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Introduction

Accurate estimation of the observation and background error statistics plays an important role in 

data assimilation as they determine, at analysis time, the weight and spatial influence function of 

observations and possibly the impact on other variables. The observation error which is useful 

for data assimilation is best estimated within an assimilation cycle. On the other hand, the 

background error, or short term forecast error, is not independent of the observations and can 

also only be estimated within an assimilation cycle. In today’s 3D-var or 4D-var assimilation 

systems, however, the observation error and background error are prescribed. An improper 

characterization of the observation and background error statistics will lead to a suboptimal 

assimilation scheme. Desrosiers and Ivanov(2001) and Desrosies et al(2005) developed a 

method to tune observation and background error using the diagnosis computed from analysis 

residuals. In this work we apply the method to the 3D-var assimilation system of Canadian 

Meteorological Center (CMC) and use it to tune the observation error iteratively for dynamic 

variables and then tune the background error for chemistry variables.

Innovation-based diagnostics and estimation

The χ2 diagnostic is a measure of consistency between the variances of random variables. This 

diagnostic has been used in many applications such as geophysics (Tarantola, 1987), atmospheric 

retrievals (Rodgers 2000), and data assimilation (Bennett and Thornburn 1992, Talagrand 1999, 

Ménard and Chang 2000) where the random variable is a residual or innovation, i.e. the 

difference between observations and the model equivalent (at the same time and location).   For 

data assimilation χ2 is defined as

(1)

where d is the innovation, and

(2)

is the a priori innovation covariance, B is the prescribed background error covariance and R is 

the prescribed observation error covariance and H is the observation operator.  The expected 

value of χ2 is given as

(3)

Where               is the sample covariance of the innovations. If the sample covariance of the 

innovation matches the given or prescribed innovation covariance, i.e.               , then

(4)

where m is the dimension of the observation space or the number of observations.  

In 3D and 4D-Var, the value of χ2 can be obtained directly from the value of the cost function at

the minimum as follows 

(5)

Note that,

Condition 1Condition 1: The sample covariance of the innovation matches the given or : The sample covariance of the innovation matches the given or 

prescribed innovation covariance, i.e. prescribed innovation covariance, i.e. 

is a necessary condition to meet the χ2  diagnostic (4), but it is not a sufficient condition. 

As an extension of the χ2 diagnostics, Desrosiers and Ivanov (2001) developed a method to tune 

observation error and background error parameters by comparing the Jb and Jo at the minimum 

against what is estimated using a randomized trace method. Recently, Desrosiers et al. (2005) 

proposed a simpler more direct approach to estimate observation and background error 

parameters. It is noted that 

(6)

(7)

If Condition 1 is fulfilled, then

(8)

(9)

Also from (8) and (9) we have

(10)

These diagnostics, (6-7), defined in observation space can be directly computed from the analysis 

residuals, and do not require extra computations. 

This algorithm can be applied iteratively. A scalar case study proved that the iteration scheme 

will always converge. However, if one only tunes the observation (background) error iteratively 

without tuning the other, the accuracy of the converged value depends on the accuracy of the 

prescribed background (observation) error. In a realistic system similar to an operational 

assimilation system, there is no known case of non-convergence except where R and B have the 

same correlation length. Here we will show the result of iterative tuning.
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Model and experiments

For dynamic assimilation, an earlier version of CMC’s GEM-Strato model and 3D-Var system was used to 

assimilate dynamic measurements, including TOVS (AMSUA and AMSUB), RAOBS, and others. Background 

error statistics were obtained using the NMC method. AMSU observations were bias-corrected before 

assimilation. This run is for winter 2003.

For chemistry assimilation, we used an updated model of GEM-Strato, which incorporats the BIRA (Belgian 

Institute for Space Aeronomy) chemistry module. This experiment assimilates MIPAS measurements of CH4, 

with  dynamic fields refreshed from another run that assimilated dynamics data mentioned above. This run was for 

summer 2003.
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RAOBS UU, NH before tuning
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AMSUA, NH after tuning obs. error variances
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AMSUB, NH after tuning obs.  error variances
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Results of iteratively tuning the observation error variances
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Summary

Error statistics derived from innovations provide an estimate of the errors perceived by the assimilation 

system, with which error statistics prescribed in a 3Dvar system has to be consistent. Two diagnostic 

methods, namely the χ2 test and Desrosiers et al’s innovation-based consistency diagnostics are implemented 

and the diagnostic results are being used to tune the observation and background error variances for use with 

CMC’s 3Dvar assimilation system.

Through iterative tuning of AMSU and RAOBS observations, the ratio of <OmA, OmP>/R are generally 

converging toward 1.0, and each iteration yields better consistency than the former one, especially for AMSU 

observations. For certain RAOBS variables at certain levels the iteration scheme does not seem to converge.

For dynamic observations, the iterative tuning consistently improves the χ2 test result. The improvement is 

very consistent in time. The χ2 values after the third and forth tuning are very close to 1.0. Whereas for CH4, 

by tuning the background error variances the improvement on χ2 is consistent in time but the impact is vary 

limited.  

Diagnostics of dynamics assimilation runs before and after tuning observation error 

variances
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Tuning background error for MIPAS CH4
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