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Structure of the presentation

1. Introduction: rationale of data assimilation for air 
quality inversion

2. Theory: critical implementation  items

3. Results

4. Did we mature?



Motivations for tropospheric chemistry
data assimilation efforts:

A means to fuse of heterogeneous data and 
information sources for

1. better predictability and sensitivity analyses
2. better estimation of principal parameters: e.g. 

emissions
3. better process simulations
4. better chemical state monitoring on regular grids; 

potentially earlier trend signal detection and 
attribution



Ad 2: Today’s  EPAs concerns
(Germany at least)

• sulphor, CO, ozone: considered under control

• PM10, PM 2.5: appropriate reduction measures 
are believed to be taken

• NO2: with new EC directive no ideas as what 
strategy is promising



Ad 4: Supernational initiatives

• Global: "Group on Earth 
Observations"  (GEO)  and 
:„Global Earth Observing
System of Systems“ (GEOSS)

• European: Global 
Monitoring for Environment
and Security (GMES)



Characteristics of tropospheric chemistry 
data assimilation (1)
physical viewpoint

Main sources of uncertainty:

• direct parameters
– Initial values, lateral boundary values
– emission rates,
– deposition and sedimentation velocities
– reaction rates, J-values

• indirect parameters
– boundary layer height
– vertical exchange mechanisms: convection



Characteristics of tropospheric chemistry data 
assimilation (2),

mathematical viewpoints

• highly underdetermined system - on 2 levels
– variables/gridpoint: ~ 60 -200
– satellite data: scalar column value profile vector

• regionally/locally highly nonlinear chemical 
dynamics (photo chemistry)

• constraints by physical laws/models are 
insufficient, however  central manifolds variable

• assimilation or inversion problem to be solved?



2. Theory: Critical implementation items 

A) Inclusion of the emission inversion

B) Inhomogeneous Background error covariance 
formulation 

C) Preconditioning

D) Implementation



The most popular strategy:
Linear estimation theory

• Provides for a 
• Best Linear Unbiased Estimate (BLUE)

• However:
• assumes Gaussian error  characteristics for 

positive semi-definite parameters by observations, 
forecasts, models



Question:
Which model parameter to be optimized by 
assimilation/inversion?
General Rule:
Parameter with maximal product
(impact on forecast skill) x (paucity of knowledge)
subject to some suitable norm x
Hypothesis: 
initial state and emission rates are least known

emission biased model state

only emission rate opt.

only initial value opt.
true state

observations

time

co
nc

en
tra

tio
n

joint opt.



The generalized cost function



Optimisation of emission rates
diurnal emission profile as strong constraint
amplitude optimisation for each emitted species and grid

cell:



Background emission rate covariance matrix D



Incremental Formulation
• Analysis State:

• New state variables for preconditioning:

• Transformed cost Function:

• Transformed partial gradient:

Computed by
diffusion approach, (see b.)
Cholesky factorisation



Why special care for the background error 
covariance matrix B?

BECM can
• serve as hub for the distribution of ingested data
• balance weights of  information from forecasts 

and information from observation/retrieval
• distribute observation information spatially and 

across variables
• serve as precondition information for 

minimisation



Solution:

Diffusion Approach
Transformation of cost-function:

=> Inverse of B and B-1/2 are not needed, if xb= 1. guess. 

minimisation 
procedure

2 outstanding problems:
1. With linear estimation: How to treat the background error 

covariance matrix  B (O(1014))?
2. With variational methods: How can this be treated for 

preconditioning? (need B-1, B1/2, B-1/2)



Formulation of the background error covariance matrix:
Diffusion paradigm 

(Weaver and Courtier, 2001)

4D var needs the square root of the background error covariance matrix B (O=1012):
Basic idea: 
1. formulate covariances by Gaussians
2. approximate Gaussians by integration of the diffusion operator over time T
3. calculate B1/2 by integration over time T/2 (comp. cheap), and 
4. intermittent normalisation (comp. more challenging)



B1/2 and BT/2 describing a quasi Gaussian correlation
can be modelled using a diffusion operator:



Background Error Covariance Matrix B
• must be provided as an operator (size is of order O=1013)
• we would like to have an operator which can easily be factorised

by B1/2BT/2

• our choice:
– generalized diffusion equation serves for a valid operator generating

a positive definite covariance operator
– diffusion equation is self adjoint
– B1/2 and BT/2 by applying the diffusion operator half of diffusion time

Π(LvLh) approximates commutativity
vertical and horizontal diff. op.



01.07.2003 10 UTC

κnorth

κeast



EURAD-IM
4D-var system  (1)

EURAD-IM adjoints
• RACM chemistry mechanism
• implicit vertical diffusion
• explicit horizontal diffusion
• Bott 4th order advection
• emissions: EMEP, TNO 

• MADE, SORGAM adjoint version under way

“mother grid” (GEMS MACC)
+3 further generations (PROMOTE)

resolutions
45 km, 15 km, 5 km, 1 km



EURAD-IM
4D-var system  (2)

• horizontal and vertical covariances: full anisotropy 
and inhomogeneity available by diffusion 
approach (Weaver and Courtier, 2001)

• preconditioning: options logarithmic, square root 
diffusion operator

• minimisation quasi-Newton by L-BFGS



Distribute observation information spatially 

• B formally is of order O(B) ~ (107)2: 

• not tractable  in practice, by volume and by 
information needs

• seek for a low dimensional control 
parameterization

• exploit external information (e.g. meteorological 
data, surface information (GIS))



Background Error Covariance Matrix B 
(short design outline)
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1. How to obtain the covariances?
Ensemble/NMC approach:

2. How to process this information?
Translate into Diffusion coefficients difusion paradigma



Treatment of the inverse problem 
for emission rate inference



Normalised diurnal cycle of anthropogenic surface 
emissions f(t)

emission(t)=f(t;location,species,day) * v(location,species)
day in {working day, Saturday, Sunday} v optimization parameter



Semi-rural measurement site Eggegebirge

assimilation interval forecast

7. August                             8. August 1997

+ observations
no optimisation

initial value opt.

emis. rate opt.

joint emis + 
ini val opt.

