
A new mechanism of ocean-
atmosphere coupling in midlatitudes

Arnaud Czaja & Nicholas Blunt

Imperial College, London

Grantham Institute for Climate Change



1. Motivation



Two key questions

• By which mechanism(s) do extra-tropical SST 
anomalies interact with the atmosphere?

• Might the extra-tropical oceanic influence be 
larger in Nature than in AGCMs?

(NB: SST anomalies referred as spatial non uniformity)
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Prevalent paradigm for extra-tropical 
SST forcing: two steps

• Heating (deep or shallow) 
induced by SST anomalies.

• Interaction between

the direct baroclinic

response to this 

heating and eddy 

PV fluxes. 
Watanabe & Kimoto (2000)

Minobe et al. (2008)

Annual climatology             from ECMWF  analysis
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2. Analysis  of extra-tropical moist 
convection in the ERA interim data

• Data and method

• Global maps of moist convective potential

• Mechanisms controlling when the moist 
convective potential is realized



ERA interim data

• This is an atmospheric model constrained to be close to 
observations (1989-present).

• 60 levels in the vertical, with the top level at 0.1 hPa.

• T255 spherical-harmonic representation for the basic 
dynamical fields.

• a reduced Gaussian grid with approximately uniform 79 
km spacing for surface and other grid-point fields.

• Tropopause tracked as the 2 PVU surface.

NB: At this resolution convection is parameterized.
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Simple measure of convective 
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NB: This is only a potential for convection:

1-Only valid for a saturated atmosphere

2-Air above the ocean might not be at 
RH=80% and its temperature might be 
different from the sea temperature.
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30-50% of days are potentially 
unstable over western boundary 

current regions: why?
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NB: This coupling mechanism is thus not
relevant to ACC related SST anomalies



The potential cannot be achieved 30-
50% of the times because of a “low 

level brake” effect...

Baroclinic waves 
stratify efficiently
the 700-800mb 
layer in winter

Poleward extent of moist neutral air
over Atlantic sector (60-15W)

Korty & Schneider (2007)
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Meridional sections at 55W on a given day 
displaying Stp-Ssb<0 at (40N,55W)
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Distribution of the Richardson number 
over the Gulf Stream for moist profiles 

Ri(700mb) for column averaged RH>80%
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Summary

• A focus on lapse-rate rather than on heating 
and eddy mean flow interaction provides an 
alternative framework to investigate the 
impact of the extra-tropical oceans on climate.

• The interplay of warm surface water advection 
and low tropopause events highlights the 
western boundary currents as regions where 
moist neutrality can be most frequently 
achieved.



Implications

• Mechanisms by which moist neutrality is 
reached are low Ri mechanisms. These are 
currently not parameterized in AGCMs. 

• Predictability associated with low frequency 
changes in western boundary current regions 
might thus not have been fully invistigated.


