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George Boer (from yesterday’s talk):

“Prospects are good for decadal predictions in
polar regions:

Existence of long timescale processes
Results of predictability studies
Scientific interests”
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The Beaufort Gyre (BG) is the largest freshwater reservoir in the
Arctic Ocean. It contains ~ 45,000 km?3 of fresh water, calculated
relative to salinity of 34.80 (Aagaard and Carmack, 1989). Its
freshwater volume is 15 times larger than the annual river runoff to
the Arctic Ocean and twice that stored in sea ice.
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1948-2001 EOF analysis of
simulated SSH in the Arctic Ocean.
This is the first EOF mode (43%).

During ACCR (yellow bars and
negative EOF coefficients) the sea
level increases in the center of the
ocean and decreases along
coastline.

During CCR (red bars and positive
EOFs) the sea level decreases in
the center of the ocean and
increases along coastlines.

Circulation in the Beaufort Gyre is
in phase with the circulation in the
Greenland Sea Gyre
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Anticyclonic Circulation Regime

éeaufort Gyre mechanism of fresh

water accumulation and release
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Ice and water convergence,
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due to Ekman pumping and
sea ice accumulation due to
ridging and cooling
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Downwelling in the center and
upwelling along continental
slope

When the ACCR dominates the Arctic, the
interaction between the two basins is
damped, and strong convection in the
central Greenland Sea favors intense heat
flux to the atmosphere over the Greenland
Sea region. These conditions increase the
dynamic height gradient between the two
regions that ultimately forces them to
interact.
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The second state (Cyclonic circulation
regime, CCR) is characterized by
intense interaction between the
basins: the Arctic gains heat advected
from the Greenland Sea region and
the Greenland Sea receives

freshwater released from the Arctic
Ocean.

Beaufort Gyre mechanism of fresh z
water accumulatlon and release
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Proshutinsky and Johnson, 1997 (JGR) updated



The Great Salinity Anomaly, a
large, near-surface pool of
fresher-than-usual water, was
tracked as it traveled in the
sub-polar gyre currents from
1968 to 1982.

Arctic (north of 55N) air temperature
anomalies relative to 1961-1990.
University East Anglia data archive.
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The Great Salinity Anomaly, a

large, near-surface pool of

fresher-than-usual water, was

tracked as it traveled in the

sub-polar gyre currents from This surface freshening of the North

1968 to 1982. Atlantic coincided very well with
VP> | Arctic cooling of the 1970s. At this
time warm cyclone trajectories were
shifted south and heat advection to
the Arctic by atmosphere was
shutdown. \
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We hypothesize that Arctic climate variability is regulated by heat and freshwater
exchange between the Arctic Ocean and the Greenland, Norwegian and Irminger
Seas (GIN seas). The interaction between basins is weak during anticyclonic and
strong during cyclonic circulation regimes. Regime shifts are controlled by the
system itself through oceanic and atmospheric gradients that increase during the
anticyclonic regime and decrease during the cyclonic regime. This conceptual
mechanism for Arctic decadal variability has been reproduced in a simple box

model experiment.
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Schematic of the
Arctic
Ocean-Greenland
Sea model system.
Fs is surface heat
flux, Fw is water
exchange between
the Arctic Ocean
model and Arctic shelf
box model, Ffw is the
freshwater flux to the
Greenland Sea
model, Fh is heat flux
to the Arctic
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F14: (a) Monthly outflow (Sv) from the upper 100 m of the Arctic Ocean during the weak
interaction phase (blue) and strong interaction phase (red). (b) Similar to (a) but for the
heat flux (W/m2). (c) Heat flux vs. gradient of dynamic height (AHdyn) for 110 years of
simulated behavior. (d) Annually averaged surface air temperature difference (AT)
between the Arctic and GIN Sea for 110 years. Bullets denote system states shown on
(c). On (c) and (d), red segments denote cyclonic years, blue anticyclonic years. Different
climate states are reproduced in the model by different rates of Ffw and Fh (F14a and
F14b).
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Motivation for coordinated idealized FW
and circulation experiments

Theory, observations and model results allow us to conclude that both
thermohaline and wind-driven forcing are important to the Arctic Ocean’s
dynamics and thermodynamics (hydrography and circulation).

But unfortunately, the role of individual factors in the circulation and
hydrographic fields cannot be easily evaluated because observed temperature
and salinity distributions reflect the combined effects of wind, baroclinicity, and
topographic interaction. We also know that there is insufficient observational
information for clearly separating the roles of atmospheric and thermohaline
forcing in the Arctic Ocean.

