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Why is convective mass transport important?

(1) Reflects vertical heating profile of convection

(2) Affects wave generation (stratospheric
and tropospheric dynamics).

(3) Affects distribution of water vapor and other
greenhouse gases (climate feedbacks).

(4) Probably need to do a better job in convective
mass transport to improve tropical rainfall predictability.
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Dynamical Divergence and Convective Mass Fluxes
For fixed PT surfaces, weak horizontal heat flux divergence:
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Deep Convection

Uppel Level Divergence:
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Mapes and Houze, JAS, 1995
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FiG. 13. Average IFA divergence profiles. Solid line: the IFA-MCS
Wake > Valesla composite (Table 1, Fig. 12). Dashed line: the extended life cycle
S Y A Radar composite (IFA-MCS composite plus times immediately prior and
© MIT Radar subsequent to the times listed in Table 1). Dotted line: the leading
EOF of the 480 IFA divergence profiles, arbitrarily scaled to match
the other profiles.
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Trimodal cloud top distribution (lidar obs):
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Figure 2. Fraction of GLAS observations (% per km) between 10°S and 20°N

Tropical cloud-top height distributions revealed by
ICESat/GLAS

that contain a thick-cloud top vs. altitude (km). The solid lines are for thick

A E. Dessler’
Dept. of Atmospheric Sciences, Texas A&M University, College Station
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ubiquitous shallow convection
(cumulus congestus), ~ 28% of
: rainfall during TOGA/COARE
Deep Convection (Tohnson et al., JAS, 1999)




Interaction between shallow/deep convection

- Deep convective rainfall propagates toward shallow convection
due to water vapor feedback (reductions in buoyancy due to mixing
are extremely sensitive to the RH of the background atmosphere).

- It has been suggested that the MJO is a water vapor feedback
mode with the trade wind circulation biasing the direction of
propagation toward the east.
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Mean Divergence profile from larger scale Array:
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Mean DJF divergence profile from BADC winds
for large array:
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What happens to the shallow outflow mode?




Radiosonde T/RH climatologies used in Two Column Model
(red: SPARC high res; blue: SHADOZ)

NOAA/NCDC and SHADOZ Radiosonde/Ozonesonde Locations
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Convective Outflow can be estimated from clear sky
mass fluxes (radiative + evaporative).

Cloudy Column
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Two Column Model:

Mass Flux Mass Flux Divergence
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Two Distinct Circulations?

1) Tropical-scale Hadley/Walker circulation: deep
condensational heating balances radiative cooling.

2) Regional scale downdraft/shallow convection
circulations: shallow convective heating balances
Evaporative cooling.




Relationship between temperature anomalies

at Koror and rainfall proximity:

Distance from Koror and Rainfall Climatology
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Temperature anomaly for top 10% rainfall bin averaged

within circular regions centered at Koror of various radii:
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Outflow Layers associated withchanges in stability
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TTL: uplift moistening;
need dehydration mechanism

LZH: level of zero
radiative heating

Detrainment Moistening

Subsidence Drying

RH should increase as you approach the TTL from below




Aircraft measurements of tropical upper tropospheric RH
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Compilation of Various Tropical Climatologies:
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Height

Tropical mean cloud mass flux and divergence
profiles from 3 convective schemes
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Relative Humidity Comparisons
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Ozone is rapidly destroyed in the tropical marine boundary layer.
Deep convection pumps this low ozone air to higher altitudes.

Ozone is chemically produced at a rate of 1-2 ppbv/day above
6 km in the background atmosphere




Ozone Comparisons
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Summary

-The observations are pretty clear: there is a deep
outflow mode with a peak near 13 km, and a shallow
outflow mode below 6 km.

- In general, convective parameterizations do not
seem to exhibit a clear separation between these
modes.

- Getting a clear physical separation between the
deep and shallow outflow layers is probably key
to the problem of tropical predictability.

-Need to compare model predictions of RH/tracers
across both outflow layers to test convective
schemes (e.g. comparisons with radiosonde RH by
themselves are of limited use).
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However, the shallow circulation has a distinct temperature
structure if you look at lapse rates.
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