figures. Had we used Z = 5 X 107 (meaning, for example,
that not all the polypeptides participated in the interaction but only a small fraction,
due, say, to the geometry of the erythrocyte), then the resonant frequency producing
= .. = 3.0 would be approximately 3x10"' Hz, at the lower end of the range predi-
ced by Frohlich. For w greater than 10'* Hz, the corresponding E . tends to its ran-
dom motion value.

For coagulation to result entirely from the van der Waals interactions we use
Equation (24) and the number B, =4 X 107! Jm® as read off Figure 9b and find
that, with the value of Z = 3 X 108, any frequency in the range lower than 10" Hz
is capable of causing a rouleau formation at the measured rate of & =3.0 and
under conditions of thermodynamic equilibrium. For frequencies above 10'? Hz,
the van der Waals interaction cannot increase E ., above its Brownian motion
value. These values of w calculated for the van der Waals interaction are relatively
insensitive to a variation of Z since as seen from Equation (24) w~ Z'/2. Thus, in
terms of the required frequency range, this result is less uncertain than that ob-
tained for the long-range interaction.

Finally, we comment on the use of free water parameters for the dielectric prop-
erties of the medium. In the range of interest to us the sign of de’/dw is negative for
practically all biological substances of importance to this study (Grant et al.,, 1978),
i.e.s for water, aqueous solutions of hemoglobin, blood, solutions of myoglobin, etc.



36 J. A. TUSZYNSKI AND E. KIMBERLY STRONG

Taking into account the concentration of NaCl (¢ = 150 mM) used in the relevant
experiments results in a negligible decrease of the relaxation time 7 by approxi-
mately 1.5% and of the static dielectric constant & by approximately 4%. This
would have a very minor modifying on our calculations. The electric fields of the
order of magnitude present in the membrane do not drastically affect the dielectric
properties of the constituent water (Hasted, 1973). Lastly, raising the temperature
close to the upper physiological limit of 40°C results in &, dropping very little
below its value at 20°C, ¢, dropping by about 10% while the relaxation time
decreases by almost 50%. From Equation (11) and (12), then follows that the range
of frequencies leading to strong long-range forces should be shifted upwards rather
significantly with the increase of temperature.

5. Discussion and Conclusions

In the past, there were a number of theoretical models put forward in an effort to
explain rouleau formation. Ponder (1957) suggested that the macromolecules are
adsorbed on the cell’s surface and, as a result, alter the local dielectric constant of
the membrane. This could cause an expansion of the double layer and an increase
of the surface potential. However, to achieve sufficiently strong attraction between
erythrocytes, the dielectric constant would have to reach unrealistically high
values. Ross and Ebert (1959) proposed that dextran causes a rearrangement of
surface proteins which leads to an increase in the surface charge density. Sieh and
Sterling (1969) pointed out to a nonspecific anion binding to an adsorbed polymer
layer as a possible reason for an increase in the surface charge. Brooks (1973) and
Brooks and Seaman (1973) advanced a model which shows an increase of the zeta
potential as a result of polymer adsorption and an associated expansion of the
double layer, provided the concentration of dextran exceeds a threshold value. The
red cell aggregation is then envisaged as resulting from nonspecific cross-linking of
polymer between adjacent cell surfaces. This mechanism could occur only if the
polymer’s molecular weight was large enough to allow for sufficiently long bridges.
However, there appears to be no concrete evidence in support of the cross-linking
hypothesis. Recently, Evans (1986) suggested another possible mechanism, i.e.
depletion flocculation which is a process where free polymer is squeezed out in the
small gap between the two interacting red blood cells. This would then yield an
attractive force at small distances which is due to an osmotic pressure between the
gap and the solution. However, this mechanism could not explain the observations
of Rowlands ef al. (1981, 1982) which indicate that erythrocytes attract each other
over long ranges on the order of 10 um. All the other mechanisms discussed here
could not account for some important features of rouleau formation revealed by
experiment, e.g. sensitivity to the pH-level, species recognition or dependence on
metabolic activity.

Metabolic activity is associated with a sufficient supply of ATP. A drop of ATP to
1/2 of its normal value leads to abrupt crenation and sphering of the cells. It does
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not, however, change the zeta potential or the surface charge (Weed et al., 1969).
The transmembrane potential can be reduced either by a drop in the pH from its
normal value of 7.6 or by treating the cells with ionophore. Both of these effects
cause sphering since the lowering of the pH is associated with a reduction of sur-
face charge, that would lead to less repulsion between cells and higher rate of
aggregation which could not be explained using a purely electrokinetic model.
Moreover, since surface charges are neutralized by counter-ions up to very short
distances of approach (~ 1 nm), the electrostatic forces are certainly short range in
these solutions. Cellular organization can be destroyed by the presence of gluteral-
dehyde in the solution which cross-links proteins without any effect on the cell’s
shape, area or volume. The experiment of Sewchand and Rowlands (1983) also
indicates a certain amount of specificity in the erythrocyte interactions. Namely,
contrary to standard predictions for colloidal coagulation, cells from different
species tend to adhere less than those from a single species. Moreover, further
experiments of Rowlands et al. (1983) involved micro-manipulation of rouleau and
were intended to investigate the nature of binding betwen erythrocytes. It was
found that erythrocytes are joined by contractils, which are 10—100 xm long fibrils
made of macromolecules. The conditions which are required for the formation of
contractils exactly mirror those required for rouleau formation itself. However, the
erythrocyte interaction takes place before cellular contact has been made while
contractils arise after contact. This would indicate that macromolecules may be
involved in transmitting or facilitating the interaction but are not themselves
responsible for the onset of rouleau formation. Moreover, there are indications that
contractils do not produce just visco-elastic forces as evidenced by an unusually
rapid pulling together of the cells when a contractil breaks and by the fact that the
line of attachment of a contractil to a cell is always directed radially towards the
center of the cell.