Through numerical modeling, however, the relative strengths of the
circulations and major features of hydrographic fields arising from atmospheric
driving and thermohaline driving can be assessed and compared



Goals for idealized experiments

» Separate different factors to understand their roles in the
Arctic Ocean and sea ice dynamics and thermodynamics

* Understand model’s work better and improve models:
Compare model results and understand sources of differences



Anticyclonic wind

~

Mechanical: Ekman pumping

ea surface

Ekman
transport

400m

Major idea is to investigate the role of
wind forcing in the processes of
freshwater, circulation and hydrography

Conditions: ocean is a closed domain
without fluxes via ocean boundaries, no
river runoff, precipitation and
evaporation. There is no sea ice and
only wind is a driving force

Initial conditions: horizontally uniform
water temperature and salinity fields
with a vertical stratification
corresponding to mean parameters
corresponding to a) upper mixed layer,
b) Pacific water layer, c) Atlantic water
layer and d) deep waters.

Forcing: Annual wind stresses
calculated based on annual SLPs for a)
1989 and b) 2007 (AOMIP recommended
algorithm)



Forcing Regimes

Left — Anti-cyclonic; Right - Cyclonic

Anticyclonic Circulation Regime Cyclonic Circulation Regime
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Depth, m

FWC, SLP. COCO model after 20 years of AC forcing
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Thermodynamic: Cooling/warming

Cooling, ice formation

and salt release

FreshenirV—\Freshening

Thermo-FW pump

Non-uniform seasonally
and interannually
changing Arctic cooling
and warming
accompanied by ice
formation and melting
results in the formation
of horizontal water
density and sea surface
gradients and system of
currents. Fresh water
transformations due to
this processes can be
named “thermo-FW-

pump”



Thermodynamic: Cooling/warming

Cooling, ice formation

and salt release

FreshenirV—\Freshening

Thermo-FW pump

Conditions: ocean is a closed
domain without fluxes via ocean
boundaries, no river runoff,
precipitation and evaporation.
There is no wind. Clouds are
annual mean, and wind speed for
calculation of heat fluxes is 5 m/s.
Humidity is annual mean.

Initial conditions: horizontally
uniform water temperature and
salinity fields with a vertical
stratification corresponding to
mean: a) upper mixed layer,
Pacific waters, Atlantic water layer
and deep waters.

Forcing: Monthly air temperatures
for a) 1989 and b) 2007 conditions



Expected ice thickness after 20 years

Zubov’s model for calculation of ice thickness based on sum of freezing

degree days: I*I+50*I1=8R where I is the ice thickness (cm)and R is

the number of freezing degree-days. Solid lines — ice thickness (meters)
and dotted lines — annual mean air temperature

Zubov model results for 1989, Max = 10.70 m Zubov model results for 2007. Max = 9.97 m
S S S = g Q/// ‘0“_"__\0)660“._:‘




Sea ice thickness (meters) in the
COCO model after 20 years of
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It is warmer in 2007 then in 1989 and more Atlantic water goes into the

Arctic in 1989 than in 2007




Sea ice thickness (meters) in the UW (left) and
RAS model (right) after 20 years of 2007 thermo

forcinug

model results. Max=12.2 m Ice—thickness RAS model, 20 years, 2007 thermo forcing
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Left panels:
redistribution of the
oceanic fresh water
due to ice formation
under influence of only
thermal forcing in 1989
and 2007. Note
accumulation of
freshwater along
continental slopes and
formation of a small
BG FW reservoir.

Right panels: Mean
currents (cm/s) in the
upper 200-m water
layer forced by only
thermal forcing in 1989
and 2007
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Concluding remarks

Surface layer waters in the BG region in the 2000s
are much fresher than in the 1970s. In total, during
2003-2009 the Beaufort Gyre has accumulated
approximately 5,000 km?3 of freshwater (from 17,300
km3 in 2003 to 22,300 km?3 in 2009), which is 5,800
kms3 larger than in climatology of the 1970s.

The release of this FW to the North Atlantic can
significantly influence climate via reduction of the ocean
meridional overturning circulation. In this sense the BG
as a major FW reservoir is “a ticking time bomb” for
Atlantic Ocean climate.
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MJJAS drift and currents
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MJJAS drift and currents
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