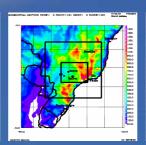
# A numerical study of cross-tropopause transport by convective overshoots during the TROCCINOX golden day

J.-P. Chaboureau<sup>(1)</sup>, J.-P. Cammas<sup>(1)</sup>, J. Duron<sup>(1)</sup>, P.J. Mascart<sup>(1)</sup>, N. Sitnikov<sup>(2)</sup>, and H.-J. Voessing<sup>(3)</sup>

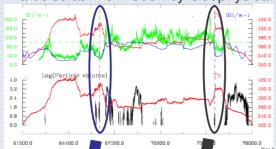

(1) Laboratoire d'Aérologie, Université Paul Sabatier and CNRS, Toulouse, France
(2) Central Aerological Observatory, Dolgoprudny, Russia
(3) Institute for Atmospheric Physics, University of Mainz, Germany

Contact: Jean-Pierre.Chaboureau@aero.obs-mip.fr

Web site: http://mesonh.aero.obs-mip.fr/chaboureau/

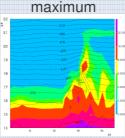
#### Summary

Observations during the Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX) golden day (4 February 2005) have revealed the presence of particles up to 410 K (19 km). The case is investigated using a three-dimensional triply nested non-hydrostatic simulation starting from standard analyses. The simulation fairly well reproduces the relative humidity measurements along the flight track. A reasonable agreement with Meteosat Second Generation observations is also achieved. The simulation produces an overshooting plume up to 410 K yielding an upward transport of water vapour of a few tons per second across the tropical tropopause.



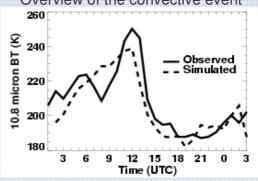

#### Model set-up

Non-hydrostatic mesoscale model Méso-NH (Lafore et al. 1998)


- 3 domains (30, 10, and 3.3 km) with 2-way interaction.
- 72 vertical levels up to 27 km with  $\Delta z = 600$  m (free troposphere)
- Initial and coupling fields with ECMWF operational analysis
- Parameterization schemes: 1-D turbulence scheme, ECMWF radiation package, ISBA surface scheme, mixed-phase bulk microphysics (Pinty and Jabouille 1998), and deep and shallow convection scheme for the 30 and 10 km models only (Bechtold et al. 2001)
- Evaluation by model-to-satellite approach

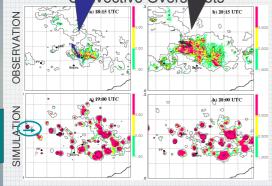
#### Particles at 410 K seen by Geophysica



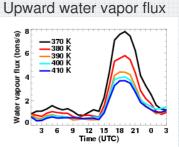

Top: observed potential tent sture (red line, K), relative huminal simulated relative humidal blue line, %) during the Geometrial tempera conserved potential temperature (red line, K) and total particle construction of the conserved potential conserved p

## Water vapor



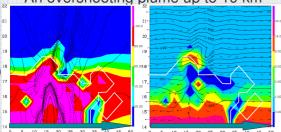

Time evolution of the water vapor mixing ratio maximum (color, ppmv) and of the potential temperature minimum (isolines, K). The vertical axis range is 14-22 km and horizontal axis range 0-27 UTC.

#### Overview of the convective event



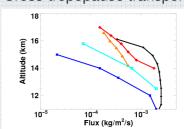

Time evolution of observed and simulated minimum brightness temperature (BT, K) at  $10.8\,\mu m$  in the inner domain. The temporal resolution is  $1\,h$ .

### vective Overst ots




BT difference (K) between 6.2- and 10.8- $\mu m$  band. Top: MSG observation, bottom: Méso-NH simulation. The 200-K and 220-K isolines of the 10.8  $\mu m$  BT are superimposed.




Times series of upward water vapour flux through isentropic surface of 370, 380, 390, 400, and 410 K.

#### An overshooting plume up to 19 km



Vertical cross section at 19:00 UTC 4 February 2005. Left: relative humidity w. resp. ice (%) Solid (dotted) contours represent positive (negative) vertical velocity (m s¹). Right: water vapor mixing ratio (color, ppmy), potential temperature (isolines, K), and wind vectors. The maximum vector length is 25 m s¹. The white line delineates the cloud limit.

#### Cross-tropopause transport



Mass flux estimation based on  $0_3$  (red diamonds) and CO (orange triangles) budgets (Dessler, 2002), inagery (cyan squares; Gettelman et al., 2002), and CRM from Küpper et al. (2004, blue asteriks) and this work (black crosses).