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Relevant papers to SPARC-DA from MO7 and
Data Assimilation Using Modulated Ensembles
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e Tremolet and MO7

« Motivation for adaptive ensemble covariance
localization

e Method

* Results from preliminary comparison of DA
performance with operational covariance model
using pseudo-obs

« Show that adaptive localization enables
ensemble based TLM

e Conclusions



Balance in the Stratosphere CCECMWF

@ Weak constraint 4D-Var experiments produced model errors with very
large wind components in the stratosphere.

@ [ hese model errors could not be attributed to the model.

@ [he large wind errors were traced back to incorrect specification of
the balance terms in Jy for the stratosphere.

@ Not using the balance constraints above 20hPa improved the analysis
in weak and strong constraint 4D-Var.

@ [ he development of weak constraint 4D-Var helped identify errors in
the data assimilation system, not only model error.

Yannick Trémolet [ECWMWE] ' ": | July 2002 1/¢



Balance in the Stratosphere CCECMWF
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The mean temperature increment is smaller and smoother without
applying the balance operators in the stratosphere (July 2008).

Yannic amolet (ECMWE) July 2002 2 /2



High Initial-time Sensibility Observed for the Tropospheric NAM Predictability in
the Stratospheric Sudden Warming

Y. Kuroda

Meteorological Research Institute, Tsukuba, Japan

Very high predictability in the tropospheric NAM to a few months was simulated by
ensemble runs of the general circulation model when the initial time was set just before
the key day of the major stratospheric sudden warming (SSW) in January 2004
(Kuroda, GRL2008). In this study, we examined how the predictability of the
tropospheric NAM varies with the change of the initial time. It is found that higher
statistical significance of the NAM-predictability is obtained with advancement of
Initial time to the key day of the SSW. Such higher predictability is obtained until initial
time is set to the key day. However, abrupt large decrease in the predictability is
observed after the key day, and higher predictability cannot be obtained afterward. The
reason of such abrupt decrease in the predictability after the key day is also discussed.
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Motivation

Stable flow error correlations |
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Ensembles give flow dependent, but noisy correlations



Motivation

Stable flow error correlations |

Fixed localization
0.5¢

- | Current ensemble DA techniques

. : o 0
reduce noise by multiplying ensemble
correlation function by fixed
localization function (green line). 055 100 150 500 x10km

Resulting correlations (blue line) are too | Unstable flow error correlations |

thin when true correlation is broad and
Fixed localization
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Today’s fixed localization functions limit adaptivity
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Motivation

* Current ensemble localization
functions poorly represent
propagating error correlations.
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Today’s fixed localization functions limit ensemble-based 4D DA



Motivation

Current ensemble localization
functions poorly represent
propagating error correlations.

B0
. Unstable flow error correlations |
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100 150 200 x10km

Today’s fixed localization functions limit ensemble-based 4D DA



e Green line now gives an
example of one of the adaptive
localization functions that are
the subject of this talk.

030 100 150 200 X10km

Unstable flow error correlations
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Want localization to adapt to width and propagation of true correlation
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Motivation

4l Stable flow error correlations
t:0 t:].,f” ™

. . 0.5¢ ‘
Current ensemble localization
functions do not adapt to the
spatial scale of raw ensemble
correlations and they poorly ; | |
preserve propagating error 30 100 150 200 km
correlations. 4l Unstable flow error corr;elations |
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Method

An adaptive ensemble covariance localization technique
(Bishop and Hodyss, 2007, QJRMS)
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e Green line now gives an
example of one of the adaptive
localization functions that are
the subject of this talk.

Key Finding: Moderation functions
based on smoothed ensemble
correlations provide scale adaptive and
propagating localization functions.
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ated ensembles and local

(Bishop and Hodyss, 2009 a and b, Tellus)

Consider covariance of mth and nth elements of ( 2,02 0O ES) given by

S () (uri) = [z](z ](z] (Ploc oC)

i=1

K K
S — T s s, sT
where Py nggk and C" = E z;z, . Hence,

fii(a 0z, 0z )(z, 02 0z') =Z,Z, =P/ 0C OC

Modulated ensemble member
Thus, the covariance of the modulated ensemble 1s the localized ensemble covariance.

For K =128, the modulated ensemble contains over 2 million members. Up to

K* (K +1)/2=1,056,768 of these are likely to be linearly independent.
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] ensembles enable globz

Both incremental and non-incremental AR are possible.
Non-incremental weak constraint AR is as follows.

Since P'=Z_Z{ where Z is the very large modulated ensemble, Step 1 is to solve

[R“MZ, [R“MHZ, | +1fv=R[y-H(x')]

for v using (for example) conjugate gradient. Step 2 is the postmultiply

x*—x"=Z,[R"HZ, ] v
Hybrid mixes of ensemble based TLMs and initial covariances with
those from NAVDAS are straightforward.

Model space "primal" 4D-VAR form is also straightforward

(ElI Akkraoui et al., 2008, QJIRMS) .


