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Advances in the past 5 years

* Operational weather centres raising
model lids into the mesosphere

* Biases In the stratosphere

* Vertical propagation of information of
observations into the mesosphere

* Gravity wave drag: estimating
parameters
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Middle Atmosphere Dynamics
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Brewer-Dobson circulation Shaw and Shepherd (2008)

— wave driven, thermally indirect
— affects temperature, transport of species

* Gravity waves also important
— Help drive meridional circulation
— Warm the winter pole in stratosphere
— Impact on tides
— help drive the QBO (quasi-biennial oscillation)
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Advances at operational centers

NH winter 2005-6 Figure courtesy of Kirsten Krtger

. opECMIWF L91: Temp (deg C) 68N, 8E

* QOperational model
lids are moving to
0.01 hPa (80 km)

e ECMWEF, Feb. 1/06
GMAO since 2004
Met Office in 2009

e Can now see meso-
spheric coolings
above SSWs

* Can see stratopause
evolution
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Why the mesosphere?

0.1

* Satellite radiances sense up
to 0.1 hPa

* A model lid at 0.1 hPa means
a sponge layer below this so
obs (e.g. ch. 12-14) not well
assimilated due to sponge

* To resolve Brewer-Dobson
circulation, and winter polar
temperatures and ozone
descent, need good
stratopause simulation, so
sponge above 0.1 hPa
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Improving the stratosphere improves
forecasts even in the troposphere

Strato vs oper (4D-Var)
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O-F(5 day) against
NH sondes for GZ

Dec. 20 — Jan. 26, 2006
(75 cases)

Winter

Impact of strato
extends into
troposphere

Summer
June 15 — July 27, 2006
(86 cases)

Charron, Vaillancourt, Roch
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Zonal mean stratopause altitude

Figure courtesy of Gloria Manney Nov. 2005 to March 2009

* Polar stratopause: high in
winter, low in summer

Analyses have trouble
with low summer pole
stratopause
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Expect bias in stratosphere

* Since not all waves will be correctly analysed,
and some waves are forced by uncertain
parameterizations, we should expect errors in
forcing of meridional circulation

* Errors In forcing of meridional circulation will
create a latitudinally varying bias

* Measurements (e.g. nadir sounders) also have
bias

* Bias In measurements is often removed prior to
assimilation by assuming forecast is unbiased
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Zonal mean temperature analysis
iIncrements for August 2001 . uooaia 2008

ERA-Interim

Pressure

C— :|sr:-

o o Latitl;I'd-e“m Latitude Canadi




Variational bias correction

Derber and Wu (1998)

Bias parameters

b(ﬂkx) = iﬁ{ip{xi )

Model state predictors

Model for bias

T

J(x,B) = (xb —x)T B;l(xb —x)+ (,8/” —,6’) Bj(ﬁﬁ —,6’)
/ +(y =h()=b(x, ) R*(y—h(x)~b(x, 5))

Bias parameters are determined using fit to all observations

Bias correction will adjust for bias in observations (y), obs

operator (h), and model state (x)
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Forecasts are biased in the upper
stratosphere

Figure courtesy of Josep Aparicio
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Do not bias correct obs at model top

Dee and Uppala 2008

* Bias correction for SSU ch. 3 (peak ~2 hPa) too large compared to
accuracy of instrument

* Assume SSU correct. Do not bias correct it (except scan angle bias)
* Zonal mean temperature reduced. (Model forecast was biased warm)

* In general: anchor analyses at top using uncorrected data (SSU ch. 3
or AMSU ch. 14)

Revised ERA-Intarim analysis, July 1993
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Summary: stratospheric T bias

* Variational bias correction helps improve bias in
tropospheric analyses

* Anchoring analyses with uncorrected obs near model top
means forecast brought closer to raw obs

* But sensors are on multiple platforms and sensors
appear or disappear (e.g. SSU to AMSU change)

* |deally, should correct forecast error bias by improving
model

* Nadir sounders sense deep layers in stratosphere so
vertical structure in analyses reflects vertical correlations
In background error

