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Predictions for mean September ice extent submitted
on June 1 (~20 entries each year)

Owner of best guess gets ice cream from worst guess

NCAR ensemble mean prediction error
2008: 0.00 (-0.11) million km?2

. 2009: -0.63 (-0.73)

©72010: -0.01 (-0.11)
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Topics for today

 |Impact of sea ice loss on terrestrial Arctic climate
- T, P, Show
— Rate of ice loss

— Compare impact of sea ice loss to terrestrial
snow extent decrease

e Terrestrial Arctic feedbacks

— Example of shrub cover expansion
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= Change in accumulated Change in March
Oct to Mar precip snow depth
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Soil Water

Relative influence of projected sea ice vs shnow cover change on
Arctic terrestrial T ;,
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Abrupt reductions in the September sea ice cover
CCSM3

September sea ice extent
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September sea ice extent
anomaly (million km”)

Lagged composite:
sea ice extent and western Arctic land T,
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trend over Arctic land

during rapid and moderate sea ice loss
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Periods of
rapid sea ice loss
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* No statistically significant or spatially coherent change in
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Permafrost thaw

Arctic
Warming

Permafrost
warms and
thaws




Observed permafrost degradation
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Projected near-surface permafrost degradation
CCSM3 20C+A1B forcing, land as in Lawrence et al. 2008
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Shrub cover increasing in Arctic

Figure 1. Increasing abundance of shrubs in arctic Alaska. The photographs were taken in 1948 and
2002 at identical locations on the Colville River (68" 57.9" north, 155" 47.4' west). Dark objects are in-
dividual shrubs 1 to 2 meters high and several meters in diameter. Similar changes have been detected
at more than 200 other locations across arctic Alaska where comparative photographs are available.
Photographs: (1948) US Navy, (2002) Ken Tape.

Sturm et al. 2001

Shrub cover increasing in N.
Alaska at 1.2% per decade
since 1950, 14% to 20% cover
(Sturm et al. 2001)

Shrub cover can increase
much quicker in response to
climate shifts than forest
cover since shrubs already
exist across most of the
Arctic
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Elobal Change Biology Grass plot — shrub plot

Global Change Biology (2010) 16, 1296-1305, doi: 10.1111/§.1365-2486.2009.02110.x
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Shrub expansion may reduce summer permafrost thaw in
Siberian tundra
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“These results suggest that the expected
expansion of deciduous shrubs in the Arctic

region, triggered by climate warming, may
reduce summer permafrost thaw.”
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Offline CLM4: SHRUB expt — GRASS expt
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Coupled CAM4/CLM4: SHRUB expt - GRASS expt
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Summary

Seaice loss leads to substantial warming over land, peaking in autumn and
winter. In CCSM3, the sea ice loss induced warming extends over 1500km
inland.

The rate of sea ice loss may exert a significant control on rate of terrestrial
Arctic climate change. Many terrestrial systems may be sensitive to the
rate of change.

Projected warming is likely to result in considerable near-surface
permafrost thaw, which could initiate positive (and negative) feedbacks
that may be relevant on decadal timescales.

Many of these feedback mechanisms are not represented in current
generation Earth System Models. Hence, models are missing processes
that could be a (small) source of decadal predictability.
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Relative influence of Asnow vs AT _,. on AT, }

% of AT max (1M depth) attributable to snow state trends for the
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CCSM3 Projected snow changes
A1B, 2080-2099 minus 1950-1969

10 — 30% increase in
winter snowfall

Max Snow Depth

- deeper OR shallower snowpack
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Increasing snowfall is effectively a soil
warming agent

10%—-3 0% of total soil warming at 1m depth
~16% contraction of near-surface permafrost

Lawrence and Slater, 2009



Soil heat accumulation
Warm permafrost case, LINEAR warming expt
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Surface air temperature change (CCSM3):
Arctic land area

Warming is ~2x
faster in Arctic
compared to

global average
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