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Introduction

What determines the water vapor content of stratospheric air?
- Water vapor enters stratosphere mainly through tropical tropopause layer (TTL)

~ Coldest temperatures occur in the TTL = dehydration by condensation and precipitation
- What processes set the temperature structure of the TTL?
- What processes control the dehydration?
- Mainly two proposed dehydration scenarios:
(1) slow large-scale ascent within the upward branch of the Brewer-Dobson circulation:
* large-scale dynamical cooling
* final stage of dehydration in thin cirrus clouds near the cold point (CP)
e can be altered through tropical waves (Kelvin, Rossby, Gravity)
* microphysical detalls of ice formation and actual path into stratosphere matter
* e.g. Holton & Gettelman (2001), Jensen & Pfister (2004)
(2) overshooting convection:
e strong local cooling through turbulent detrainment
» dehydration through ice formation within local temperature minima and subsequent precipitation
e can be altered by combining it with scenario (1)
* crucial aspects: detrainment sufficiently strong, ice formation and fall out sufficiently fast
* e.g. Sherwood & Dessler (2000)

Current Approach:

- study dehydration in the TTL within a three-dimensional cloud-resolving model (CRM) Iin statistical
equilibrium, with imposed, horizontally uniform, slow ascent

Model & Setup

Three-dimensional cloud-resolving model (Large-Eddy Model, LEM, of UK Met Office):
* anelastic with fully interactive radiation scheme
e complex bulk microphysics: prognostic variables for mass mixing ratios of liquid water, rain, ice,
snow, graupel, and number concentration of ice (q,, g, , g;, s, g, , and n)
* doubly periodic (96 km x 96 km, 2 km horizontal resolution)
* 30 km deep, rigid lid, 90 levels, 300 m vertical resolution in TTL, relaxation layer in top 5 km
e initial conditions: SST = 300 K (fixed), q, (surface) = 17 g/kg, q, (stratosphere) = 1.6 ug/g

e Imposed mean ascent (w_., see Figure below) = control run
o 'Kelvin wave' experiment: multiply w__ by 1 + A sin?(2m t/T,) sin(2m t/T), where T — wave period,
T, - envelope period, A - amplitude

_ —— T — Imposed, horizontally uniform, vertical mass flux
sl _- representative of the upward branch of the
- 1  Brewer-Dobson circulation (black full line).
Residual vertical mass flux averaged over 20 S -
20 N, 1979 — 1993 from ECMWF reanalysis data
__ (ERA-15) for January (blue) and July (red).
TN convective, thiswork] | Dashed line shows horizontally and in time
] averaged convective mass flux in statistical

“. 1 equilibrium of present CRM study.
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ERA, July _ * Mass conservation: Ju + dv + p* J,(ow') = 0
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Equilibrium Statistics

e all profiles are horizontal and temporal averages

potential temperature fluxes and heating rates fo

Kelvin wave' experiment —

r control run only

_ . . or temporal evolution at CP
(day 120-130); results of Kelvin wave experiment look very similar
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Buovancy Waves & Diurnal Cyvcle

* all plots are for control run (day 120-130)
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Conclusions
e transport of mass and moisture across CP dominated by slow ascent (cf.
Kupper et al. 2004)

e dynamical heating rate in TTL dominated by slow ascent (in contrast to
Kuang & Bretherton 2004)

e air above 15 km subsaturated with respect to ice in control run

* final stage of dehydration in convectively generated buoyancy waves

e convection tends to hydrate rather than dehydrate TTL in our simulations
» Kelvin-wave like perturbations lead to further dehydration
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