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Emerging Science Demands on
Cumulus Parameterization

• More realistic cumulus-scale microphysics for
cloud feedbacks and aerosol interactions

• Mass fluxes for simulating tracer transport for
chemistry and carbon cycle models, including in
TTL

• Mesoscale circulations for upper-troposphere
cloud feedbacks

• Intensity distributions for convection
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Emerging Science I:
Aerosol-Cloud Interactions



Clean/Maritime

Polluted/Continental

Observed dependence of cloud
droplets on aerosols

Source: Ramanathan et al., Science, 294, 2119.
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Preliminary Results: Aerosol -Warm Cloud Interactions

Source: Ming et al., JAS, in review, 2005; 
Ming et al., JAS, in press, 2005; 
Ming et al., JGR, 110, D22206, doi:10.1029/2005JD0 06161, 2005.

Distribution of cloud droplet 
numbers (cm -3) at 844 mb

TOA flux change (W m -2) from 
preindustrial to present -day

Shortwave cloud forcing (W m -2)

Annual global mean 
Indirect effects: -1.8 W m -2

CO2: +1.5 W m -2

Satellite
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Key Issues

• Number of activated aerosols depends on
supersaturation at cloud base, using Ming (2006,
J. Atmos. Sci.)

• Base supersaturation depends on vertical velocity
at cloud base

• Current AM2 approach takes account of stratiform
vertical velocities (uniform within grid box) and
convective vertical velocities
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Three Methods for Calculating
Convective Vertical Velocity

• Estimate from cloud work function for all
members of RAS ensemble with warm base,
including deep convection.

• Estimate from cloud work function for
shallow members of RAS ensemble only.

• Estimate from turbulent kinetic energy in
planetary boundary layer.
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All
RAS
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RAS Shallow

RAS All
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TKE

RAS All
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Current Problems

• RAS All uses upper-cloud vertical velocities with
cloud base aerosol concentrations, systemically
over-estimating droplet number for deep clouds

• RAS All ignores cold-cloud microphysics in deep
clouds

• TKE cloud base vertical velocities much lower
than in cloud interior, systematically
underestimating droplet number
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Proposed Solution

• Realistic vertical velocities for cumulus ensemble

• Supersaturation profile through full depth of cloud

• Microphysical removal mechanisms for activated
aerosols

• Extend to deep convection by including ice
microphysics
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Emerging Science II:
Cumulus Mass Fluxes for Tracer

Transport in Chemistry and Carbon
Cycle Models
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Precipitation does not differ 
much between AM2 and AM2-D.
Between 30°S and 50°N, AM2-D
precipitation is only 2% less than
AM2.
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Mass fluxes differ sharply
between AM2-D and AM2
and are consistent with 
tracer differences. Between
30° and 50°N, mass fluxes are
40% less in AM2-D.
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Radon-222 concentrations
are higher in the middle-
to upper troposphere in
AM2 (no mesoscale) but
lower near the tropopause
(no overshooting).
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Methyl iodide concentrations
are higher in the middle- to 
upper-troposphere in AM2
(no mesoscale) but lower 
near the tropical tropopause.
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Developing and Testing a Cumulus
Parameterization with Vertical
Velocity PDFs and Advanced

Microphysics
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GATE observations used to infer entrainment PDF

Begin with observations…very limited.
Extract fundamental properties…NOT vertical velocities…possibly entrainment?
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Homogeneous freezing of droplets is the key process determining ice
particle concentration.
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WRF liquid water content has vertical velocity threshold

See also Heymsfield et al. (2005, J. Atmos. Sci.)
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Vertical velocity is critical because it is a major control on 
supersaturation.
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Highly entraining ensemble member (TOGA-COARE)
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Weakly entraining ensemble member
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Evaluating Parameterizations:
Comparison of Process Model with

Field Observations
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)

KWAJEX observations from Heymsfield et al. (2002, J. Atmos. Sci. )
CEPEX observations from McFarquhar (1999, J. Geophys. Res. )
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<D >: number-weighted mean size;
 Dge  : radiatively weighted mean size (Fu and Liou, 1993, JAS )
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Evaluating Parameterizations:
Compare GCM parameterizations

with “trusted” process model



Geophysical
Fluid
Dynamics
Laboratory

Princeton, New Jersey

Geophysical
Fluid
Dynamics
Laboratory

Princeton, New Jersey

*
*
*

*
**

*
*

*
* ** *

*
*

*

*
*

* *
*

*

*

ARM

CRM results from Cris Batstone, CDC; *,*,* from Donner (1993) entrainment PDF

*Low PW and Rain Rate
*High PW and Rain Rate
*High PW and Low Rain Rate

CRM results provide independent evaluation of entrainment PDF.
Multi-scale Modeling offers potential to vastly expand this database!
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Evaluating Parameterizations: Using
Field Data to Test Fundamental

Assumptions
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from Donner and Phillips (2003, JGR) Quasi-equilibrium closure
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Evaluating Parameterizations:
Compare with New Observing

Systems and Tracer Distributions
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Intensity Distribution
of Precipitation Events

Black: SSMI
Red: RAS
Green: Donner

Wilcox and Donner (2006, J. Climate)
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January 2005 Ice Water Contents: 
Microwave Sounder,
Analysis, and Multi-Model Framework
(Li et al., GRL, 2005) 
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January 2005 Ice Water Contents: GCMs
 (Li et al., GRL, 2005)
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Methyl Iodide Convective Index
August-September

0.260.210.23Tahiti

0.260.180.16Fiji

0.430.280.24Christmas I.

0.380.190.20Hawaii

0.370.210.22N. Pacific

AM2AM2-DObserved

Bell et al.

(2002, JGR)

REGION
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Summary

• Most of the traditional demands of cumulus
parameterization remain, along with many new challenges.

• MMF/Super-parameterization and classical
parameterization development both can provide w PDFs
for microphysics.

• Evaluation requires careful evaluation of process models
against field observations and microphysical theory.

• Evaluation requires comparison with new observations-
chemical, satellite, new interpretations of field data.