The results of these observations have been rather hastily interpreted as lending
significant support to-the theory of Frohlich (Paul et al, 1983). The objective of
this paper was to quantitatively verify whether or not this model is capable of
explaining the experimental results. Our findings have led to the identification of
two possible scenarios. First, under nonequilibrium conditions of externally sup-
plied energy being pumped to occupy the higher of the two levels (w, ), and as-
suming that the frequency is in the upper end of the 10''~10'? Hz range, the resul-
tant rate of rouleau formation does indeed reach the measured value of E = 3.0
supporting the predictions of Frohlich. It should also be emphasized that the
resonant frequency of 0.367 x 10'! Hz detected by Blinowska et al. (1985) is very
close to the characteristic frequency w* of 0.41 x 10" Hz (see Figure 4) at which
the two eigenfrequencies w, and w_ begin to split. At this point of our investiga-
tions it is not entirely clear through what physical mechanisms the occupation
inversion with f, = 0.0 is to be realized in the membrane. Using the numbers
presented in this paper it is easy to calculate the energy required for the occupation
inversion to be on the order of 107'* J. This is not an unreasonably high amount of
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energy for a biological cell to accumulate. It may, for example, be obtained through
the supply of ATP resulting via the process of hydrolysis in the creation of approxi-
mately 10° elementary units of energy (0.205 eV each). The energy released in the
ATP-ADP transformation can be transmitted losslessly through the membrane via
solitons (Davydov, 1985) which may polarize the membrane and create an electret
state as pointed out by Del Giudice et al. (1985). Within this scenario, the drop
from Z =3.0 to £ = 1.0 would come about as a result of insufficient supply of
energy (in the form of Davydov solitons) leading to depolarization of the mem-
brane, a subsequent reversal of the occupation levels to their thermodynamic
equilibrium values, and eventual elimination of the long-range force.

The other scenario is based entirely on van der Waals forces acting between the
erythrocytes. This involves arbitrary frequencies in the range below 10" Hz and ~
requires no far-from-equilibrium effects in order that = may reach a value of
E = 3.0. Then, the drop of E from 3.0 to 1.0 could be explained following the com-
ments of Miiller-Herold ef al. (1987). Namely, as demonstrated by several experi-
ments (Weed et al., 1969; Lutz et al., 1977; Nakao et al., 1960), metabolic deple-
tion and pH-reduction effects dramatically change several important physical
properties of an erythrocyte. The shape changes from a biconcave disk to a
crenated sphere, to a smooth sphere. Simultaneously, the measured viscosity of
depleted ghosts increases several times while membrane deformability markedly
decreases together with a ten-fold increases in the negative pressure required to
deform the membrane. As can be seen from Equation (1) and (2), these effects
would be reflected in a substantial decrease of Z as measured by Rowlands et al.
(1981, 1982) and Fritz (1984). It is our intention to examine this possibility in more
detail in a near future. Ultimately, a definitive explanation of the physics of rouleau
formation should cover not only the origins of the inter-erythrocyte potential but
also the causes of the structural changes taking place within each erythrocyte
during the process.

While the present calculations cannot conclusively point to any of the two indi-
cated possibilties as the mechanism of rouleau formation, the resonance experi-
ments of Blinowska et al. (1985) would seem easier to explain using the assump-
tion about the onset of long-range coherence. It is also tempting to interpret the
experiments involving erythrocytes of two different species, following the original
idea of Frohlich (1980), as indicative of the specificity arising from a single
resonant frequency (or a narrow frequency band) characteristic of a species.
Frohlich (1978, 1980) gave general arguments on how and why a cell can construct
and maintain its characteristic frequency standard. Unfortunately, no convincing
experiments or detailed calculations exist to date to support these statements. A
more definitive answer to this problem and to the question of what is the micro-
scopic mechanism of rouleau formation requires further model calculations and, of
course, more refined experiments. Suggestions presented by Muller-Herold et al.
(1987) seem especially suitable as a starting point for future calculations involving
rouleau formation.
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There are, however, serious drawbacks inherent in the Frohlich theory. First of
all, it requires the occupation inversion of the energy levels achieved through an
unspecified mechanism. Secondly, it assumes a narrow band of frequencies
resulting from Bose condensation. On the other hand, the dynamic van der Waals
interaction requires no difficult preconditions and it works well as long as the
frequencies do not exceed certain values. It is worth noting that the van der Waals
forces were considered a possible mechanism of rouleau formation before by
Gingell and Parsegian (1971) but our present model invokes dynamic rather than
static dipole-dipole interactions. Unfortunately, it will not be easy to explain some

- more intricate effects such as specificity or nonthermal behavior using the van der

" Waals forces alone. It is conceivable, however, that both the resonant and the van

der Waals forces can be at play simultaneously, the former arising and being domi-
nant under very special circumstances while the latter being present in all situations
and dominant in most cases.
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