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Motivation

� TTL regulates input of water into the stratosphere, and thus the ozone budget

� Water in the TTL affects cloud distribution and global radiation budget

� Complex region because convective transport, radiatively driven vertical trans-
port, horizontal temperature inhomogeneity on all scales (Kelvin waves to grav-
ity waves) are all important.

� How are water vapor and cloud distributions in the TTL maintained?

� Specifically, what is the role of episodic convection on clouds and water in the
TTL during Boreal Winter?

� Simulation of TTL water and clouds for Boreal Winter 2005-06.



Previous Work – Boreal Winter TTL water and clouds

� Zonal asymmetry in TTL temperatures – cold regions over West Pacific (Newell)

� Large areas of subvisible cirrus clouds near tropical tropopause (e.g. Wang)
in those cold regions

� Maintenance of observed water by horizontal flushing through cold regions and
consequent dehydration (Holton and Gettelman, Gettelman et al, Fueglistaler
and Haynes, Jensen and Pfister). No explicit inclusion of convection.

� Convection clearly gets into the TTL (Danielsen, Gettelman, Dessler)

� Measurements of isotopic water ratios imply convection (Kwang)

� Zonally asymmetric cold pools maintained by overall convection, either directly
(Salby, Sherwood and Dessler) or indirectly (Randel)

� SVC observations downstream of convection (Massie, Pfister)



Model description and procedure

� Goal: Understand the role of episodic convection injection in regulating clouds
and water in the TTL.

� Target: simulate water vapor in the TTL on a particular day in Boreal Winter
05-06 using a trajectory-based microphysical model and compare with satellite
observations.

� Calculate large (648) set of back trajectories (diabatic and adiabatic) from a
grid of points for 40 days using GSFC Assimilation analyses.

� Generate time-height “curtains” of temperatures along these trajectories. Tem-
peratures modified based on a radiosonde correction that varies in latitude,
longitude, and altitude.

� Introduce convection by running the trajectories through time and spatially
varying global IR satellite imagery.

� Calculate cloud top altitude based on brightness temps in neighborhood of
curtains (reduce temperatures by 5K to account for overestimate of Cloud temp
by IR imagery – Sherwood et al)

� Perform time integration of 1-D (altitude) full microphysical model with “stan-
dard microphysics” and interactive (non-cloud) radiatively driven vertical veloc-
ity using input temperature curtains and an initial water vapor profile (Jensen
and Pfister).



Treatment of Convection in Model
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Treatment of Convection in Model

ISCCP IR Image at 199512220900
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Convective Turnover Time
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What does convection do to the variables (water, temperature)

� If cloud top is below tropopause, saturate up to cloud top, leave temperature
unchanged.

� If cloud top is above tropopause, convection overshoots and mixes, reducing
temperature and leaving a saturated layer to cloud top.

� Case a: Instant ice fallout – saturate to new cooler temperature profile.

� Case b: 4 hour ice persistence – saturate to temperature profile 4 hours
after convection.



Treatment of Convection in Model
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Treatment of Convection in Model
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Treatment of Convection in Model
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Sample hydration case
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Sample dehydration case
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Sample hydration with subsequent nonconvective dehydration

Temperature (K)
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Overall effect on water vapor distribution (-20 to 20 degrees)
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Longitudinal Distribution in the -10 to 10 degree region
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Water Distribution at 367K compared with 3 MLS days

190.0
195.0

195.0

195.0
195.0

Nonconvective

190.0
195.0

195.0

195.0
195.0

Convective

190.0
195.0

195.0

195.0
195.0

MLS Jan 19-21, 2006, 100mb

1 2 3 4 5 6
367K Water Vapor Mixing Ratio

 
 

1 2 3 4 5 6
367K Water Vapor Mixing Ratio

 
 



Water Distribution at 367K compared with Jan 20 MLS
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Dehydration over the Cold Pool
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Water Distribution at 146mb compared with 3 MLS days
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Cloud Distribution in January at 367K
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Convective Cloud, and Differences in January at 367K
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In situ cloud, no convection, 9596 winter
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In situ cloud with convection, 9596 winter
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Vertical Cloud Distribution
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Comparison with Aircraft Measurements in CRAVE
Eastern Pacific, CRAVE Period
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Conclusions

� Very reasonable agreement with MLS measurements in both vertical and hor-
izontal water distributions (model is somewhat dry). Inclusion of convection
improves agreement.

� Diabatic trajectories give drier results than adiabatic – because of the concen-
tration of parcel time in the cold pool

� Convection hydrates significantly at lower levels, less at upper levels. Minimal
dehydration at highest levels

� 4 hour ice persistence vs instant ice fallout makes minimal difference on the
average.

� Major pool of dehydrated air is downstream of the coldest air and the highest
cloud frequencies.

� Enhanced vertical velocity is the major perturber of water vapor in these simu-
lations at tropopause altitudes.

� In situ formed clouds are enhanced by 20% or so in the convective case.

� Enhancements are near regions of convection and downstream of convection.
Enhancements are notable at edges of cold temperature regions (hydration of
warm regions by convection with air moving to colder regions).

� Effect of convection is much larger in 9596, because in situ clouds in the non-
convective case are much more limited in that year



� Reasonable quantitative agreement with ICESAT GLAS measurements, with
caveat about different time and IWC threshold issues.

� “Standard” microphysics cannot explain the aircraft measurements, even if
convection is included. Only way is if we up the vertical velocity a lot(?).


