Antarctic Circumpolar Current response to
the Southern Annular Mode: Changes in
mixed-layer depth and jet position
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Multi-decadal changes in ocean heat content
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(Levitus et al., GRL, 2009; see also Ishii
and Kimoto, 2009, etc.)

e Where specifically does
warming occur?

e What mechanisms

account for observed
warming?



Where does warming occur?
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Temperature trends at ~900 m, (Gille, Science, .
2002; See also Gille, J. Climate, 2008) Dynamic topography

e Warming concentrated in Antarctic Circumpolar Current (ACC) through-
out top 1000 m.
e 90% of net heat content increase south of 30°S.

e Warming consistent with poleward migration of background temperature.
by 1° latitude every 35 years (Gille, 2008; Sprintall, 2008).



Mechanisms: What Controls Change?
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e Mean Advection: poleward shift
| in ACC frontal features? Assess
st mputom aimosghere frontal migration from satellite ob-
servations of SST and sea surface
height.
e Eddy Advection: changes in pole-
— ward eddy heat transport?
oceanic heat transport —= — . . . .
. southward displacemefit of ACC e Surface Forcing: increases in air-

sea heat exchange and heat input
to upper ocean. Consider changes
in mixed-layer and upper ocean
heat content.




Background: Multiple meandering fronts of the ACC
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Polar Front from AMSRE-E microwave SST.
(Orsi et al. 1995) (Dong et al., JPO, 2006)

Meandering fronts are top-to-bottom features.



Can Southern Annular Mode drive frontal migration?
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Southern Annular Mode intensifica-
tion implies poleward shift in wind. |

Thompson and Solomon (2002)
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Dynamics Governing Observed Long-Term Trends

e Hypothesis A: Shifts in SAM
drive shifts in ACC fronts
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(Oke and England, J. Climate, 2004. See
also Fyfe and Saenko, 2005; 2006, etc; Cai,
2005)

e Hypothesis B: Changes in
SAM imply changes in EKE,
which can increase eddy heat
transport
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(Meredith and Hogg, JGR, 2006)

e BOning et al (2008) suggested
no change in tilt of isopycnals,
implying no long-term transport
change.

e Farneti et al. (2010) find mod-
els that resolve eddies buffer
ACC transport response to at-
mospheric changes.



Can we track ACC jet displacements over longer
timescales from altimetry?

From fixed height contours: From height contours at maxima
in sea surface slope:
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(Sokolov and Rintoul, JGR, 2009)

(Sallée et al, J. Climate, 2008: PF = 0.95 m, SAF
=1.20 m)



Altimetry imply steady poleward migration of ACC
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Subantarctic Front moves southward from 1992 to 2007
Sokolov and Rintoul, JGR, 2009



Overall migration about 60 km in 15 years

Circumpolar mean
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Sokolov and Rintoul, JGR, 2009

e Steric warming would also yield apparent poleward migration
e But Sokolov and Rintoul (2009) report that gradients do migrate.



Alternative methods: Skewness or transport shifts

Skewness from AVISO altimetry (fol-

Velocity-weighted jet position.
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Subantarctic Front (and Polar Front) response to SAM
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Black: correlation with SAM
Gray: correlation with ENSO

Sallée et al., J. Climate, 2008

e Top: Time scales <3 months:
strong links to SAM.

e Bottom: Time scales >1 year:
strong links to ENSO.

e Spatial variability in response.

e From skewness, Shao and
Gille (in preparation) show
similar relationship (albeit
without resolving frequency
dependence.)



Coherence of monthly mean ‘jet” positions with SAM

| | ‘ ‘ e Significant coherence at sub-
| annual cycle frequencies.
\/\ , e No simple phase relationship
- between -SAM and jet posi-
\/ | tion.
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Mechanisms: Forcing and the SAM

T
8— +V .- (@Tl)+ V- (T = forcing

heat input from atmosphere * *

—

oceanic heat transport > —_—

southward displacement of ACC

—

e Surface Forcing: depends on wind,
sea surface temperature, air tem-
perature, humidity, atmospheric
composition, surface albedo, etc.




Surface flux products differ enormously and fluxes
vary on scales that match variability of wind
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Mixed-layer depth as a proxy for upper ocean air-sea
exchange (but heat content is more robust)
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Stephenson et al, in preparation, 2010. Caution: mixed-layer scale not correct



Changes in SAM imply changes in mixed-layer depth
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Sallée et al, Nature Geosciences, 2010



Summary

e Multi-decadal-scale warming in Southern
Ocean consistent with a poleward shift in
Antarctic Circumpolar Current temperature
structure.

e Corresponding changes in ACC transport and
eddy fluxes remain a topic of debate.

e On time scales <3-4 months, altimeter and BT .
SST data imply ACC shifts southward in re-  sokolov and Rintoul, 2009. (thin: 1992-1997; dashed:
sponse to strong SAM, but with strong regional  1998-2003; thick: 2004-2008)
variations. ENSO appears to be a factor on
longer scales.

e Southern Ocean mixed-layer depth also
shows strong regional response to SAM, with
large deepenings in southeast Indian and Pa-
cific basins (where mode or intermediate water
forms.)

SAM composites
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Sallée et al, 2010