Presenter
Presentation Notes
El Akkraoui et al. (2008, QJRMS) review the observation space form (PSAS/NAVDAS-AR). They refer to it as the dual form and describe how 4D-VAR systems can be readily turned into observation space systems provided the 4D-VAR system has been written in an appropriately modular form. It is trivial to appropriately modularize DAMES. 
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06Z

100

Ensemble based localization moves about 1000 km in 12 hrs. This

Is >=half-width of a typical LETKF observation volume (~=900km).


Presenter
Presentation Notes
Miyoshi and Yamane (2007, MWR) had half-width of 8.75 degrees


Example of a column of the localization C, © C, with K =128
18Z

Ensemble based localization moves about 1000 km in 12 hrs. This
Is >=half-width of a typical LETKF observation volume (~=900km).




Example of a column of P/ ©C, ©C, with K =128

<vv> Increment 06Z

Statistical TLM implied by mobile adaptively localized covariance
propagates single observation increment 1000 km in 12 hrs.




g U7 2 e Dzitzy Assimilation Using Modulatzd Ensaileles
B Lk

\CV mplication to global NWP mod: =/

Example of a column of P/ ©C, ©C, with K =128

<vv> Increment 182

Statistical TLM implied by mobile adaptively localized covariance
propagates single observation increment 1000 km in 12 hrs.




adaptive localization pro
statistical TLM/PEM

X*(18)-x' (18)=M | x*(6) |-M| x' (6) ]~ M| x*(6)—x" (6)]

Statistically, the Best Linear Unbiased Estimate of M is
M :<[xa (18)—x' (28) ][ x* (6)—x' (6)]T><[xa(6)—xf (6)][x*(6)~x' (6)]T>

-1
FTN\/ AT
~<‘918‘96 ><56 &g >

and hence M is readily derived from any four-dimensional P"'.

-1

(Compare with "statistical 4D-VAR" TLM/PFM discussed
In Lorenc and Payne, 2007, QJRMS)
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Mobile adaptive localization
provides an initial time
covariance P, and a statistical
M. Can the guality of such
models of P, and M match
the quality of their non-
ensemble counterparts?



. Experiment 1: Test of Initial adaptively
localized covariance P,

Forecast error is difference between a T119L.30 6Z-18Z forecast (the first
guess) and a T119L.30 30-42 hr forecast valid at the same time (the simulated
truth).

In this case, 440,000 evenly spaced obs of u,v, and T are simulated. (Every
3" level in z, every 2" grid point in X and y, no obs poleward of 80). (8
million variables).

All obs are taken at 6Z (the beginning of DA window)
Rms ob error for u and v iIs 2 ms™-1
Rms ob error for Tis2 K

128 Ensemble Transform (ET) ensemble members=>localized ensemble has
rank <1,056, 768
Compare P'= P O C, ©Cwith NAVDAS. Arguably, NAVDAS has the

advantage because forecast error is the result of 4 NAVDAS analysis
corrections (using real obs) made over the preceding 24 hrs.



Presenter
Presentation Notes
See McLay et al. (2008, Mon. Wea. Rev) for description of ensemble generation method.
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Red square 2 NAVDAS
Blue Circle > P/ =P/ 0C, OC,

RMS(Analysis Error)/RMS(Forecast Error) Anomaly Correlation
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Anomaly correlation is between analysis
correction and the “perfect” correction that
would have eliminated all initial condition error.

Adaptively localized ensemble covariance produced smaller initial condition errors than

covariance model used in operational 3D-PSAS/NAVDAS scheme



Anommaly Correlation
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P, is OK. What about the TLM
implied by 4D P' =P, ©C, ©C?
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Presenter
Presentation Notes
It is computationally trivial to decrease the correlation through time of all variables by a constant factor in the DAMES framework. The solid lines in these figures pertain to a DAMES system in which such attenuation has been included. The amount of attenuation applied can be chosen to optimize the TLM test. A rough optimization scheme was used to choose the attenuation factor used in the above diagrams. 


Model level

Will the 4D-Var approach be
defeated by nonlinearity?
20 =
== T42
30r — T63 i E. Andersson, M. Fisher, E. HOIm,
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Figure 3: Relative error of the tangent linear model for various resolutions with respect to T511
nonlinear, diabatic model after 12h for the 3 dimensional variables and for the whole 4D-Var window for
surface pressure. Diagnostics are computed on the T255 resolution grid. From Radnéti et al. (2005).
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Conclusions

« Adaptive localization should aim to account for
propagation and scale variations of error distribution

* Proposed adaptive localization given by even powers of
correlations of smoothed ensemble

 Huge modulated ensembles give square root of localized
ensemble covariance matrix

« Errors can move over 1000 km in 12 hr window
 Modulated ensembles enable 4D-VAR global solve

o Adaptively localized covariance beats operational
covariance model in idealized experiment with pseudo-
obs

« Adaptive localization enables ensemble based TLMs
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