(Elbern et al. 2007)



Error statistics
bias (top), root mean square (bottom)

assimilation window forecast

forecast

assimilation window

+ observations
no optimisation

initial value opt.

emis. rate opt.

joint emis + 
ini val opt.

(Elbern et al. 2007)



NOx (=NO, NO2) 
assimilation problems:

• NOx highly reactive (photochemistry
• observation site network not representative in 

most cases: bias toward urbanized areas
• routinely operated molybdenum converters 

notoriously sample much of NOy (HNO3, 
PAN,…)

• satellite data  as tropospheric columns with 
sensitivities unfavourable for the surface 



∆x=54 km

WhichWhich isis thethe requestedrequested resolutionresolution??
BERLIOZBERLIOZ grid designs and observational sites

(20. 21. 07.1998)

∆x=18 km
∆x=6 km

∆x=2 km
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Some BERLIOZ examples of 
NOx assimilation (20. 21. 07.1998)

NO

NO2

Time series for selected NOx 
stations on nest 2. 
+ observations, 
-- - no assimilation,
-____ N1 assimilation (18 km), 
-____N2 assimilation.(6 km), 
-grey shading: assimilated
observations, others
forecasted.
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NO2, (xylene (bottom), CO (top) SO2 .

Emission source estimates by inverse modelling
Optimised emission factors for Nest 3



Nest 2:  (surface ozone)
(20. 21. 07.1998)

without
assimilation

with assimilation



inversion

radiance  

data
assimilation

data
retrieval

trop. chemical DA 
in the satellite data application chain

level 0
detector tensions

level 1
spectra

level 2
geolocated

geophysical parameters

level 3 
geophysical parameters

on regular grids

level 4 
“user” applications

prior
data

geophysical
models

often 
inconsistent
in practice!



Radius of Influence ((de-)correlation length):
Extending the information from an observation location

Textbook: 
horizontal influence radius L
around a measurement site,
to be based on a priori 
statistical assessments

L
vertical
cut

L

1D horizontal structure function,
to  be stored as a column of the 
forecast error covariance matrix

diffusion operator
construction



GLOBMODEL case study
NO2 column focussed

• resolution to meet OMI: 
15 km horizontal resolution selected

• attention to forecast error covariance design: 
spatial correlation exploitation via inhomogeneous 

and anisotropic radii of influence,
• DA method: chemical 4D-var as BLUE, incl emissions, 

with externally provided  a prioris: 
NO2 columns errors from data provider, model 

error from other case studies, i.e. no “tuning” introduced



Satellite information:
ESA UV-VIS satellite footprints  Ruhr area 

comparison

SCIA
GOME1

GOME(1u).2

OMI

minimal areas:
GOME 1 320 x 40 km2

(special mode)    80 x 40  “
SCIAMACHY 60 x 30  “
GOME 2 80 x 40  “
OMI 24 x 13  “

Ruhr area domain     90 x 80 km2

1 km resolution
(~12 000 000 inhabitants)



Average OMI averaging kernel profile
over model domain for July 9th, 2006

model domain mean averaging kernel. 



Exploitation of NO2 column averaging kernel 
information

• shape largely dependent on optical properties of 
the atmosphere (cioud cover), rather than NO2

• typical maximal sensitivity above the  boundary 
layer

• does not allow a clear distinction between PBL or 
lower free troposphere pollution burden



How to proceed to obtain benefit from trop. column 
integral information? 

(A typical problem of  Inverse Modelling by Integral 
Equations)

Two more specific questions:
• When is it justified to project averaging kernel 

information to the surface?
• Can this be done without destroying the BLUE 

property of the assimilation algorithm?



Observation operator  H

vertical structure function in B essential!



PBL top

vertical Radius of Influence:
Extending the information from observation location
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Comparison of NO2 tropospheric columns 
in molecules/cm2 for July 6th, 2006, 09-12 UTC.

assimilated  values (y) | EURAD forecasted (Hxb) | column analyses (Hxa)



Data assimilation result from tropospheric columns 
for July 6th, 2006. 

NO2 model columns by OMI  and SCIAMACHY 
assimilation interval 09-12 UTC. 

Analysed NO2 colum |          Difference field   | surface concentration 
changes 

NO2 ppbmolecules/cm2



Data assimilation result in terms of tropospheric columns for July 
7th, 2006. NO2 model columns based on OMI  and SCIAMACHY 

assimilation within the assimilation interval, 09-12 UTC.

pure forecast assimilation based
forecast



Control run (OmC) (no data assimilation at all,) black bold line, 
assimilation based forecasted values (OmF) green bold line, 
analyses (OmA) blue bold line. 
For comparison: Gaussian fit to OmF pdf by 
mean and standard deviation given by broken purple line.

SCIAMACHY
OSCIAmXOMI probability density functions

for July 6th (left), and July 8th, (right). 



Conclusions: Did we mature?

• data assimilation to be extended toward general 
inversion

• emission rate estimation feasible, other parameters 
to be confirmed: improved preconditioning 
mandatory

• covariance matrix problem: how to implement 
multivariate optimisation parameters

• tropospheric column information still to be 
optimized for successful surface observation 
validation