* Need more limb measurements with high vertical
resolution! E.g. GPS-RO
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Impact of chemistry in upper
stratosphere on assimilation Coy et al. (2007)

(a) With Chemistry (b) Wlthout Chemlstry
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* t(ozone) ~ 1 day for SBUV layer 8 (2-4 hPa)

* Obs bias = Analysis bias - Forecast bias, if no chemistry.
So O-F bias - zero

* Obs bias = Analysis bias - 0 if chemistry damps ozone.
So O-F bias - O bias Can detect obs bias!




Moving on up (to the mesosphere)

* A model lid near the mesopause helps
Improve simulation of stratosphere

* The mesosphere Is now part of weather
forecasting domain

* With observations in the troposphere and
stratosphere only, what happens to the
mesosphere? Is it improved?
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Tropospheric and stratospheric obs help
determine large scales in mesosphere

January mesosphere

-1 ® “Reference” is model
| generated, so known

* Obs below mesosphere
o;— Assimilation error only in CMAM-DAS

 Predictability error | * Model forecast

11 Full state propagates information
S from troposphere and
1 10

- stratosphere to
total horizontal wavenumber n
Nezlin et al. (2009) mesosphere

|
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Mesospheric analyses have some value

even when obs only below 45 km
Compare CMAM-DAS to Saskatoon radar winds at noon

Saskatoon, CMAM-DAS (blue) & MFR (red)73 Saskatoon, CMAM-DAS (blue) & MFR (red)82
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Assimilating mesospheric obs is useful

€S p In winter Hoppel et al. (2008, SPARC Newsletter no. 30, p.30)

Forecasts from analyses Forecasts from climatology
UARS-URAP, CIRA above 10 hPa

TFﬂrEGBEtFlMS mnaﬂﬂ 30N 'EFUN TFW&G&SIFIMS 200601131:03!}N EJN

* NRL’s model
NOGAPS-
ALPHA T79L68,
lid at 96 km

°* SABER, MLS
temperature

assimilated 32-
0.01 hPa

e 12 forecasts
during Jan-Feb
2007
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Information propagation through a
Gravity Wave Drag (GWD) scheme

e \What is a GWD scheme?

— Poor resolution of climate models means not enough gravity
wave forcing of meridional circulation

— Not enough downwelling or warming over winter pole leads to
“cold pole problem”. Evident in SH where fewer PWs.

— To solve this, effect of subgrid scale GWs on mean flow is
parameterized using assumptions about GW sources in the
troposphere

— Forcing term is added to momentum equations

* Information inserted in the lower atmosphere adjusts the
planetary waves, whose EP flux divergence influences
zonal mean wind, which filters GWs
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Estimating GW source parameters

Figure courtesy of Manuel Pulido

0.1 0.1

g 10F,. : 1.0F .

<. | | | A ‘ y

O || . / Va ‘

© \ |

= g \J

= 10.0 b 10.0F E

< s A

WOOOE | | | | e WOOO; [ | I I | B
—-60 =350 O 30 60 90 —-60 —30 O 30 60 90

Latitude Latitude
—= ] [ [ [ [ [ [ \

—60 —=50 —40 —-30 —20 =10 O
Missing zonal force for July 2002 due
to unresolved waves. Estimated with

a 4DVar assimilation system (Pulido
and Thuburn 2008, JC).

Invited talk by Manuel Pulido: Friday 9:00 Room 520F

Emvironment  Erwironnement Poster today at 15:00 J21
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Forcing from Scinocca (2003, JAS)
GWD scheme using the optimum
parameters (Pulido et al. 2009, in
preparation).
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Summary

* Operational weather centres raising model
lids Iinto the mesosphere

* Bias remains an issue In upper
stratosphere and mesosphere

* Observations from tropo and stratosphere
can define large scales in mesosphere

* Can apply assimilation methods to
estimate parameters in Gravity wave drag
schemes
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